
Coverity Scan
Project Spotlight: Python

COVERITY SCAN PROJECT SPOTLIGHT: PYTHON

2

Coverity Scan Service
The Coverity Scan™ service began as the largest public-private sector research project in the world focused on open source
software quality and security. Initiated in 2006 with the U.S. Department of Homeland Security, Coverity now manages the
project, providing our development testing technology as a free service to the open source community to help them build
quality and security into their software development process. With more than 450 projects participating, the Coverity Scan
service enables open source developers to scan–or test–their Java, C and C++ code as it is written, flag critical quality and
security defects that are difficult (if not impossible) to identify with other methods and manual reviews, and provide developers
with actionable information to help them to quickly and efficiently fix the identified defects. (More than 20,000 defects
identified by the Coverity Scan service were fixed by open source developers in 2012 alone.) The Coverity Scan service is
powered by our award-winning Coverity SAVE® static analysis verification engine, which applies multiple patented techniques
for highly accurate defect detection.

We’ve expanded beyond our annual Coverity Scan Report to create a series of open source project spotlights. This spotlight
features Python, an innovative, open source programming language which has recently achieved the highest level of quality in
the Coverity Scan service. In order to reach this milestone, all three of the following criteria were met:

•	 Defect density that is less than or equal to 0.01 defect per thousand lines of code, which is approximately in the 99th
percentile for the software industry. This means that a million-line code base must have ten or fewer remaining defects.

•	 False positive rate that is less than 20%.

•	 Zero defects marked as “Major Severity” by the user.

Introduction to Python
Python is a powerful, dynamic programming language that is used in a wide variety of application domains. Some of its key
distinguishing features include very clear and readable syntax; strong introspection capabilities; intuitive object orientation;
natural expression of procedural code; full modularity, supporting hierarchical packages, exception-based error handling, very
high level dynamic data types, extensive standard libraries and third party modules for virtually every task; extensions and
modules easily written in C, C++ (or Java for Jython, or .NET languages for IronPython); and the ability to be embedded
within applications as a scripting interface. Python has a robust standard library and has a highly optimized byte compiler and
support libraries. The project is available for all major operating systems.

Python has a very open and collaborative spirit. In fact, the Python Core mentorship project (http://pythonmentors.com/)
contains the following quote from Winston Churchill at the top of its site, “We make a living by what we get, we make a life
by what we give.” The mission of the project is to connect anyone interested in contributing to Python Core development
with members of the development team; it is based on the idea that the best way to welcome new people into any project is to
provide a venue which connects them to a variety of mentors who can assist in guiding them through the contribution process,
including discussions on lists such as python-dev, python-ideas, the bug tracker, mercurial questions, code reviews, etc. Python
is also committed to diversity (http://www.python.org/community/diversity), as the team believes it makes the community
stronger and creates more vibrancy, which in turn creates opportunities for more contributors – and more sources for ideas.

COVERITY SCAN PROJECT SPOTLIGHT: PYTHON

3

The Pyladies program (http://www.pyladies.com) is one example of Python’s commitment to diversity. It is an international
mentorship group focused on helping more women become active participants and leaders in the Python community. The
Pyladies program’s mission is to promote, educate and advance a diverse Python community through outreach, education,
conferences, events and social gatherings.

It is in part due to this dedication to diversity, mentorship and grooming of new participants, that the Python project is able to
achieve the highest level of code quality and enable even the newest members to add value to the project.

Python: Then and Now
Python has been an active project in the Coverity Scan service since 2006.

