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a b s t r a c t

In many applications, it has been found that the autoregressive conditional heteroskedasticity (ARCH)
model under the conditional normal or Student’s t distributions are not general enough to account for the
excess kurtosis in the data. Moreover, asymmetry in the financial data is rarely modeled in a systematic
way. In this paper, we suggest a general density function based on the maximum entropy (ME) approach
that takes account of asymmetry, excess kurtosis and also of high peakedness. The ME principle is based
on the efficient use of available information, and as is well known, many of the standard family of
distributions can be derived from the ME approach. We demonstrate how we can extract information
functional from the data in the form of moment functions. We also propose a test procedure for selecting
appropriatemoment functions. Our procedure is illustratedwith an application to the NYSE stock returns.
The empirical results reveal that the ME approach with a fewer moment functions leads to a model that
captures the stylized facts quite effectively.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

There have been a number of theoretical and empirical studies
in the area of density estimation. Since complete information
about the density function is not available, a parametric form
is generally assumed before performing estimation. In non-
parametric approach, estimated tail-behavior of the density, which
is of substantial concern in most financial applications, is not
satisfactory due to the scarcity of data in the tail part of the
distribution. If the density function is correctly specified, then
classical maximum likelihood estimation preserves efficiency
and consistency. The true density, however, is not known
in almost all cases; therefore, an assumed density function
could be misspecified. The main contribution of this paper is
to show that how can one extract useful information about
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the unknown density from a given data by imposing some
well-defined moment functions in analyzing financial time-
series data. By so doing one can reduce the degree of model
misspecification considerably. We use the maximum entropy
density (MED) as conditional density function in the autoregressive
conditional heteroskedasticity (ARCH) framework. Since Engle’s
(1982) pioneering work and its generalization by Bollerslev
(1986), ARCH-type models have been widely used, and various
extensions have been suggested, primarily in two directions.
First extension has concentrated on generalizing the conditional
variance function. Second extension deals with the form of the
conditional density function. Various non-normal conditional
density functions have been proposed to explain high leptokurtic
behavior. Although these two extension are inter-related, in this
paper we concentrate on the second extension, namely, finding
a suitable general form of the conditional density. If we impose
certain moment conditions, we can obtain normal, Student’s
t , generalized error distribution (GED) and Pearson type-IV
distribution through MED formulation. In this sense, our proposed
maximum entropy ARCH (MEARCH) model is a very general one.
MEARCH model is quite related to other moment-based

estimation, such as generalized method of moments (GMM)
and maximum empirical likelihood (MEL) estimation. All these
estimations could also be considered within estimating function
(EF) approach, for example, see Bera et al. (2006). The purpose
of this paper is twofold. First, we present the characterization
of MED, and show how, within an ARCH framework, our selected
moment conditions capture asymmetry and excess kurtosis of
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financial data. Second, we introduce estimation procedure of the
MEARCH model, and suggest moment selection criteria based on
Rao’s score test.
The rest of the paper is organized as follows. In the next

section we present some basic characteristics of MED and discuss
estimation of a basic model. In Section 3, we propose our MEARCH
model along with its estimation and the moment selection test.
Section 4 provides an empirical application to the daily return of
NYSE with specific moment functions that generate a skewed and
heavy tail distribution. The paper is concluded in Section 5.

2. Maximum entropy density

The maximum entropy density is obtained by maximizing
Shannon’s (1948) entropy measure

H(f ) = −
∫
f (x) ln f (x)dx, (1)

satisfying

E[φj(x)] =
∫
φj(x)f (x)dx = µj, j = 0, 1, 2, . . . , q, (2)

where the µj’s are known values. The normalization constraint
corresponds to j = 0 by setting φ0(x) and µ0 to 1. The Lagrangian
for the above optimization problem is given by

L = −

∫
f (x) ln f (x)dx+

q∑
j=0

λj

[∫
φj(x)f (x)dx− µj

]
, (3)

where λj is the Lagrange multiplier corresponding the j-th
constraint in (2), j = 0, 1, 2, . . . , q. The solution to the above
optimization problem, obtained by simple calculus of variation,
is given by [Zellner and Highfield (1988) and Golan et al. (1996),
p. 36)]

f (x) =
1

Ω(λ)
exp

[
−

q∑
j=1

λjφj(x)

]
, (4)

where Ω(λ) is calculated by
∫
f (x)dx = 1, and can be

expressed in terms of the Lagrangian multipliers as Ω(λ) =∫
exp

[
−
∑q
j=1 λjφj(x)

]
dx. Ω(λ) is known as the ‘‘partition

function’’ that converts the relative probabilities to absolute
probabilities. In the maximization problem (1) and (2), φj(x) in
the moment constraint equation (hereafter, we call φ as moment
function) is only function of data x. Due to this characteristics
of φj, we obtain simple exponential forms as a solution to the
maximization problem. Since (4) belongs to exponential family,
λj’s and φj(x)’s are the natural parameters and the corresponding
sufficient statistics, respectively.
We extend simple exponential solution forms to more general

exponential forms by introducing additional parameters, γ , in φj.
Consider the following optimization problem,

max
f
H(f ) = −

∫
f (x) ln f (x)dx, (5)

satisfying∫
φj(x, γ)f (x)dx = Cj(γ), j = 0, 1, 2, . . . , q. (6)

The solution to (5) and (6), obtained by applying the same
Lagrangian’s procedure, is the general exponential density

f (x) =
1

Ω(λ, γ )
exp

[
−

q∑
j=1

λjφj(x, γ )

]
, (7)
where Ω(λ, γ ) =
∫
exp

[
−
∑q
j=1 λjφj(x, γ )

]
dx. Thus, by adding

additional parameter γ to moment functions, the ME formulation
provides a more general family of distributions.
The moment conditions can be interpreted as known prior

information, and using these we can achieve a least biased
distribution by the ME principle. Suppose we have no prior
information except for the normalization constraint, then the
solution is the uniform distribution which is a ‘‘perfect smooth’’
density. If we have an additional information, say

∫
xf (x)dx =

µ1 > 0, then the solution takes the form, f (x|λ1) = λ1 exp[−λ1x]
where x ∈ [0,∞). With a further constraint, say

∫
x2f (x)dx =

µ2, the associated solution is the normal distribution. In the next
subsection, we discuss in detail the role of different moment
conditions in some of the commonly used distributions, and
also suggest new densities by constructing and selecting certain
moment functions judiciously.
All solutions are functions of Lagrangian multipliers which

represent marginal contribution (shadow price) of constraints to
the objective value. For example, suppose λ̂2 corresponding to∫
x2f (x)dx = µ2 is estimated to be close to 0, then, there is little
contribution of this moment constraint to the objective function.
Consequently, the Lagrangian multiplier reflect the information
content of each constraint.

