
# **Energy From the Sun Teacher Guide**

Hands-on explorations that allow students to investigate solar energy. Students explore radiant energy transforming into thermal energy, chemical energy, and electricity.



Grade Level:



Intermediate

## **Subject Areas:**





Language Arts





Technology



Social Studies



# **Teacher Advisory Board**

**Shelly Baumann** Rockford, MI

**Constance Beatty** Kankakee, IL

**Amy Constant** Raleigh, NC

Nina Corley Galveston, TX

**Regina Donour** Whitesburg, KY

**Linda Fonner** New Martinsville, WV

**Samantha Forbes** Vienna, VA

Michelle Garlick Buffalo Grove, IL

**Robert Griegoliet** Naperville, IL

**Viola Henry** Thaxton, VA

**Bob Hodash** Bakersfield, CA

**DaNel Hogan** Tucson, AZ

**Greg Holman** Paradise, CA

**Linda Hutton** Kitty Hawk, NC

**Matthew Inman** Spokane, WA

Barbara Lazar Albuquerque, NM

Robert Lazar Albuquerque, NM

Leslie Lively Porters Falls, WV

Mollie Mukhamedov Port St. Lucie, FL

Don Pruett Jr. Sumner, WA

Josh Rubin Palo Alto, CA

Joanne Spaziano Cranston, RI

**Gina Spencer** Virginia Beach, VA

**Tom Spencer** Chesapeake, VA

Jennifer Trochez MacLean Los Angeles, CA

**Joanne Trombley** West Chester, PA

Jen Varrella Fort Collins, CO

Jennifer Winterbottom Pottstown, PA

**Carolyn Wuest** Pensacola, FL

Wayne Yonkelowitz Fayetteville, WV

# **NEED Mission Statement**

The mission of The NEED Project is to promote an energy conscious and educated society by creating effective networks of students, educators, business, government and community leaders to design and deliver objective, multisided energy education programs.

# **Teacher Advisory Board Statement**

In support of NEED, the national Teacher Advisory Board (TAB) is dedicated to developing and promoting standardsbased energy curriculum and training.

# Permission to Copy

NEED materials may be reproduced for non-commercial educational purposes.

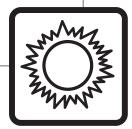
# **Energy Data Used in NEED Materials**

NEED believes in providing the most recently reported energy data available to our teachers and students. Most statistics and data are derived from the U.S. Energy Information Administration's Annual Energy Review that is published yearly. Working in partnership with EIA, NEED includes easy to understand data in our curriculum materials. To do further research, visit the EIA website at www.eia.gov. EIA's Energy Kids site has great lessons and activities for students at www.eia.gov/kids.








## Energy From The Sun Kit

- I Package clay
- 6 Concave mirrors
- 6 Flat mirrors
- ■5 Radiation can sets
- 2 Solar balloons
- ■5 Solar cell kits
- I Solar house kit
- 10 Lab thermometers
- I Package UV beads
- I Oven thermometer
- 30 Student Guides

# **Energy From the Sun** Teacher Guide

# **Table of Contents**

|                                                      | 5  |
|------------------------------------------------------|----|
| Materials                                            | 5  |
| Teacher Guide                                        | 6  |
| Rubrics for Assessment                               | 14 |
| Solar Energy Bingo Instructions                      | 15 |
| Solar Energy in the Round Instructions               | 17 |
| Fahrenheit/Celsius Conversion                        | 18 |
| Concentrating Solar Energy Assessment                | 19 |
| • Water Cycle                                        | 20 |
| Photovoltaic Cell                                    | 21 |
| Using Solar Energy to Produce Electricity Assessment | 22 |
| ■ Solar Oven                                         | 23 |
| ■ Solar House                                        | 24 |
| Solar House Rubric                                   | 25 |
| Solar Energy Bingo                                   | 26 |
| Solar Energy in the Round Cards                      | 27 |
| Evaluation Form                                      | 31 |

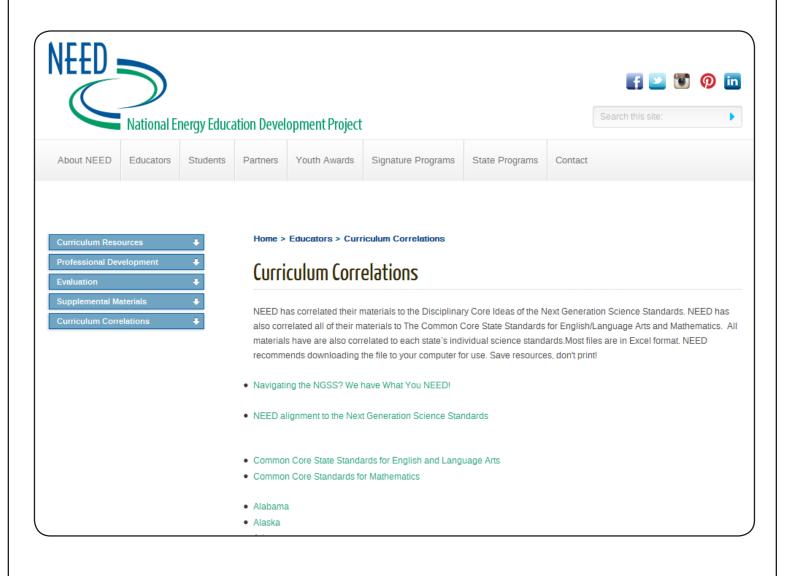




# **Standards Correlation Information**

www.NEED.org/curriculumcorrelations

# **Next Generation Science Standards**


• This guide effectively supports many Next Generation Science Standards. This material can satisfy performance expectations, science and engineering practices, disciplinary core ideas, and cross cutting concepts within your required curriculum. For more details on these correlations, please visit NEED's curriculum correlations website.

## **Common Core State Standards**

• This guide has been correlated to the Common Core State Standards in both language arts and mathematics. These correlations are broken down by grade level and guide title, and can be downloaded as a spreadsheet from the NEED curriculum correlations website.

## **Individual State Science Standards**

• This guide has been correlated to each state's individual science standards. These correlations are broken down by grade level and guide title, and can be downloaded as a spreadsheet from the NEED website.





# **Energy From the Sun Materials**

| ACTIVITY MATERIALS IN KIT                    |                                                                                                              | ADDITIONA                                                                                                                                                     | ADDITIONAL MATERIALS NEEDED                                                                                                                                 |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Radiation Cans—<br>Radiant Energy to<br>Heat | <ul> <li>Radiation cans</li> <li>Thermometers</li> </ul>                                                     | <ul> <li>Water</li> <li>Light source</li> <li>Timer</li> <li>250 mL Beakers</li> </ul>                                                                        |                                                                                                                                                             |  |
| Radiation Cans—<br>Solar Concentration       | <ul> <li>Radiation cans</li> <li>Clay</li> <li>Thermometers</li> <li>6 Concave and 6 flat mirrors</li> </ul> | <ul> <li>Cold water</li> <li>Light source</li> <li>Ruler</li> <li>250 mL Beakers</li> </ul>                                                                   |                                                                                                                                                             |  |
| Solar Collection with<br>a Solar Distiller   |                                                                                                              | <ul> <li>Large container</li> <li>Small glass beaker or<br/>bowl</li> <li>Marble</li> <li>Clear plastic wrap</li> </ul>                                       | <ul> <li>Large rubber band</li> <li>Water</li> <li>Food coloring</li> <li>Light source</li> </ul>                                                           |  |
| Photovoltaic Cells                           | ■PV module kit                                                                                               | <ul><li>Paper</li><li>Bright light source</li></ul>                                                                                                           |                                                                                                                                                             |  |
| Temperature and UV<br>Beads                  | ■UV beads<br>■Thermometers                                                                                   | <ul> <li>Foam cups</li> <li>Ice</li> <li>100 mL Beakers</li> <li>Permanent marker</li> <li>Timer</li> </ul>                                                   | <ul> <li>Hot water</li> <li>Room temperature<br/>water</li> <li>Cold water</li> <li>Sunny day</li> </ul>                                                    |  |
| Solar Balloon                                | ■Solar Balloon                                                                                               | Sunny day                                                                                                                                                     |                                                                                                                                                             |  |
| Solar Oven Challenge                         | <ul> <li>Oven thermometer</li> </ul>                                                                         | <ul> <li>Small pizza boxes</li> <li>Plastic wrap</li> <li>Aluminum foil</li> <li>Wooden skewers</li> <li>Markers</li> <li>Scissors</li> <li>Rulers</li> </ul> | <ul> <li>Masking tape</li> <li>Paper plates</li> <li>Black construction paper</li> <li>Food to cook</li> <li>Additional solar oven<br/>materials</li> </ul> |  |
| Designing Solar<br>House                     | ■Solar House Kit                                                                                             | <ul> <li>Cardboard box</li> <li>Graph paper</li> <li>Research materials</li> <li>Presentation materials</li> </ul>                                            |                                                                                                                                                             |  |



