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Abstract

We generalize Kirszbraun’s extension theorem for Lipschitz maps be-
tween (subsets of) euclidean spaces to metric spaces with upper or
lower curvature bounds in the sense of A.D. Alexandrov. As a by-
product we develop new tools in the theory of tangent cones of these
spaces and obtain new characterization results which may be of inde-
pendent interest.

Introduction

The classical Kirszbraun theorem [K] states that every Lipschitz map f : S
→ Rn defined on an arbitrary subset of Rm possesses a Lipschitz extension
f̄ : Rm → Rn (i.e. f̄ |S = f) with the same Lipschitz constant. Valen-
tine [V1] remarked that the same holds true for general Hilbert spaces.
Other related results, most of them keeping the linear structure of the un-
derlying spaces, have been obtained by a number of authors, see [A], [As],
[B], [DeFl], [Gr], [IR], [JLi], [Mi], [S], and the references there. Correspond-
ing theorems for 1-Lipschitz maps between unit spheres of equal dimensions
or between spaces of constant curvature −1 have been established in [V1]
and [V2], [KuSt] respectively. Fore more comments on the theorem and
its history see [DGrKl, pp. 153–154]. A short and readable proof of the
classical statement is given in [F, 2.10.43].

In this paper we extend Kirszbraun’s theorem to geodesic metric spaces
with upper or lower curvature bounds in the sense of A.D. Alexandrov
[Al1,2]. These concepts include riemannian manifolds as well as many sin-
gular spaces and can roughly be described as follows (for precise definitions
see section 1). A metric space X is said to be geodesic if every two points
in X can be connected by a shortest curve. For κ ∈ R let M2

κ denote the
model surface of constant curvature κ, and let Dκ = diamM2

κ ∈ (0,∞]
be its diameter. Then for every geodesic triangle ∆ of perimeter < 2Dκ

in X there exists a comparison triangle ∆κ in M2
κ which is unique up to

isometry, namely, a triangle with the same edge lengths. Now ∆ is said to
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be κ-thick or κ-thin if all distances between points on the sides of ∆ are at
least or at most as large, respectively, as the corresponding distances for
∆κ. Then one calls X a space of curvature ≥ κ or ≤ κ if locally, all triangles
are κ-thick or κ-thin respectively. The interest in these spaces has greatly
been stimulated in the last fifteen years, mainly due to new developments
in geometry (Gromov-Hausdorff convergence) and geometric group theory
(hyperbolic groups).

Our main result can be stated as follows.

Theorem A. (generalized Kirszbraun theorem) Let κ ∈ R, and let X,Y
be two geodesic metric spaces such that all triangles of perimeter < 2Dκ

in X or Y are κ-thick or κ-thin respectively. Assume that Y is complete.
Let S be an arbitrary subset of X and f : S → Y a 1-Lipschitz map with
diam f(S) ≤ Dκ/2. Then there exists a 1-Lipschitz extension f̄ : X → Y
of f .

It also follows that f̄ can be chosen such that f̄(X) belongs to the clo-
sure of the convex hull of f(S) which in the given situation has diameter no
larger than f(S). Note that in case κ = 0, by scaling the metric on either X
or Y , one obtains the statement for arbitrary Lipschitz constants. In partic-
ular, Theorem A recovers the classical result as well as its generalization to
Hilbert spaces. It is obvious that the theorem fails for noncomplete target
spaces. Moreover, the following example for κ = 1 shows that the bound on
the diameter of f(S) is optimal. For n ≥ 2 let X be the unit sphere in Rn+1

(with the canonical inner metric), Y = X∩Rn, S the set of vertices of a reg-
ular n-simplex in Rn inscribed in Y , and f the identity on S. Let x ∈ X be
one of the poles at distance π/2 of S. Since every open hemisphere of Y con-
tains an image point of f , there is no 1-Lipschitz extension f̄ : S∪{x} → Y
of f . In this example, diam f(S) = arccos(−1/n) → π/2 = D1/2 for
n→∞.