2.1. Maximum entropy characterization of thick tail, peakedness and
asymmetry

Maximum entropy distribution has a very flexible functional
form. By choosing a sequence of moment functions φj(x), j =
1, 2, . . . , q, we can generate a sequence of various flexible MED
functions. Many well-known families of distributions can be
obtained as special cases of MED function. Kagan et al. (1973)
provided characterization of many distributions, such as, the beta,
gamma, exponential and Laplace distributions as ME densities. In
Table 1, we present a number of well-known distributions under
various moment constraints. These common distributions can be
interpreted in an information theoretic way that they are least
biased density functions obtained by imposing certain moment
constraints which are inherent in the data. If we add more and
more moment constraints, the resulting density, f (x)will be more
unsmooth.
Let us consider three moment functions x2, ln(γ 2 + x2) and

ln(1 + x2) that correspond to normal, Student’s t and Cauchy
distributions, respectively. These three and two other moment
functions from the generalized error distribution (GED) are plotted
in Fig. 1. From Eq. (7), we note that a moment function φj(x, γ )
adds to the log-density ln f (x) an extra term−λjφj(x, γ )when the
moment constraint is binding. φj(x, γ ) = ln(γ 2 + x2) penalizes
the tail events less severely than the function φj(x, γ ) = x2 (that
generate the normal density) to adhere the maximum value of the
entropy under the constraints.
This intuitive penalization mechanism results in heavier tails

for the Student’s t density. As the value of γ 2 decreases, φj(x, γ )
takes less extreme values at tails and that in turn makes the tails
of the densities thicker. Therefore, in some sense, the shape of
the resulting density has a close link with the ‘‘inverted’’ shape
of φj(x, γ ). This observation, in general, leads us to the choice of
different moment functions. Various financial data such as, stock
returns, inflation rates and exchange rates display both thick tails
and high peakedness. Wang et al. (2001) proposed the exponential
generalized beta distribution of the second kind to explain thick
tails and high peakedness of financial time-series data. From Fig. 1
and the above discussion on the link between φj(x, γ ) and f (x),
we can say that φj(x, γ ) = ln(γ 2 + x2) type of functions cannot
capture peakedness.
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Fig. 1. Moment functions φj(x, γ ) representing thick tail.

Fig. 2. Moment functions φj(x, γ ) representing high peakedness.

To take account of high peakedness,we suggest functions ln(1+
|x/r|p) and tan−1(x2/r2). In Fig. 2, these functions alongwith ln(1+
x2) are plotted. We note that ln(1 + |x|1.3) and ln(1 + |x|0.7) have
cusp at x = 0, while the Cauchy moment function ln(1+ x2) does
not. In ln(1 + |x/r|p) the parameter p (<2) appears to capture
peakedness, while r takes account of the tail thickness. For p ≥
2, the cusp behavior disappears, and for this case, both p and r
together capture the tail behavior of the underlying distribution.
Themoment function tan−1(x2) also captures high peakedness and
penalizes the tails less than that of ln(1+ x2).
As is well known, financial data also displays asymmetry

(skewness), see for instance, Premaratne and Bera (2000). Moment
functions, ln x, 0 < x < ∞, ln(1 − x), 0 < x < 1 and tan−1(x/γ ),
−∞ < x < ∞ can capture asymmetry, and these are plotted in
Fig. 3. ln x and ln(1 − x) generates the beta distribution over the
range 0 ≤ x ≤ 1; tan−1(x/γ ) is part of the moment functions of
the Pearson type-IV density. E[ln x] = Γ ′(a)

Γ (a) is used as a moment
condition in gamma density and chi-squared is a special case of
gamma distribution when E[ln x] = Γ ′(1/2)

Γ (1/2) + ln 2 for 0 < x <∞.
Fig. 3. Moment functions φj(x, γ ) representing skewness.

Fig. 4. Moment functions φj(x, γ ) representing general skewness.

Premaratne and Bera (2005) used tan−1(x/γ ) to test asymmetry in
leptokurtic financial data.
In general, any odd function can serve as a moment function

to capture asymmetry. However, the benefits of a function like
tan−1(x/γ ) are that it is bounded over the whole range and
‘‘robust’’ to outliers. Chen et al. (2000) used sin(x) and βx/(1 +
β2x2) with a specific value of β to test asymmetry. Tests based on
such bounded functions will be more robust compared to those
based on the third moment, i.e., moment function like x3 [for
more on this, see, Premaratne and Bera (2005)]. Some robust-type
functions that capture general skewness are plotted in Fig. 4.
As we assign more andmore moment constraints in maximiza-

tion problem (1) and (2) or (5) and (6), the solution is likely to
become more unsmooth (rough) functional if given moment con-
straints are informative. There is a close relationships between
MED and the penalization method. The ME method starts with a
very smooth density and, adding more moment constraints, MED
is likely to havemore ‘‘roughness’’ butwith improved goodness-of-
fit at the same time. Here we do not face the problem of selecting
smoothing parameter or the bandwidth. Instead, we need choose
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moment functions priori. On the other hand, a non-parametric ap-
proach begins with a rough density (histogram), and then uses a
smoothing procedure (such as selecting a proper bandwidth) to
control the balance between smoothness and goodness-of-fit. Gal-
lant (1981), Gallant and Nychka (1987) and Ryu (1993) considered
(semi-) non-parametric density estimators using flexible polyno-
mial series approaches such as Fourier series, Hermite polynomial
and any orthonormal basis. These approaches are useful to fit the
underlying density or functional form and to analyze asymptotic
properties of estimators since very high orders of polynomial se-
ries can be easily considered. However, if one can select only a
few informative functions that explain underlying density enough
instead of using high orders of polynomials, the complexity and
computational burden can be significantly reduced, and, more-
over, some valuable interpretation can be made using the selected
informative functions.