PYTHON ANALYSIS: 2006 TO 2013

Year Version(s)
Lines of Code

Analyzed
New Defects

Identified
Defects Fixed

2006 2.5 279,518 169 153

2007 2.5 286,591 58 16

2008 3.0 311,626 32 44

2009 3.1 328,294 15 11

2010 3.1 329,651 1 1

2011 3.2 340,911 327 93

2012 3.3 392,773 213 264

2013 to date 3.3.2 396,041 181 278

Since 2006, the Coverity Scan service has identified 996 new defects and the Python community has fixed 860 of these defects.
The year 2010 was a bit of an anomaly for the Python project in the Scan service. Due to some transitions in the program,
regular analysis was not performed on the code. However, since 2011, we have been able to address the issues and resume more
consistent analysis of the Python code. The higher number of defects in 2011 reflects advances in the Coverity® static analysis
technology that enable detection of a broader range of defects versus a statement of declining quality. Compared to 99% of all
software projects, Python has extremely low defect density which reflects their commitment to quality.

COVERITY SCAN PROJECT SPOTLIGHT: PYTHON

4

DEFECT DENSITY BY PROJECT SIZE COMPARISON

Lines of Code Python Open Source Proprietary

100,000-499,999 Less than .01 .60 .66

To help ensure highly accurate static analysis results in the Scan service, the Python team leverages Coverity's modeling
capabilities to help the analysis algorithms better understand the patterns and behavior of the Python code. The analysis
automatically builds models based on the source code, but it can’t always correctly infer what happens–perhaps there is no
source code, like in the case of a dynamic library, or there are external effects that cannot be predicted, such as a remote
procedure call.

For example, Py_FatalError() never returns, and the analysis was finding infeasible defects since it could not understand this
from the code. Python added a model for Py_FatalError() which marks this function as a "killpath" – effectively terminating
code paths that reach this function and eliminating those false positives. They provide additional models for other interesting
behaviors, such as which functions can never return a NULL value, which functions can tolerate tainted input parameters, and
so forth–leading to fewer false positives and more true positives.

The following are the specific types of defects outstanding in Python:

DEFECTS OUTSTANDING BY TYPE AND IMPACT AS OF AUGUST 15, 2013

Error handling issues 1 Medium .66

Python has no high-impact defects, as required to achieve a Level 3 rating. They have worked very hard to eliminate the key
defects in their code over the past eight months. As of December 2012, they had the following high and medium defects, 99%
of which have been addressed:

DEFECTS OUTSTANDING BY TYPE AND IMPACT AS OF DECEMBER 31, 2012

Memory – corruptions 20 High

Memory – illegal accesses 15 High

Resource leaks 10 High

API usage errors 1 Medium

Concurrent data access violations 1 Medium

COVERITY SCAN PROJECT SPOTLIGHT: PYTHON

5

Control flow issues 20 Medium

Error handling issues 33 Medium

Incorrect expression 9 Medium

Insecure data handling 5 Medium

Integer handling issues 8 Medium

Null pointer dereferences 14 Medium

Code maintainability issues 1 Low

Security best practices violations 10 Low

Grand Total 147

One of the issues the Python team recently fixed through the Coverity Scan service was a double free defect. This particular
defect occurs when the program misuses the memory management functions, causing Python to reuse memory that it isn't
supposed to use anymore. This can lead to memory corruption, which a smart attacker may be able to leverage to gain control
of the computer. In the following image, we see:

Memory was allocated for variable "buffer".

At line 10123, memory was deallocated for variable "buffer".

At line 10161, memory was again deallocated for variable "buffer", but after NULL check.

However, variable was never set to NULL after memory being deallocated, which caused memory being deallocated twice for
the same variable (called a “double free” defect), and would have resulted in memory corruption.

COVERITY SCAN PROJECT SPOTLIGHT: PYTHON

6

COVERITY SCAN PROJECT SPOTLIGHT: PYTHON

7

After deallocate of memory at line 10123, variable was set to NULL. This change eliminated the double free defect at line
10161.ter:

COVERITY SCAN PROJECT SPOTLIGHT: PYTHON

8

Q&A with Christian Heimes:
A Core Committer to Python since 2007

Q: 	 Why do you think you are able to achieve high levels of quality?
A: 	 Python has an established and well working workflow. The majority of commits are accompanied by a ticket.