Further, the same methods of proof yield a result which may be viewed
as the limit case κ = −∞ of Theorem A. Note that for κ → −∞ the
curvature assumption on X in Theorem A gets weaker and weaker. We
show that “in the limit” it can be dropped completely and obtain the
following theorem which is well-known for Y = R (see [M] and [G2, 3.E]
for a related discussion).

Theorem B. (Lipschitz maps into trees) Let X be an arbitrary metric
space and Y a complete geodesic metric space such that every triangle in
Y is κ-thin for all κ ≤ 0. Let S be an arbitrary subset of X and f : S → Y a
Lipschitz map with constant Lip f . Then there exists a Lipschitz extension
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f̄ : X → Y of f with Lip f̄ = Lip f .

The main step in the proof of these results is to show that every 1-
Lipschitz map f : E → Y defined on a finite subset E = {x1, . . . , xn} of
X can be extended to an additional point x ∈ X, cf. section 5. To this
end one considers the set A(c) := {y ∈ Y : d(y, f(xi)) ≤ cd(x, xi) for
i = 1, . . . , n} for some constant factor c. If c is taken to be the infimum of
all b ≥ 0 with A(b) 6= ∅, it turns out that A(c) consists of a single point y
which is thus a canonical candidate for f̄(x), cf. section 4. It then remains
to show that c ≤ 1, which is not difficult for Theorem B. In the classical
(euclidean) case, c is estimated by means of standard inequalities for the
scalar product. In a riemannian setting this would correspond to lifting
S and f(S) to the tangent spaces at x and y, respectively, and carrying
out the computations there. In the general situation of Theorem A, there
merely exist tangent cones at x and y which are not necessarily euclidean
spaces but still Alexandrov spaces of curvature ≥ 0 and ≤ 0 respectively,
cf. section 3. (This is not quite true in case X has infinite Hausdorff dimen-
sion and causes some complications. The arguments needed to circumvent
this difficulty are presented in an appendix.) We observe that these cones
still carry “half of” the structure of a euclidean vector space. Namely, in
addition to the multiplication by nonnegative numbers which comes nat-
urally from the cone structure, we define a “vector addition” as well as a
“scalar product” on (geodesic) metric cones, where the latter turns out to
be sub- or superadditive in each argument if and only if the underlying
cone has curvature ≥ 0 or ≤ 0 respectively, cf. section 2. Exploiting these
inequalities we prove that c ≤ 1 and thus establish Theorem A.

We further remark that in the special case where S consists of three
points and one merely wants to extend f to one additional point, the cur-
vature hypothesis on X in Theorem A can be weakend. To define cur-
vature bounds via thick or thin triangles one needs the local existence of
shortest curves in the underlying metric space. In the case of lower curva-
ture bounds this can be avoided by using comparison angles instead and
leads to a more general concept of curvature ≥ κ ∈ R. Let X be an
arbitrary metric space. For three points x, x1, x2 ∈ X with “perimeter”
d(x, x1) + d(x, x2) + d(x1, x2) < 2Dκ and x1, x2 6= x there exists an isomet-
ric triple y, y1, y2 ∈M2

κ and one defines the comparison angle γκx(x1, x2) to
be the angle at the vertex y of the triangle in M2

κ with vertices y, y1, y2.
Note that this depends only on the distances between x, x1, x2. Then we say
that a quadruple (x;x1, x2, x3) in X satisfies the γκ condition if the three
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mutual comparison angles with base point x add up to at most 2π as long
as they are defined. By claiming this condition locally for all quadruples
one arrives at a purely metric definition of curvature ≥ κ which in the case
of local existence of shortest curves coincides with the concept described
above, cf. section 1. Spaces of curvature bounded below in this sense have
been investigated in [BuGP].

We prove the following result.