# **Teacher Guide**

#### **338** Grade Level

Intermediate, grades 6-8

#### (1) Time

• Five 45-minute class periods

#### Web Resources

American Solar Energy Society www.ases.org

Energy Schema Solar Energy Animations www.need.org/solar

Energy Information Administration www.eia.gov

**EIA Energy Kids** www.eia.gov/kids

National Renewable Energy Laboratory www.nrel.gov/solar

#### Sandia National Laboratories

http://energy.sandia.gov/ energy/renewable-energy/ solar-energy/

#### U.S. Department of Energy, Solar Energy

http://energy.gov/scienceinnovation/energy-sources/ renewable-energy/solar

U.S. Department of Energy Sun Shot Initiative http://energy.gov/eere/s

# Background

*Energy From the Sun* is an inquiry-based unit with Teacher and Student Guides containing comprehensive background information on solar energy and how it can generate electricity. Through hands-on inquiry investigations, reading nonfiction text, and critical thinking activities, students will learn about the transformations of energy related to solar or radiant energy. The kit that accompanies this curriculum contains most of the materials necessary to conduct the activities and investigations. Please refer to page 5 of the Teacher Guide for a complete list of materials included in the kit.

## ★ Concepts

•Nuclear fusion within the sun produces enormous amounts of energy, some in the form of radiant energy that travels through space to the Earth.

- •Most of the energy on Earth originates from radiant energy emitted by the sun. Only geothermal, nuclear, and tidal energy do not originate from radiant energy emitted by the sun.
- •The sun's energy coupled with the greenhouse effect make life possible on Earth.
- •We use the sun's energy to produce heat, light, and electricity.
- It is difficult to capture the sun's energy because it is spread out—not much of it is concentrated in any one place. We can capture solar energy with solar collectors that convert radiant energy into heat.
- Photovoltaic cells convert radiant energy directly into electricity.
- •Concentrated solar power systems collect radiant energy from the sun and convert it into heat to produce electricity.

# Preparation

- •Familiarize yourself with the Teacher and Student Guides, and with the materials in the kit. Select the activities you will complete.
- •Collect the materials that are not included in the kit. See the materials list on page 5 for materials that are not in the kit.
- •Make sure that the PV module and motor work smoothly. If the motor doesn't spin immediately, 'jumpstart' it by touching the leads to the ends of a C, D, or 9-Volt battery.
- If the thermometers have been unused for a long time, they may need to be recalibrated. If they are not reading the same temperature, put them in ice water, then a few minutes later, in boiling water. This should recalibrate the thermometers to the same temperature.
- Prepare a copy of the *Photovoltaic Cell* master on page 21 to project for the class.
- Divide the class into five groups.
- •Make copies of handouts, as needed.

# 🖎 Science Notebooks

Throughout this curriculum, science notebooks are referenced. If you currently use science notebooks or journals, you may have your students continue using them. A rubric to guide assessment of student notebooks can be found on page 14 in the Teacher Guide.

In addition to science notebooks, student worksheets have been included in the Student Guide. Depending on your students' level of independence and familiarity with the scientific process, you may choose to use these instead of science notebooks. Or, as appropriate, you may want to make copies of worksheets and have your students glue or tape the copies into their notebooks.

**Energy From the Sun Teacher Guide** 

| Objectives                                                                                                                                                                                                                                           |                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| <ul> <li>Students will be able to identify basic facts about energy and solar e</li> <li>Students will be able to read a thermometer using the Fahrenheit an</li> <li>Students will be able to convert between Fahrenheit and Celsius sca</li> </ul> | nd Celsius scales.                                                   |
| Materials                                                                                                                                                                                                                                            | (1) Time                                                             |
| •Copies of <i>Fahrenenheit/Celsius Conversion</i> for each student (optional), page 18                                                                                                                                                               | ■45 minutes                                                          |
| ✓ Procedure                                                                                                                                                                                                                                          |                                                                      |
| 1. Distribute the Student Guides or worksheets to the students.                                                                                                                                                                                      |                                                                      |
| 2. Introduce solar energy as the topic of exploration using the <i>KWL</i> students make a list of the things they know and questions they h                                                                                                         | 5 57 . 5                                                             |
| 3. Have students read the informational text, adding to their KWL ch questions as homework.                                                                                                                                                          | art. Discuss the questions they have and have them research specific |
| 4. Play Solar Energy Bingo or Solar Energy in the Round with the class                                                                                                                                                                               | as an introductory activity. See instructions on pages 15-17.        |
| OPTIONAL: Practice Fahrenheit and Celsius conversions using page 1                                                                                                                                                                                   | 8 in the Teacher Guide.                                              |
| Answers                                                                                                                                                                                                                                              |                                                                      |
| 1. 122°F 2.                                                                                                                                                                                                                                          | 37.8℃                                                                |
| 😴 Extension                                                                                                                                                                                                                                          |                                                                      |
| <ul> <li>Project or have students study the map on page 8 in the Student Gu<br/>they live on the map and analyze their area's solar resources in com<br/>the possible reasons for their area's shading on the map and why oth</li> </ul>             | nparison to other areas. Have students complete a quick-write abou   |

# Activity 2: Radiation Cans — Converting Radiant Energy to Heat

## Objective

Students will be able to explain that light can be reflected or absorbed and then converted to thermal energy (heat).

|                                                                | () Time       |                    |
|----------------------------------------------------------------|---------------|--------------------|
| <ul> <li>Water</li> <li>Light source</li> <li>Timer</li> </ul> | ■60 minutes   |                    |
|                                                                | ■Light source | ■Water ■60 minutes |

#### Preparation

• Set up centers or stations each with one set of radiation cans, 2 thermometers, a beaker, and water. Make sure the stations are situated in the sunlight or each has a light source.

#### **CONTINUED FROM PREVIOUS PAGE**

#### ✓ Procedure

- 1. Go to pages 10-11 of the Student Guide. Explain the procedure and have the students complete the activity in groups.
- 2. Review the activity with the students, discussing the following ideas:
  - radiant energy can be reflected or absorbed when it hits objects;
  - absorbed radiant energy can be converted into heat;
  - black objects tend to absorb radiant energy; and
  - shiny objects tend to reflect radiant energy.

## Activity 3: Radiation Cans — Solar Concentration

#### **Objectives**

Students will be able to describe how light can be concentrated on an object.
Students will be able to define or describe the term concave, citing an example of a concave item.

| Materials                        |                            | 🕒 Time      |  |
|----------------------------------|----------------------------|-------------|--|
| Radiation can sets               | ■Cold water                | ■45 minutes |  |
| ■Clay                            | Sunny day or lamps         |             |  |
| <ul> <li>Thermometers</li> </ul> | ■Ruler                     |             |  |
| Flat mirrors                     | Concentrating Solar Energy |             |  |
| Concave mirrors                  | Assessment, page 19        |             |  |
| Beakers                          |                            |             |  |

#### **Preparation**

Set up centers or stations each with 2 radiation cans, 2 thermometers, a beaker, cold water, ruler, and mirrors. Make sure the stations are situated in the sunlight or each has a light source.