2.2. Methods of estimation

When µj’s are unknown in (2), the maximum likelihood (ML)
estimates are the same as ME estimates when µj’s are replaced
by their consistent estimates 1T

∑T
t=1 φj(xt), j = 1, 2, . . . , q. Since

exponential family distributions have a uniqueML solution, theME
solution is also unique, if it exists. However, whenwe have general
moment conditions [as in (6)], thenwe have to consider estimation
of unknown parameter γ . Usually, this estimation problem can
be solved by estimating saddle point of the objective function
proposed by Kitamura and Stutzer (1997) and Smith (1997).
Let us rewrite (6) as∫
[φj(x, γ )− Cj(γ )]f (x)dx

=

∫
ψj(x, γ )f (x)dx = 0, j = 1, 2, . . . , q,

whereψj(x, γ ) = φj(x, γ )−Cj(γ ). The profiled objective function
is obtained by substituting (7) to the Lagrangian (3)

ln
∫
exp

[
−

q∑
j=1

λjψj(x, γ )

]
dx. (8)

ME estimators of the parameters γ and λ are the solution of
following saddle point problem

γ̂ME = argmax
γ
ln
∫
exp

[
−

q∑
j=1

λ̂jψj(x, γ )

]
dx,

where λ̂(γ ) is given by

λ̂(γ )ME = argmin
λ
ln
∫
exp

[
−

q∑
j=1

λjψj(x, γ )

]
dx.

Since the profiled objective function (8) has the exponential
form it is relatively easy to calculate first order derivatives.
However, Cj(γ ) could be complicated in some case or even, may
not have analytic form. In such a case, Cj(γ ) can be substituted by
the sample moment of φj(x, γ ). Thus, we consider the following
non-linear equations:∫
φj(x, γ )f (x|λ, γ )dx =

1
T

T∑
t=1

φj(xt , γ ), j = 1, 2, . . . q.

We can express (8) as

ln
∫
exp

[
−

q∑
j=1

λjφj(x, γ )+
q∑
j=1

λjCj(γ )

]
dx
= ln

[
exp

[
q∑
j=1

λjCj(γ )

]
·

∫
exp

[
−

q∑
j=1

λjφj(x, γ )

]
dx

]

=

q∑
j=1

λjCj(γ )+ ln
∫
exp

[
−

q∑
j=1

λjφj(x, γ )

]
dx.

Since from (4) ln
∫
exp

[
−
∑q
j=1 λjφj(x, γ )

]
= lnΩ(λ, γ ) the

above expression can be simplified as
q∑
j=1

λjCj(γ )+ lnΩ(λ, γ ). (9)

From (7) the log-likelihood function is given by

l(λ, γ ) = −T lnΩ(λ, γ )−
q∑
j=1

λj

T∑
t=1

φj(xt , γ ). (10)

From (9) and (10) it is clear that profiled objective function is
the same as −(1/T )l(λ, γ ). Thus, the first order condition for the
ME principle and the ML principle are the same under the general
moment problem. However, the second order conditionmay differ
between those principles because there exist restrictions that the
Lagrange multipliers are the functions of γ in the ME problem.
However, in the ML problem, λj is not a function of γ because
(1/T )

∑T
t=1 φj(xt , γ ) does not affect the form of the solution (7).

3. Maximum entropy GARCHmodel

Various ARCH-type models under the assumption of non-
normal conditional density have been proposed to explain
leptokurtic and asymmetric behavior of financial data.We propose
to use flexible ME density to capture such stylized facts, and
consider the following model:
yt = mt(xt; ζ )+ εt , t = 1, 2, . . . , T ,
where mt(·) is the conditional mean function, xt is a K × 1 vector
of exogenous variables and ζ is a vector of parameters. We assume
that εt |Ft−1 ∼ g(0, ht), where g(·) is the unknown density
function of εt conditional on the set of past information Ft−1, and
ht = α0 +

∑p
j=1 αjε

2
t−j +

∑s
j=1 βjht−j.

Following (7), we can write the density function of the
standardized error term ηt (= εt/

√
ht ) in a general MED form as

f (ηt) =
1

Ω(λ, γ )
exp

[
−

q∑
j=1

λjφj(ηt , γ )

]
, (11)

whereφj(ηt , γ ), j = 1, 2, . . . , q, denote themoment functions.We
will term ARCHmodel with conditional density f (εt |Ft−1) implied
by the aboveMED f (ηt) as themaximum entropy ARCH (MEARCH)
model. The (conditional) quasi-log-density function of εt is given
by

lQMEt (θ) = − lnΩ(λ, γ )

−

q∑
j=1

λjφj

(
yt − x′tζ
√
ht

, γ

)
−
1
2
ln ht , t = 1, . . . , T ,

where θ = (α′, β ′, ζ ′, λ′, γ ′)′ ∈ Θ , and hence the quasi-log-
likelihood function is

lQME(θ) =
T∑
t=1

lQMEt (θ)

= −T lnΩ(λ, γ )−
T∑
t=1

q∑
j=1

λjφj

(
yt − x′tζ
√
ht

, γ

)

−
1
2

T∑
t=1

ln ht . (12)
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The scores corresponding to the quasi-log-likelihood for ARCH
regression model are

∂ lQME(θ)
∂α

=

T∑
t=1

[
1
2ht

∂ht
∂α

[
q∑
j=1

λjφ
′

j (·)
εt

h1/2t
− 1

]]
, (13)

∂ lQME(θ)
∂ζ

=

T∑
t=1

[
q∑
j=1

λjφ
′

j (·)
x′t
h1/2t

+
1
2ht

∂ht
∂ζ

[
q∑
j=1

λjφ
′

j (·)
εt

h1/2t
− 1

]]
, (14)

∂ lQME(θ)
∂λj

= −T
∂ lnΩ(λ, γ )

∂λj
−

T∑
t=1

φj

(
yt − x′tζ
√
ht

, γ

)
, (15)

∂ lQME(θ)
∂γ

= −T
∂ lnΩ(λ, γ )

∂γ
−

T∑
t=1

q∑
j=1

λj

∂φj

(
yt−x′t ζ√
ht
, γ
)

∂γ
, (16)

where φ′j (·) = ∂φj(η, γ )/∂η. The quasi-log-likelihood
specification (12) is related to other semi-nonparametric ARCH
approaches. In parametric model, the score function is the
optimal estimating function (EF) (Godambe, 1960). If underlined
conditional density is correctly specified, then Eqs. (13)–(16) are
the optimal estimating functions (EFs). Li and Turtle (2000) derived
the optimal EFs for ARCH model as

`∗1 = −

T∑
t=1

∂ht
∂α

h2t (γ2t + 2− γ 21t)
g2t , (17)

`∗2 = −

T∑
t=1

∂x′t ζ
∂ζ

ht
g1t +

T∑
t=1

h1/2t γ1t
∂x′t ζ
∂ζ
−

∂ht
∂ζ

h2t (γ2t + 2− γ 21t)
g2t , (18)

where g1t = yt − x′tζ , g2t = (yt − x
′
tζ )

2
− ht − γ1th

1/2
t (yt − x′tζ ),

γ1t =
E[(yt−x′t ζ )