Most bug fixes, except for trivial ones, and all new features are reviewed by other developers before the patches
are committed. Documentation updates, change log entries and unit tests are usually part of a patch, too. Large
features and modifications go through the PEP (Python Enhancement Proposal) process.

	 Python core development relies heavily on automatic tests. We have been using buildbot for continuous integration
since at least 2006. About 40 buildbot instances are used to run 10k test cases on different of platforms and
architectures: Linux (multiple distributions), Windows, Mac, BSD, and even exotic operating systems like Solaris
and AIX, and hardware like PPC, MIPS, Sparc and Alpha (Snakebite).

	 Python uses time-based releases, not feature releases. New features only land in the development branch when they
are stable and have been through our review process. We are not under pressure to add "cool stuff" to increase our
market share. Our goal is to provide a stable and slowly evolving foundation for our community. Revolutionary
pieces of software are developed outside the core by other developers. Some of them are later integrated into the
core when they are deemed mature and best practice. Backward compatibility is also very important to us, except
when we break it deliberately, such as with Python 3. Most of Python is written in Python, too. It's much easier
and less error prone to maintain Python code than C code. The rest of Python is written in well-structured ANSI
C (C89) with a well-designed C API and a strong focus on POSIX.

Q: 	 What is it about the developers on your project that you think enables them to create high-quality code?
A: 	 All core committers are highly motivated and care deeply for Python. Although we are split up across lots of

countries, cultures and time zones, we are able to work together as a team very well. A core developer is elected
when he or she can show that they are able to contribute good patches over some time. We are a meritocracy.

Q: 	 What happens if you have a developer working on the project who submits code that doesn't meet quality expectations?
A: 	 It rarely happens, as most changes go through a thorough review process before they are committed. Once in a

while some issues slip through – after all, we are just humans. Since commits are tightly monitored, such issues are
pointed out in a matter of hours, even minutes. Either the issue is sorted out as soon as possible or the commit is
reverted.

Q: 	 What sort of process do you follow to ensure high-quality code?
A: 	 Python has coding standards for C and Python code. Major changes go through the PEP process, other changes go

through a review process. We have stable APIs, ABIs and automated tests, and we utilize continuous integration.
However we also have tedious bike shedding1 discussions on the mailing list.

1 Bike shedding: Technical disputes over minor, marginal issues conducted while more serious ones are being overlooked.

COVERITY SCAN PROJECT SPOTLIGHT: PYTHON

9

Q: 	 Do you have people in formal roles to ensure the quality of the code?
A: 	 In theory, Python has a hierarchy:

		 Guido (Benevolent Dictator for Life) > release manager > expert for module or area of interest
	 > core committer > contributor

	 In practice, this hierarchy is never imposed upon somebody but rather used as a tool to aid the development
process. Core committers are responsible for their checkins and do their best to meet our demands in quality. They
also help contributors to improve their patches and teach them Python's coding conventions and best practices.
Experts for a module or topic are often included in the discussion to get their opinion and to benefit from their
knowledge.

Q: 	 Can you describe how development testing and the Coverity Scan service fit into your release process?
A: 	 Coverity comes into play when the code base has stabilized and a new, minor release is approaching its release

candidate phase. It is especially useful to find issues in unlikely code paths, like error cases that are not reached
under ordinary circumstances. A stable code base makes it easier to find and fix the problematic code segments.

	 Recently I went through untriaged Coverity platform-found issues and either fixed, closed or triaged them all. In
the future, I'm planning to fix or report issues as they are detected.