#### ✓ Procedure

- 1. Go to pages 12-13 of the Student Guide. Place students into groups, and assign each group a label of A-E. Assign each group to a center with the corresponding number of concave or flat mirrors listed below. Explain the procedure and have the students complete the activity. They must obtain data from the other groups to complete the activity.
  - •Group A: The control—cans without mirrors.
  - Group B: Position one concave mirror behind each can so that the mirrors focus sunlight onto the cans. The mirrors should be about seven centimeters (7 cm) from the outside edge of the can. Use pieces of clay to hold the mirrors in the correct position.
     Group C: Position two concave mirrors behind each can as described above.
  - Group D: Position one flat mirror behind each can as described above.
  - Group E: Position two flat mirrors behind each can as described above.
  - •Group E: Position two flat mirrors benind each can as described abo
- 2. Review the activity and discuss the following ideas:
  - a mirror reflects radiant energy; and
  - a concave mirror can concentrate solar radiation onto an object.
- 3. Hand out and/or project the Concentrating Solar Energy Assessment as an assessment of student comprehension of activities and discussion.

# Activity 4: Solar Collection with a Solar Distiller

#### Objectives

Students will be able to define the process of distillation.
Students will be able to compare a solar distiller to the steps in the hydrologic cycle.

| Materials                                                                                                                                           |                                                                                                                   | (b) Time                                                                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|
| <ul> <li>Large containers</li> <li>Small glass beakers or bowls</li> <li>Marbles</li> <li>Clear plastic wrap</li> <li>Large rubber bands</li> </ul> | <ul> <li>Water</li> <li>Food coloring</li> <li>Sunny day or lamps</li> <li>Water Cycle master, page 20</li> </ul> | •10 minutes to set up; distillation may take up to 24 hours to see<br>full results |  |

#### Preparation

Set up stations or centers so that each group has the materials to complete the activity.

#### ✓ Procedure

1. Go to page 14 in the Student Guide. Explain the procedure and have the students complete the activity in groups.

- 2. Review the water cycle. You can project the water cycle master to enhance discussion.
- 3. Revisit the distiller the next day. Review and discuss the following concepts:
  - radiant energy can pass through transparent materials such as plastic wrap, but thermal energy does not pass through as easily;
     evaporation and condensation in Earth's natural water cycle; and
  - •evaporation and condensation can be replicated and modeled.

# Activity 5: Photovoltaic Cells (Photovoltaics)

#### Objectives

Students will be able to explain how radiant energy can be transformed directly into electricity.
Students will be able to explain how a motor transforms electricity into motion.

| Materials                          |                                           | 🕒 Time      |
|------------------------------------|-------------------------------------------|-------------|
| PV module kit with motors and fans | Photovoltaic Cell master, page 21         | ■45 minutes |
| ■Paper                             | Using Solar Energy to Produce Electricity |             |
| Bright light source                | Assessment, page 22                       |             |

#### ✓ Procedure

1. Go to page 15 of the Student Guide. Place students into five groups. Explain the procedure and have the students complete the activity in their groups.

Review the activity with the students, using the *Photovoltaic Cell* master to review and discuss the following concepts:
 PV cells transform radiant energy directly into electricity;

motors transform electricity into motion; and

•sunlight and artificial light are both examples of radiant energy.

3. Hand out or project the Using Solar Energy to Produce Electricity Assessment to assess student comprehension of activities and discussion.

## **Activity 6: Temperature and UV Beads**

#### Objective

Students will be able to explain how temperature affects the rate at which UV beads change back to white after UV exposure.

#### Materials

•UV beads•Timer•Thermometers•Hot water•Foam cups•Room temperature water•Ice•Cold water•100 mL Beakers•Sunny day•Permanent marker

🕒 Time

45 minutes

#### Preparation

•Each group will need four of the same color UV beads. There are multiple colors. It does not matter which color each group uses. The bag you receive will be mixed so you will need to separate out beads for the groups.

#### ✓ Procedure

- 1. Go to pages 16-17 of the Student Guide. Place students in their groups and provide them with the necessary materials.
- 2. Explain the procedure and have students complete the investigation.
- 3. Discuss the results of the investigation with the students, and review the forms of energy involved with the class.
- 4. Ask students to design an experiment to test the UV beads further, incorporating or considering other variables to manipulate, like color of beads, amount of UV radiation, etc.

#### Technology Extension

If allowable, it may be easier for students to record detailed data and observations using digital cameras. Have students submit a digital lab report showcasing their hypothesis, data, and conclusions.

## **Activity 7: Solar Balloon**

#### Objective

Students will be able to describe how radiant energy impacts air molecules.

| 🗐 Materials                     | (b) Time        |
|---------------------------------|-----------------|
| Solar balloon with fishing line | ■ 30-45 minutes |
| ■Sunny day                      |                 |

#### ✓ Procedure

- 1. Review the solar balloon activity on page 18 of the Student Guide.
- 2. Bring your students outside to an open area. They should bring their science notebooks or Student Guides and a writing utensil with them. Follow the procedure on the student worksheet.
- 3. Students should record their observations throughout the investigation.
- 4. Discuss the results with students, highlighting vocabulary they should use in their conclusions.

## **Activity 8: Solar Oven Challenge**

#### Objectives

Students will be able to design and test a solar oven.

Students will be able to describe the transformation of radiant energy to thermal energy.

NOTE: Dark-colored paper plates work best, if available.

| Materials                   |                               | 🕒 Time                                       |  |
|-----------------------------|-------------------------------|----------------------------------------------|--|
| Small pizza boxes           | ■Paper plates                 | 2 - 45 minute classes, plus time for cooking |  |
| Plastic wrap                | Black construction paper      |                                              |  |
| Aluminum foil               | Food to cook                  |                                              |  |
| Wooden skewers              | Oven thermometers             |                                              |  |
| <ul> <li>Markers</li> </ul> | Additional materials to       |                                              |  |
| Scissors                    | redesign ovens                |                                              |  |
| Rulers                      | Solar Oven instructions, page |                                              |  |
| Masking tape                | 23                            |                                              |  |
| <sup>2</sup> D              |                               |                                              |  |

#### Preparation

Make one standard solar oven using the directions in the Teacher Guide. This solar oven will be used as the "standard" oven.

Decide what to make in the solar ovens. Popular choices include cookies, s'mores, English Muffin pizzas, and nachos. You can also steam carrots if you put them in a plastic bag inside the oven. Be aware of food allergies in your classroom.

Gather the prescribed materials and any additional materials students may need.

#### ✓ Procedure

1. Show your students the standard solar oven you have made using page 19 of the Student Guide to describe its construction. Discuss with them all of the different variables that could be changed that might affect the oven's ability to cook food.

Suggested variables to share with students as needed:

- Color of construction paper
- Number of reflective panels
- Side of aluminum foil—shiny side/dull side
- Use of plastic wrap
- Seal/unseal air leaks
- Cover outside of box in different materials
- 2. In their science notebooks, or using the worksheet on page 20 of the Student Guide, students should individually brainstorm possible oven designs. Put students into groups. As a group they must discuss their designs and decide on one design to construct as a team.
- 3. Give students the materials they need to build their solar ovens.
- 4. Before cooking the food you have chosen, discuss with the class how they will know whether or not their solar ovens were effective.
- 5. Re-visit page 19 of the Student Guide. Ask students to answer the conclusion questions. Review the following concepts with the class:
  - radiant energy can be reflected or absorbed when it hits objects;
  - absorbed radiant energy can be transformed into thermal energy for cooking;
  - black objects tend to absorb radiant energy; and
  - shiny objects tend to reflect radiant energy.

# **Activity 9: Designing a Solar House**

#### Objectives

Students will be able to explain the difference between active and passive solar energy.
Students will design a model house that utilizes both passive and active solar energy.

| ■Solar house kit                                        | Presentation materials            | I |
|---------------------------------------------------------|-----------------------------------|---|
| <ul> <li>Cardboard box (for teacher's model)</li> </ul> | Solar House instructions, page    |   |
| ■Graph paper                                            | 24<br>Solar House Rubric, page 25 |   |
| Research materials                                      | solar nouse nuone, page 25        |   |

#### Preparation

Gather the appropriate materials students may need if designing and building their own models.