Theorem C. (extensions to quadruples) Let κ ∈ R, X a metric space
with all quadruples in X satisfying the γκ condition, and Y a geodesic
metric space such that all triangles in Y of perimeter < 2Dκ are κ-thin.
Whenever x1, . . . , x4 ∈ X and f : {x1, x2, x3} → Y is a 1-Lipschitz map
whose image has diameter ≤ Dκ/2, then there exists a 1-Lipschitz extension
f̄ : {x1, . . . , x4} → Y of f .

Note that here Y is not assumed to be complete. Theorem C fails for
maps defined on more than three points. To see this consider the discrete
metric space X = {x, x1, . . . , x4} with d(x, xi) = 1/

√
3 for 1 ≤ i ≤ 4 and

d(xi, xj) = 1 for 1 ≤ i < j ≤ 4. The various euclidean comparison angles
belong to the set {0, π/6, π/3, 2π/3} and therefore all quadruples in X
satisfy the γ0 condition. Now let f : {x1, . . . , x4} → R3 be an isometric map.
Since the image of f lies at distance > 1/

√
3 from its barycenter, it follows

that there is no 1-Lipschitz extension of f to x. The proof of Theorem C
is given in section 6. Finally, we show that spaces of curvature ≥ κ or ≤ κ
are actually characterized by the extensibility of 1-Lipschitz maps (defined
on three points) into or from the model space M2

κ respectively.
The present work has been motivated by the question whether a Lip-

schitz map f from Zk into a Hadamard space Y admits an extension
f̄ : Rk → Y with the same Lipschitz constant (which is now answered affir-
matively by Theorem A). This problem plays a certain role in the study of
quasiflats in Hadamard spaces, compare [LSc].

Acknowledgments. We would like to thank M. Berger and J. Jost for
stimulating discussions on the subject. The first author would also like to
thank the Research Institute for Mathematics, ETH Zürich, for its hospi-
tality and financial support.

1 Alexandrov Spaces

We recall some definitions and results from the theory of metric spaces
with upper or lower curvature bounds in the sense of A.D. Alexandrov
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[Al1,2]. For spaces with curvature bounded from above, the general refer-
ences are [AlBeN], [BeN], [Buy], or [Ba], [BaGSc], [BrH], where the empha-
sis is laid on nonpositive curvature. Spaces with lower curvature bounds
are treated systematically in [BuGP] and [Pl].

Let (X, d) be a metric space. We denote by B(x, r) and U(x, r) the
closed and open metric ball, respectively, with center x and radius r. The
length of a (continuous) curve σ : [a, b]→ X is given by

L(σ) := sup
k∑
i=1

d
(
σ(ti−1), σ(ti)

)
∈ [0,∞] ,

where the supremum is taken over all positive integers k and all subdivisions
a = t0 ≤ t1 ≤ . . . ≤ tk = b. Then

di(x, y) := inf
{
L(σ) : σ is a curve from x to y

}
defines a metric on X which values in [0,∞]. One calls di the inner metric
on X induced by d. The triangle inequality makes di ≥ d; if d = di then
(X, d) is said to be an inner metric space. A curve σ : [a, b] → X is called
minimizing or shortest if L(σ) = d(σ(a), σ(b)). Then σ is said to be a
geodesic if it additionally has constant speed, i.e. there exists s ≥ 0 such
that L(σ|[a, t]) = s(t − a) for all t ∈ [a, b]. A metric space X is called
locally geodesic if every p ∈ X possesses a neighborhood U such that for all
x, y ∈ U there exists a geodesic in X from x to y. X is called a geodesic
space if this holds for U = X.

A subset C of a metric space X is said to be convex if for all pairs of
points x, y ∈ C there exists a geodesic from x to y in X, and if all segments
obtained this way lie entirely in C. The set C is called strongly convex if
it is convex and if for all x, y ∈ C there is a unique geodesic σ : [0, 1]→ X
from x to y.

For κ ∈ R letM2
κ denote the (simply connected, complete) model surface

of constant Gauss curvature κ, and define

Dκ := diamM2
κ =

{
π/
√
κ for κ > 0 ,

∞ for κ ≤ 0 .