3
|Ft−1]

h3/2t
, and γ2t =

E[(yt−x′t ζ )
4
|Ft−1]

h2t
− 3. (17) and

(18) are actually the same as GMM moment conditions attainable
by optimal instrumental variables. There is no priori distributional
assumption for yt conditional on Ft−1 in the EF approach. Under
the conditional normality assumption, γ1t = 0, and γ2t = 0,
Eqs. (17) and (18) are identical to the first order condition of Engle
(1982) [Equation (7), p. 990] up to a sign change. We can relate
our approach to robust estimation through the influence function.
Let us considerM-estimation thatminimizes

∑T
t=1 ρ(ηt , θ), where

ηt = (yt − x′tζ )/
√
ht , and define the influence function as

−ν(η, θ)/E[∂ν(η, θ)/∂η], where ν(η, θ) = ∂ρ(η, θ)/∂η [see
McDonald and Newey (1988)]. If ρ(·) is negative of the natural
logarithm of the true density, then we have the ML estimator of
θ . Function ν(·) measures the influence that η will have on the
resulting estimators. For the ME density in (11), the function ν(·)
is

ν(η, θ) =

q∑
i=1

λi
∂φi(η, θ)

∂η
. (19)

For N(0, 1) density, λφ(η, θ) = 1
2η
2 and hence ν(η, θ) = η

which is unbounded. Li and Turtle (2000) did not assume any
particular conditional density and followed a semi-parametric
method. In their EFs (17) and (18), the γ1t and γ2t should
be specified in some arbitrary way. They noted that since the
orthogonality of g1t and g2t holds for any γ2t , an approximate value
for γ2t might be used to give near optimal estimating functions l∗1
and l∗2 . If the underlying density is Cauchy, the parameters cannot
be estimated consistently by EF approach due to the non-existence
of moments. Our MEARCH approach, however, can be used since
the moment condition, E
[
ln(1+ x2)

]
= 2 ln 2, generates Cauchy

distribution and the associated influence function ν(η, θ) =
λ(2η)/(1 + η2) is bounded. Therefore, careful choice of moment
function φ(·) can lead to robust estimation.

3.1. Estimation

For ARCH-type models, the standardized error term, ηt =
εt/
√
ht , should have mean 0 and variance 1. However, the MED

of ηt given in (11) may not have this property. For convenience, we
rewrite (11) as

f (ηt) = C−1 exp

[
−

q∑
j=1

λjφj(ηt , γ )

]
, (20)

where C denotes normalizing constant and the parameters vector
γ ≡ [γ ′p : γs]

′, where γs denotes a scale parameter. Suppose the
density (20) is such that E(ηt) = µ and V(ηt) = σ 2. If we define
ut = (ηt − µ)/σ , then ut ∼ (0, 1) and ηt = σut + µ. Due to the
transformation ut = (ηt − µ)/σ , the density (20) in terms of εt
changes to

fε(εt) = C−1σ
1
√
ht
exp

[
−

q∑
i=1

λiφi

(
σεt
√
ht
+ µ, γ

)]
. (21)

In (21), the scale parameter γs, however, will not separately be
identified within an ARCH framework. To make the density free
of γs, let us define η̃t = ηt/γs, so that E(η̃t) = µ/γs = µ̃ and
V(η̃t) = σ 2/γs

2
= σ̃ 2. The density function of η̃t , f̃ (η̃t) can be

written as

f̃ (η̃t) = C̃−1 exp

[
−

q∑
i=1

λiφi
(
η̃t , γp

)]
. (22)

An ‘‘equivalent’’ density is obtained by substituting µ = γsµ̃
and σ = γsσ̃ in the (21) as

fεt (ε) = C
−1γs

σ̃
√
ht
exp

[
−

q∑
i=1

λiφi

(
γsσ̃ εt
√
ht
+ γsµ̃, γ

)]

= C̃−1
σ̃
√
ht
exp

[
−

q∑
i=1

λiφi

(
σ̃ εt
√
ht
+ µ̃, γp

)]
. (23)

The quasi-log-likelihood function corresponding to the density
(23) can be written as

l(θ) =
T∑
t=1

ln g

(
εt

h1/2t

)
−
1
2

T∑
t=1

ln ht (24)

= −T ln C̃ + T ln σ̃

−

T∑
t=1

q∑
i=1

λiφi

(
σ̃ εt
√
ht
+ µ̃, γp

)
−
1
2

T∑
t=1

ln ht , (25)

where θ = (α′, β ′, ζ ′, λ′, γ ′p)
′ and g(·) is the quasi-density

function of ut given by

g(ut) = C̃−1σ̃ exp

[
−

q∑
i=1

λiφi
(
σ̃ut + µ̃, γp

)]
. (26)

Since φi(·)’s in (25) are not predetermined but are selected
from a variety of moment functions to the underlying density, one
cannot guarantee C̃−1, µ̃, and σ̃ to have analytic forms. Therefore,
in practical applications these are computed using numerical
integration.
Following our discussion in Section 2 that the first order

conditions for maximizing entropy and the likelihood function are
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the same under general moment problem, we obtain our
parameter estimator by maximizing (25). A range of numerical
optimization techniques can be used to maximize (25). We
adapted the Broyden, Fletcher, Goldfarb and Shannon (BFGS)
algorithm. For computational convenience, the derivatives are
computed numerically. We will denote our estimator as θ̂QMLE .
Lee and Hansen (1994) and Lumsdaine (1996) showed consistency
and asymptotic normality for the QMLE under ‘‘conditional
normal’’ GARCH model. Lee and Hansen (1994) established these
results under the assumption that ut is a stationary martingale
difference sequence with E|ut |κ < ∞ with some κ ≤ 4.
Ling and McAleer (2003) proved consistency and asymptotic
normality of QMLE under the second-order moments of the
conditional distribution and the finite fourth-order moments of
the unconditional distribution of ut . We assume that our model
satisfies these conditions. The limiting distribution of θ̂QMLE is
given by
√
T
(
θ̂QMLE − θ0

)
−→

d N
(
0, A0T

−1
B0TA

0
T
−1
)
,

where θ0 is the quasi-true parameter, A0T = −T
−1E

(
∂2 l(θ0)
∂θ∂θ ′

)
, and

B0T = T
−1E

(
∂ l(θ0)
∂θ

∂ l(θ0)
∂θ ′

)
. When our ME density function coincides

with the true density, then θ̂QMLE ≡ θ̂MLE and we have
√
T
(
θ̂QMLE − θ0

)
−→

d N
(
0, B0T

−1
)
.