Use the solar house kit and the instructions in this guide to make a model of a solar house for your students.

•Make copies of the Solar House Rubric.

#### ✓ Procedure

- 1. Students should read the informational text about solar energy, if they have not yet done so.
- 2. Show your students the model solar house you made. Ask the students to brainstorm some questions they would have if they were designing a solar house. (Examples: Should the house face in a particular direction? What about trees in the area, should they be considered in the design? What type of materials should I use to build the house? How many windows should I use? Should the windows be on a certain side of the house? What types of solar systems should I use?)

■45+ minutes

- 3. Discuss each of the following terms with the students and show them a picture or example of each: passive solar, active solar, photovoltaic, tracking solar systems, stationary solar systems, building-integrated photovoltaic, solar thermal systems. To facilitate the discussion, graphics related to solar energy can be downloaded from NEED's graphics library at www.NEED.org.
- 4. Allow students to do additional research about solar homes and the design components of a solar home.
- 5. Put students into groups. Instruct the students to use their knowledge of solar energy and solar technology to design a solar home that would be very efficient. Students should use the following guidelines:
  - Draw your plan on your design sheet (page 21 of the Student Guide) or graph paper. You may want to use scrap paper to sketch out ideas first.
  - Indicate cardinal directions—N, S, E, W—on your drawing.
  - Label all components, including windows, types of solar systems, and any other information that will help explain your design.
  - Write a paragraph describing your house design and explaining the choices you made. Use complete sentences and proper punctuation.
- 6. Discuss the guidelines and review the rubric with the class before allowing time for design and construction.
- 7. Allow students time to prepare short presentations about their solar homes using Student Guide page 22. Have students present their designs to their peers.

#### 😴 Extensions

Have students create computer assisted drawings or build a model of the home they designed.

• Explain how the change in seasons and the different locations of the sun in the sky would impact the effectiveness of the PV cells where you live. How could you compensate for this?

Students can make a multimedia presentation to local realtors, energy engineers, or community members.

## **Optional Activity 10: Photovoltaic Arrays on the School**

#### Objective

Students will monitor the PV arrays on the school or in the community.

#### ✓ Procedure

• Have the school's energy/facility manager or a local expert speak to the students about the PV arrays on the school or in the community and show them how they work. If possible, have the students monitor the electrical output of the arrays and correlate the output to weather conditions. See NEED's *Schools Going Solar* guide for more information. *Schools Going Solar* can be downloaded from www.NEED.org.

## **Evaluation and Assessments**

There are a variety of assessment opportunities provided in the Teacher Guide. These include:

- •Use the *Rubrics for Assessment* on page 14 to evaluate student work.
- Concentrating Solar Energy Assessment, page 19
- Using Solar Energy to Produce Electricity Assessment, page 22
- Solar House Rubric, page 25
- •Play Solar Energy Bingo or Solar Energy in the Round as formative or summative assessments for the group. Instructions are found on pages 15-17.

•Evaluate the unit with the class using the Evaluation Form found on page 31 and return it to NEED.



# **Rubrics for Assesment**

# **Inquiry Explorations Rubric**

This is a sample rubric that can be used with inquiry investigations and science notebooks. You may choose to only assess one area at a time, or look at an investigation as a whole. It is suggested that you share this rubric with students and discuss the different components.

|   | SCIENTIFIC CONCEPTS                                                                                  | SCIENTIFIC INQUIRY                                                                                                                        | DATA/OBSERVATIONS                                                                                                                                                                                                            | CONCLUSIONS                                                                                                                                                         |
|---|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | Written explanations illustrate<br>accurate and thorough<br>understanding of scientific<br>concepts. | The student independently<br>conducts investigations and<br>designs and carries out his<br>or her own investigations.                     | Comprehensive data is collected and thorough<br>observations are made. Diagrams, charts,<br>tables, and graphs are used appropriately. Data<br>and observations are presented clearly and<br>neatly with appropriate labels. | The student clearly communicates what was learned<br>and uses strong evidence to support reasoning. The<br>conclusion includes application to real life situations. |
| 3 | Written explanations illustrate<br>an accurate understanding of<br>most scientific concepts.         | The student follows<br>procedures accurately<br>to conduct given<br>investigations, begins<br>to design his or her own<br>investigations. | Necessary data is collected. Observations are<br>recorded. Diagrams, charts, tables, and graphs<br>are used appropriately most of the time. Data is<br>presented clearly.                                                    | The student communicates what was learned and uses some evidence to support reasoning.                                                                              |
| 2 | Written explanations illustrate<br>a limited understanding of<br>scientific concepts.                | The student may not<br>conduct an investigation<br>completely, parts of the<br>inquiry process are missing.                               | Some data is collected. The student may lean<br>more heavily on observations. Diagrams, charts,<br>tables, and graphs may be used inappropriately<br>or have some missing information.                                       | The student communicates what was learned but is missing evidence to support reasoning.                                                                             |
| 1 | Written explanations illustrate<br>an inaccurate understanding of<br>scientific concepts.            | The student needs<br>significant support to<br>conduct an investigation.                                                                  | Data and/or observations are missing or inaccurate.                                                                                                                                                                          | The conclusion is missing or inaccurate.                                                                                                                            |

# **Culminating Project Rubric**

This rubric may be used with the *Designing a Solar House* activity or *Solar Oven Challenge*, or for any other group work you ask the students to do.

|   | CONTENT                                                                                                     | ORGANIZATION                                                                   | ORIGINALITY                                                                                | WORKLOAD                                                                                              |
|---|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 4 | Project covers the topic in-<br>depth with many details and<br>examples.<br>Subject knowledge is excellent. | Content is very well<br>organized and presented in<br>a logical sequence.      | Project shows much original thought. Ideas are creative and inventive.                     | The workload is divided and shared equally by all members of the group.                               |
| 3 | Project includes essential<br>information about the topic.<br>Subject knowledge is good.                    | Content is logically organized.                                                | Project shows some original thought. Work shows new ideas and insights.                    | The workload is divided and shared fairly equally by all group members, but workloads may vary.       |
| 2 | Project includes essential<br>information about the topic,<br>but there are 1-2 factual errors.             | Content is logically<br>organized with a few<br>confusing sections.            | Project provides essential information, but there is little evidence of original thinking. | The workload is divided, but one person in the group is viewed as not doing a fair share of the work. |
| 1 | Project includes minimal<br>information or there are several<br>factual errors.                             | There is no clear<br>organizational structure,<br>just a compilation of facts. | Project provides some essential information,<br>but no original thought.                   | The workload is not divided, or several members are not doing a fair share of the work.               |



# Solar Energy BINGO Instructions

# **Get Ready**

Duplicate as many *Solar Energy Bingo* sheets (found on page 26) as needed for each person in your group. In addition, decide now if you want to give the winner of your game a prize and what the prize will be.

# Get Set

Pass out one Solar Energy Bingo sheet to each member of the group.

## Go

#### PART ONE: FILLING IN THE BINGO SHEETS

Give the group the following instructions to create bingo cards:

- •This bingo activity is very similar to regular bingo. However, there are a few things you'll need to know to play this game. First, please take a minute to look at your bingo sheet and read the 16 statements at the top of the page. Shortly, you'll be going around the room trying to find 16 people about whom the statements are true so you can write their names in one of the 16 boxes.
- •When I give you the signal, you'll get up and ask a person if a statement at the top of your bingo sheet is true for them. If the person gives what you believe is a correct response, write the person's name in the corresponding box on the lower part of the page. For example, if you ask a person question "D" and he or she gives you what you think is a correct response, then go ahead and write the person's name in box D. A correct response is important because later on, if you get bingo, that person will be asked to answer the question correctly in front of the group. If he or she can't answer the question correctly, then you lose bingo. So, if someone gives you an incorrect answer, ask someone else! Don't use your name for one of the boxes or use the same person's name twice.
- •Try to fill all 16 boxes in the next 20 minutes. This will increase your chances of winning. After the 20 minutes are up, please sit down and I will begin asking players to stand up and give their names. Are there any questions? You'll now have 20 minutes. Go!
- During the next 20 minutes, move around the room to assist the players. Every five minutes or so tell the players how many minutes are remaining in the game. Give the players a warning when just a minute or two remains. When the 20 minutes are up, stop the players and ask them to be seated.