Let x1, x2 ∈ X, x ∈ X \ {x1, x2}, and assume that d(x, x1) + d(x, x2) +
d(x1, x2) < 2Dκ. Then there exists a distance preserving map f : {x, x1, x2}
→ M2

κ and one defines the comparison angle γκx(x1, x2) ∈ [0, π] to be the
angle subtended by the two segments in M2

κ connecting f(x) with f(x1)
and f(x2) respectively.
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Definition 1.1. (γκ condition) Let κ ∈ R and X a metric space. We say
that a quadruple (x;x1, x2, x3) of points in X satisfies the γκ condition if
γκx(x1, x2) + γκx(x1, x3) + γκx(x2, x3) ≤ 2π as long as the three angles are
defined. Then X is said to have curvature ≥ κ if every p ∈ X possesses a
neighborhood U such that all quadruples in U satisfy the γκ condition.

This definition of curvature ≥ κ is given in [BuGP] with the additional
requirement on X to be inner and locally complete. As mentioned in the
introduction, if X is locally geodesic, then 1.1 can be reformulated in terms
of thick triangles. We need the following definitions.

A triangle in X is a triple ∆ = (σ1, σ2, σ3) of geodesics σi : [ai, bi]→ X
whose endpoints match as usual. Assume that ∆ has perimeter

P (∆) := L(σ1) + L(σ2) + L(σ3) < 2Dκ .

Then there exists a comparison triangle ∆κ for ∆ in M2
κ which is unique

up to isometry, namely, a triple of geodesics σκi : [ai, bi] → M2
κ such that

L(σκi ) = L(σi) for i = 1, 2, 3, and such that the endpoints of σκ1 , σ
κ
2 , σ

κ
3

match in the same way as those of σ1, σ2, σ3. Then ∆ is said to be κ-
thick or κ-thin if d(σi(s), σj(t)) − d(σκi (s), σκj (t)) ≥ 0 or ≤ 0 respectively,
whenever i, j ∈ {1, 2, 3}, s ∈ [ai, bi], and t ∈ [aj , bj ].

The following lemma is proved in [BuGP]; spaces of curvature ≤ κ are
then defined analogously. These conditions go back to Alexandrov [Al1,2].

Lemma 1.2. (curvature ≥ κ) A locally geodesic metric space X has cur-
vature ≥ κ (as defined in 1.1) if and only if every p ∈ X possesses a neigh-
borhood U such that all triangles in X with vertices in U and perimeter
< 2Dκ are κ-thick.

Definition 1.3. (curvature ≤ κ) A metric space X is said to have curva-
ture ≤ κ if it is locally geodesic and every p ∈ X possesses a neighborhood
U such that all triangles in X with vertices in U and perimeter < 2Dκ are
κ-thin.

A riemannian manifold X has (Alexandrov) curvature ≥ κ or ≤ κ if
and only if the sectional curvature of X satisfies the same inequality.

In case κ = 0, 1.2 and 1.3 can be restated in a more direct way as follows.
We say that m ∈ X is a midpoint of x1, x2 ∈ X if d(x1,m) = d(x1, x2)/2 =
d(m,x2). Note that for x1, x2 ∈ R2 the midpoint m = (x1 + x2)/2 satisfies
4‖m‖2 = 2‖x1‖2 + 2‖x2‖2 − ‖x1 − x2‖2.

Lemma 1.4. (midpoints) A locally geodesic metric space X has curvature
≥ 0 or ≤ 0 if and only if every p ∈ X possesses a neighborhood U such that
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for all x1, x2, y ∈ U and every midpoint m ∈ X of x1 and x2, 4d(m, y)2 −
2d(x1, y)2 − 2d(x2, y)2 + d(x1, x2)2 ≥ 0 or ≤ 0 respectively.

The proof is not difficult (see [BrH]). We will also use the following
global version of 1.3.