Instead of maximizing (25) with respect to all the parameters,
a computationally less burdensome procedure would be a two-
step approach of estimation. In the first-step, using some initial
consistent estimates (such as, obtained bymaximizing a likelihood
function assuming normality) of the conditioned mean and

variance parameters, we can obtain η̂t = ε̂t/

√
ĥt and then fit

a ME density to ût = (η̂t − µ̂)/σ̂ , using proposed methods
in Section 2. In the second-step, fixing the estimated density,
g(·) in (24), we can maximize quasi-log-likelihood function with
respect to the set of parameter of interest. Engle and González-
Rivera (1991) suggested such an approach, where in the first-
step, they used a non-parametric method of density estimation.
However, based on their simulation results, they noted (p. 350):
‘‘When conditional distribution is Student’s t , we cannot find any
gain. We suspect that this poor performance come from the poor
non-parametric estimation of the tails of the density.’’ We can
take care of the tail part of distribution by choosing moment
functions targeting the tail area of the density. Another problem
with the two-step procedure is that for a GARCH model with
a general distribution that takes care of asymmetry and excess
kurtosis, the underlying information matrix may not be block-
diagonal between the conditional mean and variance parameters
and the distributional parameters. Therefore, for a such a model,
complete adaptive estimation is not possible. Also for this case,
the usual standard errors of the parameters estimated by two-step
method will not be consistent, as noted by Engle and González-
Rivera (1991, p. 352). Therefore, for efficient estimation and valid
inference, it is necessary to consider the joint estimation of all the
parameters.

3.2. Moment selection test

As we discussed earlier, Lagrange multipliers provide marginal
information of the constraints, and therefore, λj should be very
close to zero if its associated moment function does not convey
any valuable information. Now we derive a statistic for testing
H0j : λj = 0 using Rao’s score (RS) principle. Detailed derivation is
given in the Appendix.
Note that C̃ , σ̃ and µ̃ in the log-likelihood function l(θ) given in
(25) are functions of the parameter vector θ = (α′, β ′, ζ ′, λ′, γ ′p)

′.
The first derivatives of l(θ)with respect to λj is given by

dλj = −T
∂ ln C̃(θ)
∂λj

+ T
∂ ln σ̃ (θ)
∂λj

−

T∑
t=1

φj

(
σ̃ (θ)εt
√
ht
+ µ̃(θ)

)
−

T∑
t=1

∆j, (27)

where

∆j =

q∑
i=1

λi

[
φ′j

(
σ̃ (θ)εt
√
ht
+ µ̃(θ)

)
×

(
∂σ̃ (θ)

∂λj

εt
√
ht
+
∂µ̃(θ)

∂λj

)]
,

and for notational convenience, from now on the parameter vector
γp is subassumed within φ(·).
The score function (27), under λj = 0, reduces to [the details

are in Appendix]

d0λj = T (ϕj + ξj)−
T∑
t=1

φj

(
ω
1/2
v εt
√
ht
+ ωm

)
−

T∑
t=1

∆̃j,

where

∆̃j =
∑

i={1,2,...,q}\{j}

λiφ
′

i

(
ω
1/2
v εt
√
ht
+ ωm

)

×

(
(ωvωj − ω(v,j))εt

2
√
ωvht

+ (ωmωj − ω(m,j))

)
,

and ωm = Ef̃0 [η̃], ωj = Ef̃0 [φj(η̃)], ω(m,j) = Ef̃0 [η̃φj(η̃)], ωv =
Ef̃0 [(η̃ − ωm)

2
], ω(v,j) = Ef̃0 [(η̃ − ωm)

2φj(η̃)], ϕj = Eg0 [φj(u)],
and ξj = Eg0 [∆̃j] denoting each subscript represents a particular
distribution with which the expectation is taken. Distributions,
f̃0(η̃) and g0(u) are given by

f̃0(η̃) =

exp

[
−

∑
i={1,2,...,q}\{j}

λiφi(η̃)

]
∫
exp

[
−

∑
i={1,2,...,q}\{j}

λiφi(η̃)

]
dη̃

, (28)

g0(u) =

exp

[
−

∑
i={1,2,...,q}\{j}

λiφi

(
ω
1/2
v u+ ωm

)]
∫
exp

[
−

∑
i={1,2,...,q}\{j}

λiφi

(
ω
1/2
v u+ ωm

)]
du

, (29)

where
∑
i={1,2,...,q}\{j} mean summation over i = 1, 2, . . . , j −

1, j + 1, . . . , q. We write the score statistic for testing λj = 0 as
Rj(θ) = d0λj/T , which is given by

Rj(θ) =
(
ϕj + ξj

)
−
1
T

T∑
t=1

φj

(
ω
1/2
v εt
√
ht
+ ωm

)
−
1
T

T∑
t=1

∆̃j.

= Eg0
[
φj(u)+ ∆̃j

]
−
1
T

T∑
t=1

[
φj

(
ω
1/2
v εt
√
ht
+ ωm

)
+ ∆̃j

]
.

Therefore, the test can be viewed as the difference between
population mean relating to the j-th moment function and its
sample counterpart. Since ϕj, ξj, ωm, ωv , and ∆̃j in Rj(θ) include
expectation operator, thosewill depend on the distributions under
the null hypothesis as given in (28) and (29). When f̃0(η̃) is
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Fig. 5. NYSE return data and non-parametric kernel density. Notes: Usual Gaussian kernel is used for estimating non-parametric density in which rule-of-thumb bandwidth
(Silverman, 1984) is 0.1035.
symmetric around 0, thenEf̃0 [φi(η̃)] = 0 ifφi(η̃) is an odd function
and has point symmetric property at vertex 0. For an even function
the expectation is not zero. Examples of odd and point symmetric
functions are tan−1(η̃), η̃/(1 + η̃2), sinh−1(η̃), and sin(η̃), while
ln(1+ η̃2), ln(1+ |η̃|p), tan−1(η̃2), and cos(η̃) are even functions.
Premaratne and Bera (2005) developed a test of the form Rj(θ)
for testing asymmetry under heavy tails distribution. They used
Pearson type-IV density function under the alternative hypothesis.
Thus, under the null, their distribution becomes Pearson type-
VII which is symmetric around 0 and also includes Student’s t
as a special case. It can be easily checked that their Rj(θ) =
−
1
T

∑T
t=1 tan

−1(ηt/r) and E[tan−1(ηt/r)] = 0 under symmetry.
An operational form of Rao’s score (RS) statistic would be

RSj = T ·
R2j (θ̂)

V̂
,

where θ̂ is the MLE of θ and V̂ is an consistent estimator of
asymptotic variance of

√
T · Rj(θ̂). Under the null hypothesis, H0 :

λj = 0, RSj is asymptotically distributed as χ21 . We obtain V̂ by
bootstrap approach, and the bootstrap score test statistic is given
by

RSjB = T ·
R2j (θ̂)

V̂B
, (30)

where V̂B denotes the variance of Rj(θ̂) calculated by bootstrap
method. Under the null hypothesis, as B → ∞, RSjB is
asymptotically distributed as χ21 . For finite B, RSjB is asymptotically
distributed as Hotelling’s T 2 with (1, B− 1) degrees of freedom, in
short T 21,B−1 [see Dhaene and Hoorelbeke (2004)].