#### PART TWO: PLAYING BINGO

Give the class the following instructions to play the game:

- When I point to you, please stand up and in a LOUD and CLEAR voice give us your name. Now, if anyone has the name of the person I call on, put a big "X" in the box with that person's name. When you get four names in a row—across, down, or diagonally—shout "Bingo!" Then I'll ask you to come up front to verify your results.
- Let's start off with you (point to a player in the group). Please stand and give us your name. (Player gives name. Let's say the player's name was "Joe.") Okay, players, if any of you have Joe's name in one of your boxes, go ahead and put an "X" through that box.
- When the first player shouts "Bingo," ask him (or her) to come to the front of the room. Ask him to give his name. Then ask him to tell the group how his bingo run was made, e.g., down from A to M, across from E to H, and so on.

Solar Energy Bingo is a great icebreaker for a NEED workshop or conference. As a classroom activity, it also makes a great introduction to a unit on solar energy.

# Preparation

■5 minutes

## **•**Time

45 minutes

Bingos are available on several different topics. Check out these resources for more bingo options!

- Biomass Bingo—Energy Stories and More
- Change a Light Bingo—Energy Conservation Contract
- Energy Bingo—Energy Games and Icebreakers
- •Energy Efficiency Bingo— Monitoring and Mentoring and Learning and Conserving
- Hydropower Bingo— Hydropower guides
- ■Hydrogen Bingo—*H*<sub>2</sub> Educate
- Marine Renewable Energy Bingo—Ocean Energy
- Nuclear Energy Bingo— Nuclear guides
- Offshore Oil and Gas Bingo— Ocean Energy
- Oil and Gas Bingo—Oil and Gas guides
- Science of Energy Bingo— Science of Energy guides
- Wind Energy Bingo—Wind guides
- •Transportation Bingo— Transportation Fuels Infobooks

•Now you need to verify the bingo winner's results. Ask the bingo winner to call out the first person's name on his bingo run. That player then stands and the bingo winner asks him the question which he previously answered during the 20-minute session. For example, if the statement was "can name two renewable sources of energy," the player must now name two sources. If he can answer the question correctly, the bingo winner calls out the next person's name on his bingo run. However, if he does not answer the question correctly, the bingo winner does not have bingo after all and must sit down with the rest of the players. You should continue to point to players until another person yells "Bingo."

# SOLAR ENERGY BINGO

# ANSWERS

- A. Has used a solar clothes dryer
- E. Can explain how solar energy drives the water cycle
- I. Knows how plants convert solar energy into chemical energy
- M. Can name two advantages of solar energy
- B. Knows the average conversion efficiency of PV cells
- F. Has used a photovoltaic cell
- J. Uses passive solar energy at home
- N. Knows the energy conversion that a PV cell performs
- C. Knows the nuclear process in the sun's core
- G. Rides in a solar collector
- K. Has seen a solar water heater
- 0. Can explain why dark clothes make you hotter in the sun
- D. Knows how radiant energy travels through space
- H. Can explain how solar energy produces wind
- L. Has cooked food in a solar oven
- P. Owns solar protection equipment

| Α                                                                                                                                     | В                                                                                                                    | C                                                                            | D                                                                                  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|
| Has hung clothes outside to dry                                                                                                       | 13-30%                                                                                                               | Fusion                                                                       | In electromagnetic waves (or<br>transverse waves)                                  |  |  |
| E                                                                                                                                     | F                                                                                                                    | G                                                                            | Н                                                                                  |  |  |
| Sun evaporates water in lakes<br>and oceans, water vapor rises<br>and becomes clouds, rains to<br>replenish                           |                                                                                                                      | Car without tinted windows<br>is a solar collector-like a<br>greenhouse      | Sun heats the Earth's surface<br>unevenly-hot air rises and<br>cooler air moves in |  |  |
| I                                                                                                                                     | J                                                                                                                    | К                                                                            | L                                                                                  |  |  |
| Photosynthesis                                                                                                                        | Allows sun to enter through<br>windows for light and heat-<br>has materials that retain het<br>(masonry, tile, etc.) | ask for location/description                                                 | ask for description                                                                |  |  |
| М                                                                                                                                     | Ν                                                                                                                    | 0                                                                            | Р                                                                                  |  |  |
| Solar energy systems do<br>not produce air pollutants<br>or carbon dioxide, minimal<br>impact on environment, sun's<br>energy is free | radiant energy to electrical<br>energy                                                                               | Dark colors absorb more<br>radiant energy and turn it into<br>thermal energy | Sun screen, sunglasses, etc.                                                       |  |  |



# Solar Energy in the Round

# **Get Ready**

- •Copy the *Solar Energy in the Round* cards on pages 27-29 onto card stock and cut into individual cards.
- Make an additional copy to use as your answer key. These pages do not need to be cut into cards.
- Have copies of the *Energy From the Sun* informational text or *Intermediate Energy Infobooks* available for quick reference.

# Get Set

- Distribute one card to each student. If you have cards left over, give some students two cards so that all of the cards are distributed.
- •Have the students look at their bolded words at the top of the cards. Give them five minutes to review the information about their words.

# Go

Choose a student to begin the round and give the following instructions:

- Read the question on your card. The student with the correct answer will stand up and read the bolded answer, "I have \_\_\_\_\_."
- •That student will then read the question on his/her card, and the round will continue until the first student stands up and answers a question, signaling the end of the round.
- •If there is a disagreement about the correct answer, have the students listen to the question carefully looking for key words (forms versus sources, for example) and discuss until a consensus is reached about the correct answer.

# **Alternative Instructions**

•Give each student or pair a set of cards.

•Students will put the cards in order, taping or arranging each card so that the answer is directly under the question.

Have students connect the cards to fit in a circle or have them arrange them in a column.

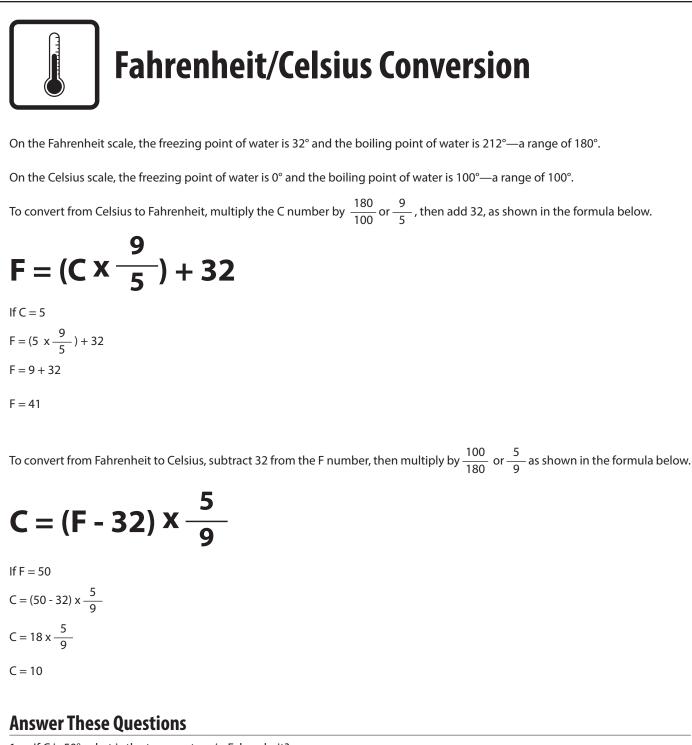
Solar Energy in the Round is a quick, entertaining game to reinforce vocabulary and information about solar energy.