Definition 1.5. (CAT(κ) space) A metric space X is called a CAT(κ)
space if for all pairs of points x, y ∈ X with d(x, y) < Dκ there exists a
geodesic from x to y, and all triangles in X of perimeter < 2Dκ are κ-thin.

It follows that for all x, y ∈ X with d(x, y) < Dκ there is actually a
unique geodesic σ : [0, 1] → X from x to y, and all metric balls in X with
radius < Dκ/2 are strongly convex. Note that M2

κ is a CAT(κ) space.
Finally, we mention two important globalization theorems. The first

corresponds to the Toponogov comparison theorem in riemannian geometry
and has been proved by Burago-Gromov-Perelman [BuGP, 2.5, 3.2] and also
by Plaut [Pl]. The latter may be viewed as an analogue of the Hadamard-
Cartan theorem and has been stated in different ways, cf. [G1, p. 119], [Ba],
[BrH], [Buy], the main contribution being due to Alexander-Bishop [ABi].

Theorem 1.6. (thick triangles) Let X be a complete inner metric space
of curvature ≥ κ for some κ ∈ R. Then all quadruples in X satisfy the γκ

condition. If X is geodesic, then all triangles in X of perimeter < 2Dκ are
κ-thick.

Theorem 1.7. (thin triangles) Let X be a simply connected, complete
inner metric space of curvature ≤ κ, where κ ≤ 0. Then X is geodesic and
all triangles in X are κ-thin, thus X is a CAT(κ) space. In particular, X
is contractible.

A metric space X satisfying the assumptions of 1.7 is called a Hadamard
space. Simple examples show that 1.7 fails for κ > 0 or for spaces that are
not simply connected.

2 Metric Cones

In this section we first discuss the cone construction over metric spaces,
which is essentially due to Berestovskij, cf. [AlBeN, 4.3]. For a detailed
account we refer to the forthcoming [BrH]. Introducing the notions of
“vector addition” and “scalar product” in this general context we establish
in 2.5 and 2.6 two basic facts for complete geodesic cones of curvature ≥ 0
or ≤ 0.
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Let (Ω, α) be a metric space, and let R+ := [0,∞). The cone C(Ω) over
Ω is defined to be the quotient space (Ω×R+)/∼, where (ω1, r1) ∼ (ω2, r2)
if and only if r1 = r2 = 0 or (ω1, r1) = (ω2, r2). For (ω, r) ∈ Ω × R+ we
denote by [ω, r] the corresponding element of C(Ω). The point [ω, 0] ∈ C(Ω)
is called the origin of C(Ω) and is denoted by o. One defines a metric d on
C(Ω) by

d
(
[ω1, r1], [ω2, r2]

)2 := r1
2 + r2

2 − 2r1r2 cos
(

min{α(ω1, ω2), π}
)

;

then (C(Ω), d) is called the euclidean cone (or 0-cone) over (Ω, α). For
instance, if Ω is the unit sphere in a euclidean space and α is the induced
inner metric on Ω, then the associated euclidean cone (C(Ω), d) is just
the euclidean space itself. For λ ≥ 0 and v = [ω, r] ∈ C(Ω) we write
λv := [ω, λr].

Lemma 2.1. (euclidean sector) Let σ : [0, 1] → C(Ω) be a geodesic omit-
ting o, and let π1 : C(Ω) \ {o} → Ω be the canonical projection. Then the
curve ω := π1 ◦ σ satisfies L(ω) = α(ω(0), ω(1)) < π. Moreover, the ruled
surface Σ := {λσ(t) : λ ≥ 0, t ∈ [0, 1]} in C(Ω) is isometric to the convex
hull of two rays in R2 starting at 0 and subtending the angle L(ω).