4. Empirical application

To illustrate the suitability of ourmethodology to financial data,
we consider an empirical application of MEARCH model using the
daily prices of NYSE, from Jan.1, 1985 to Dec. 30, 2004, a total
of 5218 observations obtained from the Datastream. To achieve
stationarity, we transform the indices prices into returns, rt =
[ln St/St−1]×100, where St is the price index at time t . The returns
data and a corresponding non-parametric density are plotted in
Fig. 5. The data plot clearly shows that there is a high degree of
clustering (conditional heteroskedasticity) and the estimated non-
parametric density indicates high degree of non-normality with
thick tails and high peakedness. The sample kurtosis, skewness and
Jarque and Bera (JB) normality test statistics are 55.89,−2.43 and
613,269, respectively, and indicate not only high excess kurtosis
but also distinct negative skewness. Ljung-Box (LB) test statistics
for residuals from an AR(1) model at lags 12 days using the
series (Q ) and its squares (Q 2), cubes (Q 3) and fourth-power (Q 4)
are 22.87, 424.93, 42.31 and 7.20, respectively. It appears that
AR(1) model can take account of part of autocorrelation in the
data. Very high values of Q 2 indicate non-linear dependence and
strong presence of conditioned heteroskedasticity. The Q 3 and Q 4
statistics measure higher order dependence and some changes in
the third and fourth moments over time but these changes are not
as strong as for the time varying second moment as evident from
the high values of Q 2. To explain such behaviors of stock return
data, we need to consider a model which captures distributional
characteristics and dynamic moment structure simultaneously.
For the testing and selecting different moment functions, we

start with two separate ME densities as distributions under the
respective null hypothesis. The first density corresponds to the
moment function ln(1 + η̃2) = ln(1 + (η/r)2) and as noted
earlier, this is the Pearson type VII distribution which includes
Student’s t as a special case. The second density is implied by the
moment function ln(1 + |η̃|p) and reduces to the first one when
p = 2. Since the results of our tests based on statistic (30) with
different bootstrap sample sizes B = 50, 100, 150 and 200 are
similar, we report the results only for B = 100 (Table 2). When
the null density comes from the moment function ln(1 + η̃2),
the Lagrange multipliers corresponding to tan−1(η̃2), sinh−1(η̃)
and tan−1(η̃) are all highly significant. As noted earlier, tan−1(η̃)
represents high peakedness, and sinh−1(η̃) and tan−1(η̃) capture
asymmetry. Our test results indicate that these three moment
functions take account of certain data characteristics and convey
some additional information after we have already started with
the moment function ln(1+ η̃2), i.e., the Pearson type VII density.
On the other hand, none of the additional Lagrange multipliers are
significant when we test the null density implied by the moment
function ln(1 + |η̃|p) (with maximum likelihood estimate, p̂ =
1.3978). This function behaves like a ‘‘sufficient’’ moment function
in the sense that once we start with ln(1 + |η̃|p), the additional
moment functions do not throwany further light on the underlying
density. It is as if ln(1+|η̃|p) exhausts all the available information
(in the sample) that is relevant for estimating the density function.
Wenowuse these test results and estimate the AR(1)-GARCH(1,

1)modelwith variousMEdensities.We consider the threemoment
functions one-by-one (in addition to ln(1 + η̃2)) for which the
associated Lagrange multipliers were significant (see Table 2). The
estimation results are reported in Table 3. It is clear that additional
moment functions increase the log-likelihood value substantially
and make the model selection criteria AIC and SIC values more
attractive. We should add that the moment function ln(1 + |η̃|p)
where p appears as an additional parameter, by itself performs
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Table 2
Moment function selection test results with bootstrap sample size B = 100.

cos(η̃) η̃/(1+ η̃2) sin(η̃) tan−1(η̃2) sinh−1(η̃) tan−1(η̃)

(i) ln(1+ η̃2) 1.519 2.591 0.475 18.883* 8.773* 7.823*
(0.218) (0.108) (0.491) (0.000) (0.003) (0.005)

(ii) ln(1+ |η̃|p) 1.708 0.596 0.762 0.151 0.831 0.773
(0.191) (0.440) (0.383) (0.698) (0.362) (0.379)

Notes: (i) and (ii) denote null density corresponds to the moment function ln(1 + η̃2) and ln(1 + |η̃|p), respectively. P-values are given in the parentheses and calculated
using asymptotic χ21 distribution. 1% critical values of Hotelling’s T

2 are T 21,49: 7.181, T
2
1,99: 6.898, T

2
1,149: 6.808, T

2
1,199: 6.764., respectively.

* Indicates statistical significance at the 1% level.
Table 3
Estimation with different moment functions.

(i) (i) & (i) & (i) & Model 1 Model 2 Model 3 Model 4
ln(1+ η̃2) tan−1(η̃2) sinh−1(η̃) tan−1(η̃)

AR(1)

ζ0 0.0608 0.0591 0.0484 0.0498 0.0528 0.0472 0.0474 0.0458
(0.0089) (0.0088) (0.0098) (0.0098) (0.0091) (0.0096) (0.0095) (0.0097)

ζ1 0.0428 0.0422 0.0395 0.0396 0.0355 0.0392 0.0396 0.0388
(0.0129) (0.0126) (0.0130) (0.0130) (0.0120) (0.0127) (0.0127) (0.0126)

GARCH(1, 1)

α0 0.0064 0.0066 0.0065 0.0065 0.0068 0.0066 0.0066 0.0073
(0.0021) (0.0021) (0.0020) (0.0020) (0.0022) (0.0020) (0.0020) (0.0024)

α1 0.0577 0.0571 0.0571 0.0572 0.0588 0.0580 0.0580 0.0651
(0.0087) (0.0085) (0.0083) (0.0084) (0.0091) (0.0081) (0.0080) (0.0092)

β1 0.9366 0.9359 0.9365 0.9364 0.9340 0.9339 0.9340 0.9314
(0.0094) (0.0094) (0.0092) (0.0092) (0.0100) (0.0091) (0.0091) (0.0097)