Q: 	 What tools do you use besides Coverity, and how do they impact your ability to deliver high-quality code?
A: 	 We use the following tools:
	 • Mercurial (hg) DVCS
	 • Roundup issue tracker
	 • Rietveld code review
	 • buildbot for CI
	 • Irker to push buildbot and roundup messages to #python-dev IRC channel
	 • fusil for fuzzing tests and pyfailmalloc to add random malloc() failures (both created by Python core developer

 Victor Stinner)
	 • GCC's gcov
	 • clang analyzer
	 • instrumented Python builds (--with-pydebug) with extra checks, asserts and reference leak checks

	 Resources, sponsoring, software and hardware donations are provided by the IT industry (Microsoft, IBM, HP,
Oracle, Google and others.)

	 Most tools are written in Python, too. An "eat your own dog food" philosophy and practice helps with our quality
efforts.

COVERITY SCAN PROJECT SPOTLIGHT: PYTHON

10

Q: 	 What challenges do you face with regard to maintaining high-quality code that are unique to open source and how do you
overcome those challenges?

A: 	 We have lots of issues with patches and not enough time to review/apply them. Since no one is getting paid
and we work in our free time, it might take a while before they get applied–however never is often better than a
“right now” approach. We also target lots of platforms, even exotic ones like AIX, and with Windows, there is a
dichotomy between POSIX-like API and Windows API.

COVERITY SCAN PROJECT SPOTLIGHT: PYTHON

11

Conclusion and Next Steps for Coverity Scan
Python has shown a long-term commitment to delivering high-quality software to their constituents. They have achieved
the highest level of quality and are almost completely free of high- and medium-impact defects. The quality of their code far
outpaces that of like-sized commercial offerings. Their spirit of openness, collaboration and mentorship is also unique, and
serves as a great example for other open source projects. We would like to thank the Python team for their continued support
and participation in the Coverity Scan Service.

Register your open source project with Coverity Scan or sign up for a free trial to get visibility into the quality and security of
your software code.

Software
Integrity
Report
Project Name: Python

Version: 3.4dev

Project Description: http://python.org/

Project Details:

Lines of Code Inspected: 396,738
Target Level 3 ACHIEVED

Project Defect Density: <0.01

High-Impact and Medium-Impact Defects: 1

Company Name: Python
Point of Contact: Coverity Scan
Client email: scan-admin@coverity.com
Report Date: Aug 15, 2013 11:26:06 PM
Report ID: 96f1dfdc-9c4d-4645-ae45-b186c3a3e229

Coverity Product: Static Analysis
Product Version: 6.6.1
Coverity Point of Contact: Integrity Report
Coverity email: integrityrating@coverity.com

The Coverity Integrity Rating Program provides a standard way to objectively measure the integrity of your own
software as well as software you integrate from suppliers and the open source community. Coverity Integrity
Ratings are established based on the number of defects found by Coverity® Static Analysis when properly
configured, as well as the potential impact of defects found. Coverity Integrity Ratings are indicators of software
integrity, but do not guarantee that certain kinds of defects do not exist in rated software releases or that a release is
free of defects. Coverity Integrity Ratings do not evaluate any aspect of the software development process used to
create the software.

A Coverity customer interested in certifying their ratings can submit this report and the associated XML file to
integrityrating@coverity.com. All report data will be assessed and if the Coverity Integrity Rating Program
Requirements are met, Coverity will certify the integrity level achieved for that code base, project, or product.

High-Risk Defects

High-impact defects that cause crashes, program
instability, and performance problems.

Medium-Risk Defects

Medium-impact defects that cause incorrect results,
concurrency problems, and system freezes.

Defect Risk by Component

Component Owner Defect
Density

Modules <0.01

libffi 0.00

ctypes 0.00

Include 0.00

Other 0.00

Parser 0.00

usr include 0.00

libmpdec 0.00

expat 0.00

Objects 0.00

Python 0.00

Defects by Assigned Severity

High-severity defects have been tagged by developers as a
clear threat to the program's stability and/or security.