Proof. For t ∈ [0, 1] let ωt := ω(t). Since σ is minimizing we have
d(σ(0), σ(s)) + d(σ(s), σ(t)) = d(σ(0), σ(t)) whenever 0 ≤ s ≤ t ≤ 1. By
the definition of d, and since σ omits o, this implies that either α(ω0, ωs) +
α(ωs, ωt) = α(ω0, ωt) < π, or α(ω0, ωt) ≥ π and ωs ∈ {ω0, ωt}. In fact the
second case is excluded by the continuity of ω. Hence, it follows that ω is
a curve of length L(ω) = α(ω0, ω1) < π.

Consider the map h : [ω, r] 7→ (r cosα(ω0, ω), r sinα(ω0, ω)) ∈ R2 de-
fined on Σ. Let v1 = [ωs, r1], v2 = [ωt, r2] ∈ Σ, where 0 ≤ s ≤ t ≤ 1 and
r1, r2 ≥ 0. Then |h(v1)−h(v2)|2 = r1

2+r2
2−2r1r2 cos |α(ω0, ωs)−α(ω0, ωt)|.

The first part of the proof yields |α(ω0, ωs) − α(ω0, ωt)| = α(ωs, ωt) < π,
thus |h(v1)− h(v2)| = d(v1, v2). �

Let v = [ω, r] ∈ C(Ω) and λ ≥ 0. We write ‖v‖ := r = d(v, o); then
‖λv‖ = λ‖v‖.
Definition 2.2. (scalar product) For v1 = [ω1, r1], v2 = [ω2, r2] ∈ C(Ω) we
define 〈v1, v2〉:=(‖v1‖2+‖v2‖2−d(v1, v2)2)/2=r1r2 cos(min{α(ω1, ω2), π}).

We have 〈λv1, v2〉 = λ〈v1, v2〉 = 〈v1, λv2〉 for λ ≥ 0 and, as usual,
〈v, v〉 = ‖v‖2 for all v ∈ C(Ω).

Now assume that (C(Ω), d) is a geodesic space. Then for all v,w ∈ C(Ω)
there exists a midpoint m(v,w) between v and w. In general, m(v,w) is not
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unique; in the following, statements involving m(v,w) hold for all possible
choices unless otherwise specified.

Convention 2.3. (vector addition) We use the symbol (v + w) as a sub-
stitute for m(2v, 2w).

As indicated by the brackets, the “vector addition” obtained this way
is, in general, not associative (even if the midpoints in question are unique).
The next lemma follows immediately from 2.1 and the definitions.

Lemma 2.4. (intermediate points) Let v1, v2 ∈ C(Ω) and t ∈ [0, 1].
Then the set of possible choices of ((1− t)v1 + tv2) coincides with {σ(t) :
σ : [0, 1]→ C(Ω) is a geodesic from v1 to v2}.

We now characterize cones of curvature ≥ 0 or ≤ 0 by means of sub- or
superadditivity, respectively, of the scalar product.

Proposition 2.5. (semiadditivity) Assume that C(Ω) is a complete geo-
desic space. Then C(Ω) is a space of curvature ≥ 0 if and only if 〈(v1 +
v2), w〉 ≤ 〈v1, w〉 + 〈v2, w〉 for all v1, v2, w ∈ C(Ω) and for all choices of
(v1 +v2). Conversely, C(Ω) has curvature ≤ 0 if and only if 〈(v1 +v2), w〉 ≥
〈v1, w〉+ 〈v2, w〉 for all v1, v2, w ∈ C(Ω) and for all choices of (v1 + v2).

Proof. Let v1, v2, w ∈ C(Ω), and let m be a choice of m(2v1, 2v2). By
definition,

2〈m,w〉 = ‖m‖2 + ‖w‖2 − d(m,w)2 ,

4〈vi, w〉 = ‖2vi‖2 + ‖w‖2 − d(2vi, w)2 ,

i = 1, 2. Using 2.1 together with the formula already exploited in 1.4 we
get

2‖2v1‖2 + 2‖2v2‖2 = 4‖m‖2 + d(2v1, 2v2)2 .

Combining these equations we see that

8(〈v1, w〉+ 〈v2, w〉 − 〈m,w〉)
= 4d(m,w)2 − 2d(2v1, w)2 − 2d(2v2, w)2 + d(2v1, 2v2)2 .