Lagrange multipliers (λj ’s)

ln(1+ |η̃|p) 9.1912
(4.0198)

ln(1+ η̃2) 3.0040 2.9474 3.1284 3.1012 3.3108 3.3193 2.4649
(0.2076) (0.1992) (0.2213) (0.2200) (0.3975) (0.3955) (0.1877)

tan−1(η̃2) −1.0630 −1.2067 −1.2172 −0.9024
(0.1249) (0.2064) (0.2085) (0.1586)

cos(η̃) 0.6327 0.6248 0.8239
(0.2735) (0.2712) (0.0978)

tan−1(η̃) 0.3587 0.3019 −3.3456
(0.1265) (0.1870) (0.7318)

sin(η̃) −0.4075 −0.4640
(0.1310) (0.1600)

sinh−1(η̃) 0.2783 0.1785 2.1510
(0.0889) (0.1155) (0.4830)

η̃/(1+ η̃2) 1.7340
(0.3539)

p 1.3978
(0.1001)

log-likelihood −6084.15 −6073.51 −6079.49 −6080.37 −6067.36 −6059.33 −6059.32 −6041.94
AIC 2.3343 2.3306 2.3329 2.3332 2.3282 2.3263 2.3263 2.3200
SIC 2.3418 2.3394 2.3417 2.3420 2.3370 2.3389 2.3389 2.3339

Note: Standard errors are given in the parentheses.
extremely well. Also, as we discussed in Section 2.1, p̂ = 1.3978 <
2 captures the peakedness of the distribution. This encourages us
to test various combinations of moment functions and estimate
models with different sets of moment functions. To conserve space
we do not report all the test and estimation results but these can
be obtained from us on request. In the right panel of Table 3,
we present results from four models under several combinations
of moment functions for which the Lagrange multipliers were
significant. The moment functions used in these models are quite
clear from the lower part of the Table 3; for example, the Model 1
corresponds to moment function ln(1+ |η̃|p).
Model 4, apparently the ‘‘best’’ model, includes six moment

functions for which all the Lagrange multipliers are highly
significant. Performance of Models 2 and 3 are almost identical as
the moment functions tan−1(·) and sinh−1(·) have similar shape
(see Fig. 4), and aswe shall also see in Figs. 6 and 7. Using our earlier
discussion it is tempting to say that ln(1+ η̃2) exclusively explains
excess kurtosis, tan−1(η̃2) captures high peakedness, and tan−1(η̃)
and other functions take care of asymmetry, etc. However, these
moment functions are not orthogonal and therefore, when many
are present in a single ME density, we need to consider their
combined effect.
It is interesting to compare above estimation results to those

of GARCH models based on some other general parametric
density functions used in the current literature: standard normal;
Student’s t (Bollerslev, 1987); skewed-t (Fernández and Steel,
1998; Lambert and Laurent, 2001); and inverse hyperbolic sine
(IHS) [Hansen et al. (2000)]. The values of log-likelihood functions
and model selection criteria (AIC and SIC) for those models are
reported in Table 4. We note that, in terms of goodness-of-fit,
Model 4 achieves the levels of some of the very general standard
distributions quite easily.
In Figs. 6 and 7 we plot, respectively, the conditional densities,

and the influence functions ν(·), computed using the formula (19)
for our four models (presented in Table 3). Density corresponding
to Model 4 is very close to the non-parametric density based on
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Fig. 6. Density estimates for the standarized residuals of the final models. Notes: QMLE denotes usual Gaussian kernel density using Scott’s (1992) optimal bandwidth
(0.1534) for standardized residual from the estimated GARCH model under conditional normality.
Fig. 7. Influence functions for the final models.

Table 4
Goodness-of-fit for four densities.

Normal Student’s t Skewed-t IHS

Log-Likelihood −6334.76 −6085.46 −6082.82 −6079.05
AIC 2.4300 2.3348 2.3342 2.3317
SIC 2.4362 2.3423 2.3430 2.3415
the standardized residuals of the estimated GARCH model under
conditional normality (QMLE). All the four influence functions are
bounded, and as expected it is hard to distinguish the lines for
Models 2 and 3. The influence function corresponding to theModel
4 has the least variation and comes out to be the best. Thus, after
a series of estimations and tests, our maximum entropy approach
leads to a model that captures stylized facts quite effectively.

5. Concluding remarks

In this paper, we provide a generalization of GARCH model
by incorporating MED as the underlying probability distribution.
We characterize MED and discuss various moment functions
that are suitable to capture excess kurtosis, asymmetry and high
peakedness generally observed in financial data. We devise a test
to select appropriate moment functions. Our empirical results
demonstrate that the suggested MEARCH model is quite useful
in capturing the behavior of the data. Many other moment
functions and their mixtures could be chosen to generate even
more flexible density. Our procedure is quite different from
those that use certain non-normal densities. Those densities have
fixed forms and not amenable to easy modification. Ours is a
completely flexible procedure where various moment functions
are selected based on the information available from the data.
The approach is also constructive than a (semi-) non-parametric
one using orthonormal series in the sense that the ME model
provides a highly parsimonious model. The extension to the
multivariate MEARCH model is of particular interest since many
empirical works deal with the multivariate GARCH models such
as Bollerslev’s (1990) constant conditional correlation and Engle’s
(2002) dynamic conditional correlation models [for a review
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of these models see Bauwens et al. (2006)]. Kouskoulas et al.
(2004) and more recently, Wu (2007) explored the computational
methods and properties formultivariateMEDunder the arithmetic
and Legendre series moment constraints, respectively. It would
be useful to extend their approaches to the general moments
constraints that we suggest.

Appendix. Derivation of the moment selection test

We start with the log-likelihood function (25)

l(θ) = −T ln κ(θ)

−

T∑
t=1

q∑
i=1

λiφi

(
σ̃ (θ)εt
√
ht
+ µ̃(θ)

)
−
1
2

T∑
t=1

ln ht , (A.1)

where κ(θ) = C̃(θ)−1σ̃ (θ) in the density of u given in (26). For
convenience κ(θ) can be represented as

κ(θ) =

∫
exp

[
−

q∑
i=1

λiφi(σ̃ (θ)u+ µ̃(θ))

]
du.

Note that κ(θ), µ̃(θ), and σ̃ (θ) are also function of Lagrange
multiplier, λj for j = 1, 2, . . . , q, and µ̃(θ) =

∫
η̃f̃ (η̃)dη̃ and

σ̃ (θ) =
(∫
(η̃ − µ̃)2 f̃ (η̃)dη̃

)1/2
.