## **...** Grades

■5–12

## Preparation

■5 minutes


#### 🕒 Time

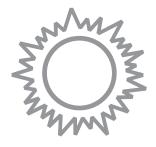
20-30 minutes

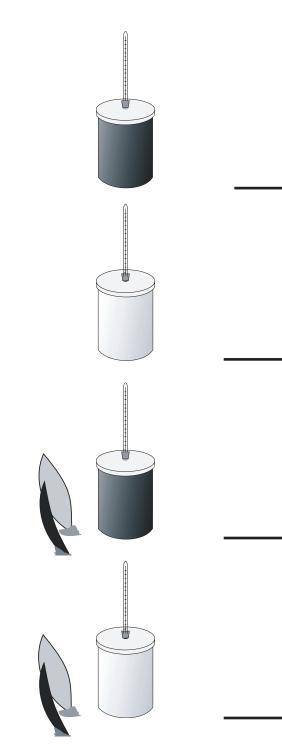
#### "In the Rounds" are available on several different topics. Check out these guides for more, fun "In the Round" examples!

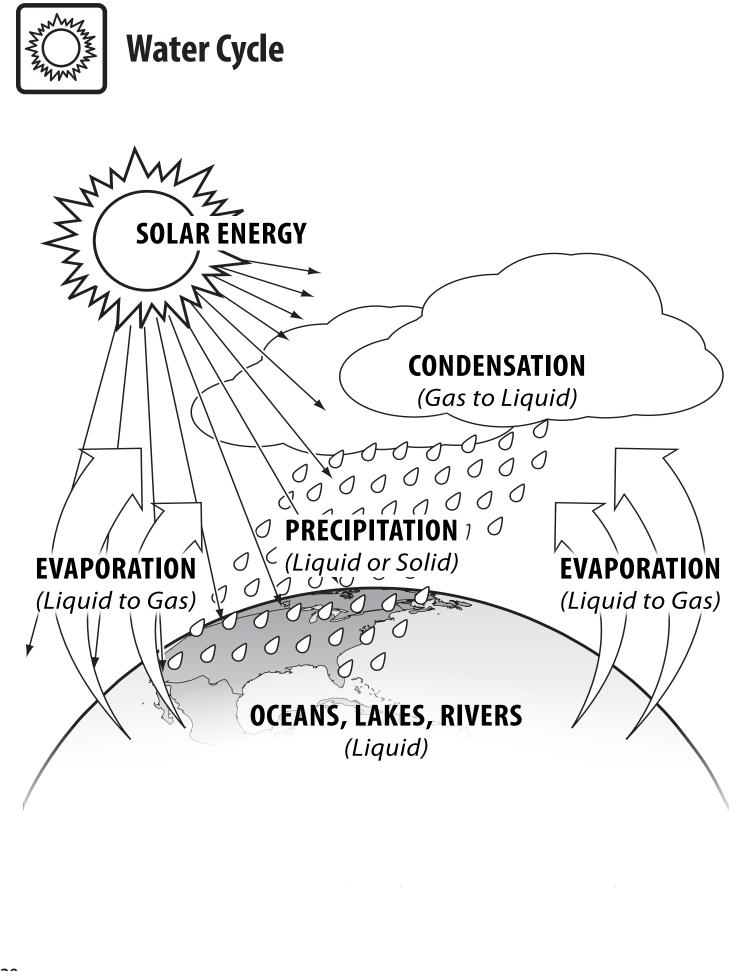
- •Hydrogen in the Round—*H*<sub>2</sub> Educate
- •Oil and Gas Industry in the Round—Fossil Fuels to Products, Exploring Oil and Gas
- Conservation in the Round— Monitoring and Mentoring, Learning and Conserving
- •Forms of Energy in the Round— Science of Energy guides
- Uranium in the Round—Nuclear guides
- •Energy in the Round—Energy Games and Icebreakers
- •Transportation Fuels in the Round—*Transportation Fuels* Infobooks

MASTER




- 1. If C is 50°, what is the temperature in Fahrenheit?
- 2. If F is 100°, what is the temperature in Celsius?





# **Concentrating Solar Energy Assessment**

1. Indicate on the drawings below where solar energy is being absorbed and reflected on each can.

2. Indicate the order in which the temperature of the water inside will increase from least to greatest using 1 (least) to 4 (greatest).

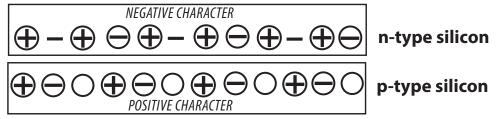




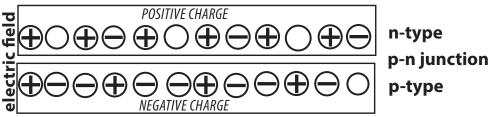


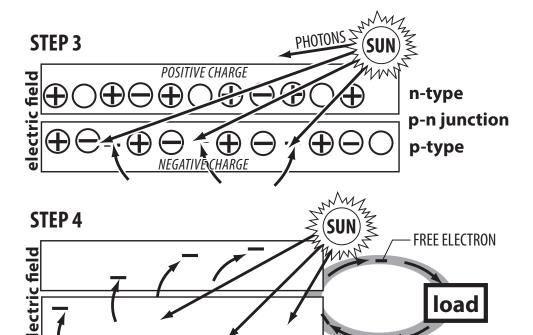


# **Photovoltaic Cell**




**Free electron** 


Proton


**Tightly-held electron** 

# **STEP 1**









đ

load



# Using Solar Energy to Produce Electricity Assessment

Use the vocabulary below to explain how electricity is produced by photovoltaic systems and concentrated solar power systems.

| dish/engine systems<br>electricity<br>electrons | linear Fresnel lens<br>parabolic troughs<br>PV system | radiant energy<br>residential<br>solar cell | solar power towers<br>thermal energy<br>utility scale |
|-------------------------------------------------|-------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|
|                                                 |                                                       |                                             |                                                       |
|                                                 |                                                       |                                             |                                                       |
|                                                 |                                                       |                                             |                                                       |
|                                                 |                                                       |                                             |                                                       |
|                                                 |                                                       |                                             |                                                       |
|                                                 |                                                       |                                             |                                                       |
|                                                 |                                                       |                                             |                                                       |
|                                                 |                                                       |                                             |                                                       |
|                                                 |                                                       |                                             |                                                       |
|                                                 |                                                       |                                             |                                                       |



# Solar Oven

## Objective

Students will be able to describe the energy transformation involved when using a solar oven.

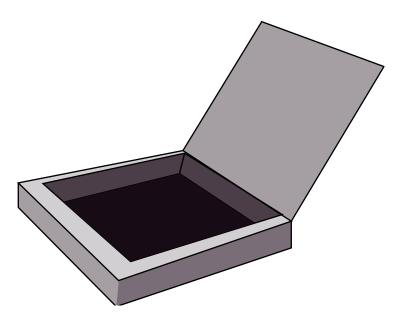
#### Materials

- I Small pizza box
- Plastic wrap
- Aluminum foil
- ■1 Wooden skewer (12"-18")
- Marker
- Scissors
- Ruler

NOTE: Dark-colored paper plates work best, if available.

#### **General Directions to Build a Solar Oven**

- 1. On the top of the pizza box, use your marker to draw a square with edges spaced 1" from all sides of the box.
- 2. Use scissors to cut along the sides and front edge of the lid, leaving the fourth side along the box's hinge uncut.
- 3. Tape aluminum foil to the inside surface of the new flap you just cut, shiny side visible. This is to reflect sunlight into the box. Smooth out any wrinkles that might occur.


Masking tape

Paper plate

Black construction paper

Oven thermometerFood to cook

- 4. Tape plastic wrap to the original box flap so that it covers the hole you cut into the flap. Seal all four of the edges with tape.
- 5. Tape black construction paper to the bottom inside of the box. This will help absorb the incoming sunlight.
- 6. Cover any air leaks around the box edges with tape, making sure that the box can still be opened to place food inside or remove it later.
- 7. Go outside in the sunlight and place the solar oven on a level flat surface.
- 8. Place food items on a paper plate and place it inside the oven. Put the oven thermometer inside the oven where you will be able to see it without moving the oven.
- 9. Tape one end of a wooden skewer to the reflector lid, attach the other end to the box to adjust reflector.
- 10. Let the food cook and periodically check the reflector angle to make sure sunlight is getting inside the oven.