Defect Severities by Component

Component Owner Defect
Density

Modules <0.01

libffi 0.00

ctypes 0.00

Include 0.00

Other 0.00

Parser 0.00

usr include 0.00

libmpdec 0.00

expat 0.00

Objects 0.00

Python 0.00

Defects by Triage State

Coverity Software Integrity Report

The Coverity Software Integrity Rating is an objective standard used by developers, management, and business executives to
assess the software integrity level of the code they are shipping in their products and systems.

Coverity rating requirements are based on an assessment of several factors:

• Defect density: For a given component or code base, the number of high-risk and medium-risk defects found by static
analysis divided by the lines of code analyzed. Defect density excludes fixed defects and defects dismissed as false
positives or intentional. For example, if there are 100 high-risk and medium-risk defects found by static analysis in a
code base of 100,000 lines of code, the defect density would be 100/100,000 = 1 defect per thousand lines of code.

• Major severity defects: Developers can assess the severity of defects by marking them as Major, Moderate, or Minor
(customizations might affect these labels). We consider all defects assigned a severity rating of Major to be worth
reporting in the Integrity Report regardless of their risk level because the severity rating is manually assigned by a
developer who has reviewed the defect.

• False positive rate: Developers can mark defect reports as false positives if they are not real defects. We consider a
false positive rate of less than 20% to be normal for Coverity Static Analysis. A false positive rate above 20% indicates
possible misconfiguration, incorrect inspection, use of unusual idioms in the code, or a flaw in our analysis.

Coverity Integrity Level 1 requires the software has less than or equal to 1 defect per thousand lines
of code, which is approximately the average defect density for the software industry.

Coverity Integrity Level 2 requires the software has less than or equal to 0.1
defect per thousand lines of code, which is approximately at the 90th percentile for
the software industry. This is a much higher bar to satisfy than Level 1. A million-line
code base would have to have 100 or fewer defects to qualify for Level 2.

Coverity Integrity Level 3 This is the highest bar in the rating system today. All
three of the following criteria need to be met:

• Defect density less than or equal to 0.01 defect per thousand lines of code, which is approximately in the 99th
percentile for the software industry. This means that a million-line code base must have ten or fewer defects
remaining. The requirement does not specify zero defects because this might force the delay of a release for a few stray
static analysis defects that are not in a critical component (or else giving up on achieving a target Level 3 for the
release).

• False positive rate less than 20%. If the rate is higher the results need to be audited by Coverity to qualify for this
integrity rating level. A higher false positive rate indicates misconfiguration, usage of unusual idioms, or incorrect
diagnosis of a large number of defects. The Coverity Static Analysis has less than 20% false positives for most code
bases, so we reserve the right to audit false positives when they exceed this threshold.

• Zero defects marked as Major severity by the user. The severity of each defect can be set to Major, Moderate, or Minor.
This requirement ensures that all defects marked as Major by the user are fixed because we believe that once human
judgment has been applied, all Major defects must be fixed to achieve Level 3.

Level Not Achieved indicates that the target level criteria are not met. This means that the software has too many
unresolved static analysis defects in it to qualify for the desired target integrity level. To achieve the target integrity level
rating, more defects should be reviewed and fixed.

How to Use Your Software Integrity Rating
Set software integrity standards for your projects, products, and teams.
It is often difficult for developers and development management to objectively compare the integrity of code bases, projects,
and products. The Coverity Software Integrity Rating is a way to create "apples-to-apples" comparisons and promote the
success of development teams that consistently deliver highly-rated software code and products. Development teams can also
use these ratings as objective evidence to satisfy requirements for quality and safety standards.

Audit your software supply chain.
It is challenging for companies to assess the integrity of software code from suppliers and partners that they integrate with
their offerings. The Coverity Software Integrity Rating is a way to help companies create a common measurement of software
integrity across their entire software supply chain.

Promote your commitment to software integrity.
The integrity of your software has a direct impact on the integrity of your brand. Showcasing your commitment to software
integrity is a valuable way to boost your brand value. It indicates that they are committed to delivering software that is safe,
secure, and performs as expected.