Now the result follows from 1.4, 1.6, and 1.7. �

In particular, combining 2.4 and 2.5 we deduce that if C(Ω) is a complete
geodesic space of curvature ≤ 0 (say), and if σ : [0, 1]→ C(Ω) is a geodesic
with endpoints v1 = σ(0), v2 = σ(1), then 〈σ(t), w〉 ≥ (1−t)〈v1, w〉+t〈v2, w〉
for all w ∈ C(Ω) and t ∈ [0, 1]. We are going to iterate this procedure.
Consider a third point v3 ∈ C(Ω) and let % : [0, 1] → C(Ω) be a geodesic
from σ(t) to v3 for some t ∈ [0, 1]. Let s ∈ [0, 1] and denote s̄ := 1 − s,
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t̄ := 1−t. Then %(s) possesses a representation (s̄(t̄v1+tv2)+sv3), hence 2.5
yields 〈

%(s), w
〉
≥

3∑
i=1

λi〈vi, w〉 ,

where λ1 = s̄t̄, λ2 = s̄t, and λ3 = s. Note that λi ∈ [0, 1] and
∑3
i=1 λi = 1;

the point %(s) may thus be viewed as a “convex combination” of v1, v2, v3.
More generally, for a finite number of points v1, . . . , vk in C(Ω), we want
to estimate the scalar product of two points v, v′ belonging to the convex
hull of {v1, . . . , vk} in terms of the products 〈vi, vj〉, 1 ≤ i, j ≤ k. To this
end we introduce the following formalism.

For a subset V of a geodesic metric space X let G1(V ) ⊂ X denote the
union of all geodesic segments σ([0, 1]) in X with endpoints σ(0), σ(1) in V .
Define inductively Gn+1(V ) := G1(Gn(V )) for n ≥ 1. Then

G(V ) :=
∞⋃
n=1

Gn(V )

is the convex hull of V , and we denote by G(V ) its closure. Now let C(Ω)
be a geodesic metric cone as above. For all positive integers k let ∆k−1
denote the standard (k − 1)-simplex in Rk spanned by the unit vectors
e1 = (1, 0, . . . , 0), . . . , ek = (0, . . . , 0, 1). For v1, . . . , vk ∈ C(Ω) we define
the correspondence

C(v1, . . . , vk) ⊂ G
(
{v1, . . . , vk}

)
×∆k−1

to be the smallest set with the following two properties:

(a) (vi, ei) ∈ C(v1, . . . , vk) for i = 1, . . . , k.
(b) If (v, λ), (v′, λ′) ∈ C(v1, . . . , vk) and σ : [0, 1] → C(Ω) is a geodesic

from v to v′, then (σ(t), (1− t)λ+ tλ′) ∈ C(v1, . . . , vk) for all t ∈ [0, 1].

Note that the canonical projections from C(v1, . . . , vk) to G({v1, . . . , vk})
or ∆k−1 are both surjective. We conclude this section with the following
result which now follows easily from 2.4 and 2.5.

Proposition 2.6. (convex combination) Assume that C(Ω) is a complete
geodesic space. Let v1, . . . , vk ∈ C(Ω) and (v, λ), (v′, λ′) ∈ C(v1, . . . , vk),
where λ = (λ1, . . . , λk), λ′ = (λ′1, . . . , λ

′
k). If C(Ω) has curvature ≥ 0

or ≤ 0, then 〈v, v′〉 ≤ ∑k
i,j=1 λiλ

′
j〈vi, vj〉 or 〈v, v′〉 ≥ ∑k

i,j=1 λiλ
′
j〈vi, vj〉

respectively.
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3 Tangent Cones

Tangent cones are particular examples of metric cones (as defined in sec-
tion 2) and play a central role in our arguments.