# Solar House

## Objective

Students will be able to explain the difference between active and passive solar energy.

#### Materials

- Cardboard box
- Scissors
- Clear transparency film
- Black construction paper
- 2 Sheets of white paper
- Clay
- Tape
- Solar House Kit

#### ✓ Procedure

- 1. Using the scissors, cut large windows and a door on one side of the box.
- 2. Tape clear transparency film over the windows.
- 3. Make a round water storage tank from black construction paper. Attach it to the side of the house with tape.
- 4. Make two holes 1 cm in diameter in the top of the box.
- 5. Push the shaft of the motor through one of the holes.
- 6. From the inside of the house, attach the fan blades to the motor. Make sure there is enough room above the blades for the fan to turn without bumping the ceiling. Use a strip of tape to hold the motor in place.
- 7. Push the LED through the other hole and tape it in place.
- 8. Attach the PV cells to the fan and LED.
- 9. Lay the PV cell with tubing on top of the house with the tubing extending down to the black water storage tank. Tape in place.
- Carefully carry the house model into the sun. Observe the speed of the fan and the brightness of the LED. Tilt the PV cells so they are directly facing the sun. How does this affect the speed of the fan? Use a piece of clay under the PV cells to leave them in this position.
   Circulate a bright support day by placing a single short of while support and the PV cells.
- 11. Simulate a bright, overcast day by placing a single sheet of white paper over the PV cells. Observe the speed of the fan and the brightness of the LED.
- 12. Simulate a very cloudy day by placing two sheets of white paper over the PV cells. Record your observations of the fan speed and LED brightness.
- 13. Simulate nighttime by placing a piece of cardboard over the PV cells. Record your observations of the fan speed and LED brightness.

# Solar House Rubric

Your group has been commissioned by The National Energy Education Development Project to design a home using passive and active solar. Your group will be expected to present the solar home design to your peers. You will need to explain what the solar features are, how they work, and why they are beneficial to the energy efficiency of your home. Use this rubric to evaluate your work as a group. Your teacher may also use this rubric to evaluate your group.

|                                            | Meets or exceeds<br>expectations | Needs some work | Back to the drawing board | Comments |
|--------------------------------------------|----------------------------------|-----------------|---------------------------|----------|
| Thorough explanation is provided           |                                  |                 |                           |          |
| for why each material was used in          |                                  |                 |                           |          |
| the design                                 |                                  |                 |                           |          |
| Rationale for placement of solar           |                                  |                 |                           |          |
| elements                                   |                                  |                 |                           |          |
| Design is creative and original            |                                  |                 |                           |          |
|                                            |                                  |                 |                           |          |
| Identifies and explains which              |                                  |                 |                           |          |
| elements are active solar and              |                                  |                 |                           |          |
| which elements are passive solar           |                                  |                 |                           |          |
| Use of materials                           |                                  |                 |                           |          |
| House is designed neatly and soundly       |                                  |                 |                           |          |
| Design is adequately and correctly labeled |                                  |                 |                           |          |
| Sales pitch is informative and             |                                  |                 |                           |          |
| effective, using keywords and              |                                  |                 |                           |          |
| concepts from the background               |                                  |                 |                           |          |
| materials and activities                   |                                  |                 |                           |          |
| Other:                                     |                                  |                 |                           |          |
|                                            |                                  |                 |                           |          |

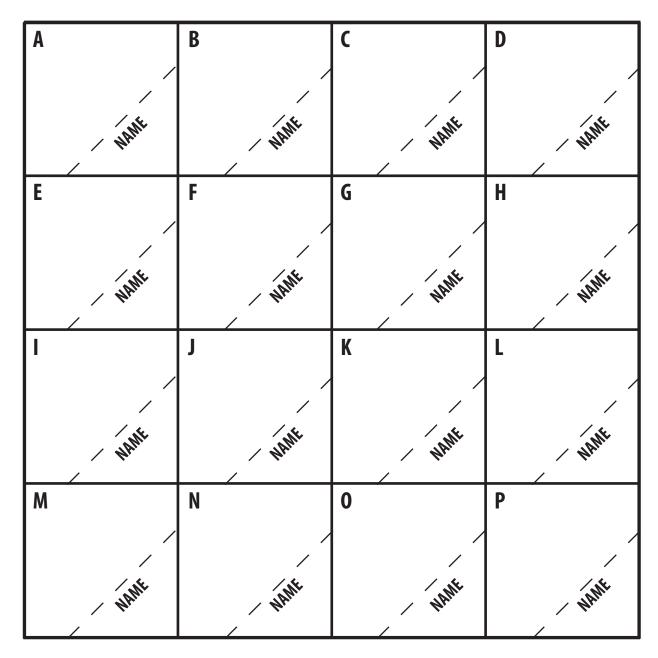


# SOLAR ENERGY BINGO

- A. Has used a solar clothes dryer B.
- E. Can explain how solar energy F. drives the water cycle
- I. Knows how plants convert solar energy into chemical energy
- M. Can name two advantages of N. solar energy
- Knows the average conversion efficiency of PV cells
- Has used a photovoltaic cell
- Uses passive solar energy at home

J.

Knows the energy conversion that a PV cell performs


- C. Knows the nuclear process in the sun's core
- G. Rides in a solar collector
- K. Has seen a solar water heater
- 0. Can explain why dark clothes make you hotter in the sun

- D. Knows how radiant energy travels through space
- H. Can explain how solar energy produces wind
  - Has cooked food in a solar oven

L.

P.

Owns solar protection equipment



| <b>I have energy.</b><br>Who has the two major gases that make up the sun? | I have the speed of light.<br>Who has the form of energy that sunlight is<br>converted to when it is absorbed by the Earth?                                               |  |  |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| I have hydrogen and helium.                                                | <b>I have thermal energy.</b>                                                                                                                                             |  |  |
| Who has the process in which very small nuclei                             | Who has the color that absorbs more sunlight                                                                                                                              |  |  |
| are combined into larger nuclei?                                           | than other colors?                                                                                                                                                        |  |  |
| <b>I have nuclear fusion.</b>                                              | I have the color black.                                                                                                                                                   |  |  |
| Who has the form of energy emitted into space                              | Who has a system that captures solar energy                                                                                                                               |  |  |
| by stars and the sun during fusion?                                        | and uses it to heat spaces or substances?                                                                                                                                 |  |  |
| <b>I have radiant energy.</b>                                              | <b>I have a solar collector.</b>                                                                                                                                          |  |  |
| Who has the amount of time it takes the sun's                              | Who has the process of using the sun's energy                                                                                                                             |  |  |
| energy to reach the Earth?                                                 | to heat buildings?                                                                                                                                                        |  |  |
| <b>I have eight minutes.</b><br>Who has 186,000 miles per second?          | <b>I have solar space heating.</b><br>Who has a home that relies on orientation and<br>construction materials to capture the sun's<br>energy for heating interior spaces? |  |  |