The score function of dλj is

dλj =
∂ l(θ)
∂λj
= −T

∂ ln κ(θ)
∂λj

−

T∑
t=1

[
φj

(
σ̃ (θ)εt
√
ht
+ µ̃(θ)

)
+

q∑
i=1

λi
∂φi(·)

∂λj

]

= −T
∂ ln κ(θ)
∂λj

−

T∑
t=1

φj

(
σ̃ (θ)εt
√
ht
+ µ̃(θ)

)
−

T∑
t=1

∆j, (A.2)

where

∆j =

q∑
i=1

λiφ
′

i

(
σ̃ (θ)εt
√
ht
+ µ̃(θ)

)(
∂σ̃ (θ)

∂λj

εt
√
ht
+
∂µ̃(θ)

∂λj

)
with φ′i (·) as the derivative of φi(·). Belowwe obtain ∂ ln κ(θ)/∂λj,
∂µ̃(θ)/∂λj and ∂σ̃ (θ)/∂λj to get explicit expression of the score
dλj .
Since µ̃(θ) = C̃(θ)−1

∫
η̃ exp

[
−
∑q
i=1 λiφi(η̃)

]
dη̃.

∂µ̃(θ)

∂λj
=
∂ C̃(θ)−1

∂λj

∫
η̃ exp

[
−

q∑
i=1

λiφi(η̃)

]
dη̃

− C̃(θ)−1
∫
η̃φj(η̃) exp

[
−

q∑
i=1

λiφi(η̃)

]
dη̃. (A.3)

Using the expression of f̃ (η̃) in (22)∫
f̃ (η̃)dη̃ =

∫
1

C̃(θ)
exp

[
−

q∑
i=1

λiφi (η̃)

]
dη̃ = 1.

By differentiating this with respect to λj, we have the identity

1

C̃(θ)2
∂ C̃(θ)
∂λj

∫
exp

[
−

q∑
i=1

λiφi(η̃)

]
dη̃

+ C̃(θ)−1
∫
exp

[
−

q∑
i=1

λiφi(η̃)

]
φj(η̃)dη̃ = 0. (A.4)
Using this identity, ∂ C̃(θ)−1/∂λj in (A.3) can be expressed as

∂ C̃(θ)−1

∂λj
=

C̃(θ)−1
∫
φj(η̃) exp

[
−

q∑
i=1
λiφi(η̃)

]
dη̃

∫
exp

[
−

q∑
i=1
λiφi(η̃)

]
dη̃

. (A.5)

Thus, from (A.3) we have

∂µ̃(θ)

∂λj
=

C̃(θ)−1
∫
φj(η̃) exp

[
−

q∑
i=1
λiφi(η̃)

]
dη̃

∫
exp

[
−

q∑
i=1
λiφi(η̃)

]
dη̃

×

∫
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−

q∑
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λiφi(η̃)

]
dη̃

−

∫
η̃φj(η̃) exp

[
−

q∑
i=1

λiφi(η̃)

]
dη̃

= Ef̃
[
φj(η̃)

]
Ef̃
[
η̃
]
− Ef̃

[
η̃φj(η̃)

]
. (A.6)

Since

σ̃ (θ) =

[
C̃(θ)−1

∫
(η̃ − µ̃(θ))2 exp

[
−

q∑
i=1

λiφi(η̃)

]
dη̃

]1/2
∂σ̃ (θ)

∂λj
=
1
2
σ̃ (θ)−1

[
∂ C̃(θ)−1

∂λj

∫
(η̃ − µ̃(θ))

2 exp
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−
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i=1

λiφi(η̃)
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dη̃

+ C̃(θ)−1
∫ {
−2 (η̃ − µ̃(θ))

∂µ̃(θ)

∂λj
exp

(
−
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i=1

λiφi(η̃)
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− (η̃ − µ̃(θ))
2
φj(η̃) exp

(
−
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i=1

λiφi(η̃)

)
dη̃

}]
.

Putting the expression of ∂ C̃(θ)−1/∂λj from (A.5) in the above
equation, we can write

∂σ̃ (θ)

∂λj
=
1
2
σ̃ (θ)−1

[
Ef̃
[
φj(η̃)

]
σ̃ (θ)2

−Ef̃

(
2 (η̃ − µ̃(θ))

∂µ̃(θ)

∂λj

)
− Ef̃

(
(η̃ − µ̃(θ))

2
φj(η̃)

)]
,

(A.7)

where Ef̃
[
2 (η̃ − µ̃(θ)) ∂µ̃(θ)

∂λj

]
is equal to 0. Thus, (A.7) is given by

∂σ̃ (θ)

∂λj
=
1
2
σ̃ (θ)−1

[
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[
φj(η̃)

]
Ef̃
[
(η̃ − µ̃(θ))

2
]

− Ef̃
[
(η̃ − µ̃(θ))

2
φj(η̃)

]]
.

The first order derivative of ln κ(θ) in (A.1) with respect to λj is

∂ ln κ(θ)
∂λj

=
A∫

exp
[
−

q∑
i=1
λiφi (σ̃ (θ)u+ µ̃(θ))

]
du
,

where

A =
∫ [
−φj (σ̃ (θ)u+ µ̃(θ)) exp

{
−

q∑
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λiφi (σ̃ (θ)u+ µ̃(θ))

}

+ exp

{
−

q∑
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λiφi (σ̃ (θ)u+ µ̃(θ))

}
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×
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×
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)}]
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Thus,

∂ ln κ(θ)
∂λj

= Eg
[
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]
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Evaluating (A.6)–(A.8) under the null hypothesis H0j : λj = 0,
yields

∂µ̃(θ)

∂λj

∣∣∣∣
λj=0
= ωmωj − ω(m,j),

∂σ̃ (θ)

∂λj

∣∣∣∣
λj=0
= (1/2)ω−1/2v (ωvωj − ω(v,j)),

∂ ln κ(θ)
∂λj

∣∣∣∣
λj=0
= −ϕj − ξj,

where ωm = Ef̃0 [η̃], ωj = Ef̃0 [φj(η̃)], ω(m,j) = Ef̃0 [η̃φj(η̃)], ωv =
Ef̃0 [(η̃ − ωm)

2
], ω(v,j) = Ef̃0 [(η̃ − ωm)

2φj(η̃)], ϕj = Eg0 [φj(u)],
and ξj = Eg0 [∆̃j]. Here the subscripts to the expectation operator
represent distributions with which the expectations are taken.
Distributions, f̃0(η̃), g0(u) and ∆̃j are given by

f̃0(η̃) =

exp
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Under the null hypothesis λj = 0, the score function in (A.2)
can be written as

d0λj = T (ϕj + ξj)−
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φj
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v εt
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Hence, Rao’s score statistic Rj(θ) can be expressed as

Rj(θ) = (ϕj + ξj)−
1
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