L

Γ

| <b>I have a passive solar home.</b><br>Who has a home with solar collectors and other<br>solar equipment to heat it? | <b>I have chemical energy.</b><br>Who has the process that traps the sun's energy<br>in the atmosphere and makes life on Earth<br>possible? |  |  |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| I have an active solar home.                                                                                         | I have the greenhouse effect.                                                                                                               |  |  |
| Who has the energy source produced by                                                                                | Who has the process plants use to convert                                                                                                   |  |  |
| uneven heating of the Earth's surface?                                                                               | radiant energy into chemical energy?                                                                                                        |  |  |
| <b>I have wind.</b>                                                                                                  | I have photosynthesis.                                                                                                                      |  |  |
| Who has organic matter that has absorbed                                                                             | Who has evaporation, condensation, and                                                                                                      |  |  |
| energy from the sun?                                                                                                 | precipitation driven by energy from the sun?                                                                                                |  |  |
| <b>I have biomass.</b>                                                                                               | <b>I have the water cycle.</b>                                                                                                              |  |  |
| Who has the energy sources that can be                                                                               | Who has an object that can be used to cook                                                                                                  |  |  |
| replenished in a short time?                                                                                         | food on a sunny day?                                                                                                                        |  |  |
| <b>I have renewables.</b>                                                                                            | I have a solar oven.                                                                                                                        |  |  |
| Who has the form of energy that is stored in                                                                         | Who has the system that uses mirrors to                                                                                                     |  |  |
| fossil fuels?                                                                                                        | capture the sun's energy?                                                                                                                   |  |  |

| I have concentrated solar.<br>Who has the Greek word that means light? | <b>I have silicon.</b><br>Who has the system 1.5 million U.S. homes use<br>to increase the thermal energy in their water? |  |  |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| <b>I have photo.</b><br>Who has tiny bundles of energy from the sun?   | <b>I have solar water heater.</b><br>Who has the direction solar collectors should<br>face in the U.S.?                   |  |  |
| I have photons.                                                        | <b>I have south.</b>                                                                                                      |  |  |
| Who has the form of energy directly produced                           | Who has a major reason that capturing                                                                                     |  |  |
| by solar cells?                                                        | sunlight is difficult?                                                                                                    |  |  |
| I have electrical energy.                                              | I have solar is spread out.                                                                                               |  |  |
| Who has the technical word that is abbreviated                         | Who has the only renewable energy source                                                                                  |  |  |
| as PV ?                                                                | that is NOT produced by the sun's energy?                                                                                 |  |  |
| I have photovoltaic.                                                   | <b>I have geothermal.</b>                                                                                                 |  |  |
| Who has the element that is a semi-conductor                           | Who has the ability to do work or cause a                                                                                 |  |  |
| used to make PV cells?                                                 | change?                                                                                                                   |  |  |

# **Youth Awards Program for Energy Achievement**

All NEED schools have outstanding classroom-based programs in which students learn about energy. Does your school have student leaders who extend these activities into their communities? To recognize outstanding achievement and reward student leadership, The NEED Project conducts the National Youth Awards Program for Energy Achievement.

This program combines academic competition with recognition to acknowledge everyone involved in NEED during the year—and to recognize those who achieve excellence in energy education in their schools and communities.

#### What's involved?

Students and teachers set goals and objectives, and keep a record of their activities. Students create a digital project to submit for judging. In April, digital projects should be uploaded to the online submission site.

Want more info? Check out **www.NEED.org/Youth-Awards** for more application and program information, previous winners, and photos of past events.

Energy From the Sun Teacher Guide



# Energy From the Sun Evaluation Form

| State:                                                | Grade Level:                                                                            | Numbe     | r of Studen | ts:    |      |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------|-------------|--------|------|
| 1. Did you conduct t                                  | he entire unit?                                                                         |           | Yes         |        | No   |
| 2. Were the instructi                                 | Yes                                                                                     |           | No          |        |      |
| 3. Did the activities                                 | Yes                                                                                     |           | No          |        |      |
| 4. Were the activities                                | Yes                                                                                     |           | No          |        |      |
| 5. Were the allotted                                  | Yes                                                                                     |           | No          |        |      |
| 6. Were the activities                                | Yes                                                                                     |           | No          |        |      |
| 7. Was the preparati                                  | 🖵 Yes                                                                                   |           | No          |        |      |
| 8. Were the students                                  | Yes                                                                                     |           | No          |        |      |
| 9. Was the energy kr                                  | Yes                                                                                     |           | No          |        |      |
| <b>10. Would you teach t</b><br>Please explain any 'i | t <b>his unit again?</b><br>no' statement below                                         |           | Yes         |        | No   |
| How would you rate t                                  | he unit overall?                                                                        | excellent | 🖵 good      | 🛛 fair | poor |
| How would your stud                                   | ents rate the unit overall?                                                             | excellent | 🛛 good      | 🛛 fair | poor |
| What would make the                                   | e unit more useful to you?                                                              |           |             |        | <br> |
| Other Comments:                                       |                                                                                         |           |             |        |      |
| Please fax or mail to:                                | <b>The NEED Project</b><br>8408 Kao Circle<br>Manassas, VA 20110<br>FAX: 1-800-847-1820 |           |             |        | <br> |



# **National Sponsors and Partners**

American Electric Power Arizona Public Service Arizona Science Center Armstrong Energy Corporation Association of Desk & Derrick Clubs Audubon Society of Western Pennsylvania Barnstable County, Massachusetts Robert L. Bayless, Producer, LLC **BP** America Inc. Blue Grass Energy **Boulder Valley School District Brady Trane** California State University Cape Light Compact-Massachusetts Chevron Chugach Electric Association, Inc. **Colegio Rochester** Columbia Gas of Massachusetts ComEd **ConEdison Solutions ConocoPhillips** Constellation Cuesta College **Daniel Math and Science Center David Petroleum Corporation** Desk and Derrick of Roswell, NM Dominion DonorsChoose **Duke Energy** East Kentucky Power Eastern Kentucky University Elba Liquifaction Company **El Paso Corporation** E.M.G. Oil Properties **Encana Encana Cares Foundation Energy Education for Michigan Energy Training Solutions** Eversource **Exelon Foundation** First Roswell Company FJ Management. Inc. Foundation for Environmental Education FPL The Franklin Institute **Frontier Associates** Government of Thailand–Energy Ministry Green Power EMC Guilford County Schools - North Carolina **Gulf Power** Gerald Harrington, Geologist Granite Education Foundation Harvard Petroleum Hawaii Energy

Houston Museum of Natural Science Idaho Power Idaho National Laboratory Illinois Clean Energy Community Foundation Independent Petroleum Association of America Independent Petroleum Association of New Mexico Indiana Michigan Power – An AEP Company Interstate Renewable Energy Council James Madison University Kentucky Clean Fuels Coalition Kentucky Department of Education Kentucky Department of Energy Development and Independence Kentucky Power – An AEP Company Kentucky River Properties LLC Kentucky Utilities Company Kinder Morgan Leidos Linn County Rural Electric Cooperative Llano Land and Exploration Louisiana State University Cooperative Extension Louisville Gas and Electric Company Maine Energy Education Project Massachusetts Division of Energy Resources Michigan Oil and Gas Producers Education Foundation Miller Energy Mississippi Development Authority-Energy Division Mojave Environmental Education Consortium Mojave Unified School District Montana Energy Education Council NASA National Association of State Energy Officials National Fuel National Grid National Hydropower Association National Ocean Industries Association National Renewable Energy Laboratory Nebraska Public Power District New Mexico Oil Corporation New Mexico Landman's Association Nicor Gas – An AGL Resources Company Northern Rivers Family Services North Shore Gas NRG Energy, Inc. **Offshore Energy Center** Offshore Technology Conference **Ohio Energy Project Opterra Energy Oxnard School District** Pacific Gas and Electric Company

Paxton Resources PECO Pecos Valley Energy Committee **Peoples** Gas Petroleum Equipment and Services Association Phillips 66 **PNM Providence Public Schools** Read & Stevens, Inc. Renewable Energy Alaska Project Rhode Island Office of Energy Resources **River Parishes Community College** RiverQuest Robert Armstrong **Roswell Geological Society** Salt River Project Sandia National Laboratory Saudi Aramco Science Museum of Virginia C.T. Seaver Trust Shell Shell Chemicals Society of Petroleum Engineers Society of Petroleum Engineers - Middle East, North Africa and South Asia David Sorenson Southern Company Space Sciences Laboratory of the University of California Berkeley Tennessee Department of Economic and Community Development–Energy Division **Tioga Energy** Toyota **Tri-State Generation and Transmission** TXU Energy United States Energy Association University of Georgia United Way of Greater Philadelphia and Southern New Jersey University of Nevada-Las Vegas, NV University of North Carolina University of Tennessee University of Texas - Austin University of Texas - Tyler U.S. Department of Energy U.S. Department of Energy–Office of Energy Efficiency and Renewable Energy U.S. Department of Energy–Wind for Schools U.S. Department of the Interior-Bureau of Land Management **U.S. Energy Information Administration** West Bay Exploration West Virginia State University Yates Petroleum Corporation