Assume that (X, d) is a locally geodesic space. For a, b > 0 let σ : [0, a]→
X and τ : [0, b] → X be two nonconstant geodesics with common starting
point σ(0) = τ(0) = x. Then the upper angle between σ and τ is defined
by

α(σ, τ) := lim sup
s,t→0

γκx
(
σ(s), τ(t)

)
;

this is clearly independent of the choice of κ ∈ R. Note that α(σ, σ) = 0
since σ is minimizing, moreover α satisfies the triangle inequality, cf. [Al1].
It is easily seen that if X has curvature ≤ κ or ≥ κ, and if 0 < s′ ≤ s and
0 < t′ ≤ t are sufficiently small, then γκx(σ(s′), τ(t′))− γκx(σ(s), τ(t)) ≤ 0 or
≥ 0 respectively. In particular, in these cases α(σ, τ) exists as a limit, and
α(σ, τ)− γκx(σ(s), τ(t)) ≤ 0 or ≥ 0 respectively.

We consider σ and τ to be equivalent if α(σ, τ) = 0. Then α induces
a metric (which we denote α again) on the set Ω′xX of equivalence classes
of nonconstant geodesics starting at x. The metric completion (ΩxX,α)
of (Ω′xX,α) is called the space of directions of X at x. Note that ΩxX is
empty if there is no nonconstant geodesic in X starting at x (i.e. if x is an
isolated point of X). In this case, the tangent cone TxX of X at x is defined
to be the metric space consisting of a single point (the origin o). Otherwise,
TxX is defined to be euclidean cone C(ΩxX) over ΩxX, where the metric on
TxX is denoted dx. (There are deviating definitions of ΩxX and TxX in the
literature.) If σ : [0, a]→ X is a geodesic of speed r > 0, and if ω ∈ Ωσ(0)X
is the direction determined by σ, then we define σ̇(0) := [ω, r] ∈ Tσ(0)X. In
case σ is a constant geodesic, we put σ̇(0) := o ∈ Tσ(0)X.

We also define (T ′xX, dx) to be the cone over (Ω′xX,α), or, if Ω′xX is
empty, T ′xX := {o}. By taking the metric completion of T ′xX one gets
an alternate description of the tangent cone TxX. In particular, TxX is a
complete metric space. Note also that for all v ∈ T ′xX there exist a > 0 and
a (possibly constant) geodesic σ : [0, a]→ X with σ̇(0) = v. Conversely, for
every geodesic τ : [0, b]→ X with b > 0 and τ(0) = x, τ̇(0) ∈ T ′xX.

The following result on tangent cones of spaces of curvature ≤ κ or ≥ κ
is due to Nikolaev [N] and Burago-Gromov-Perelman [BuGP] respectively.

Proposition 3.1. (tangent cone) If (X, d) is a locally geodesic space of
curvature ≤ κ, then for all x ∈ X the tangent cone (TxX, dx) is a complete
geodesic space of curvature ≤ 0 and thus a Hadamard space.



546 U. LANG AND V. SCHROEDER GAFA

If (X, d) is a locally geodesic space of finite Hausdorff dimension and of
curvature ≥ κ, then for all x ∈ X the tangent cone (TxX, dx) is a complete
geodesic space of curvature ≥ 0.

One of the key steps in the proof of our main result is the proposition
below. It generalizes the fact that if v1, . . . , vk are elements of a euclidean
vector space, then the quadratic form on Rk canonically associated with
the Gram matrix (〈vi, vj〉)1≤i,j≤k is positive semidefinite.

Proposition 3.2. (Gram form) Let X be a locally geodesic space of
curvature ≥ κ for some κ ∈ R. Let x ∈ X, k ≥ 1, and v1, . . . , vk ∈ TxX.
Then

∑k
i,j=1 λiλj〈vi, vj〉 ≥ 0 for all (λ1, . . . , λk) ∈ (R+)k.

In case X has finite dimension (cf. [BuGP, 6.5]), 3.2 is an immediate
consequence of 2.6 and 3.1. In the general case, where we do not know
whether TxX is a nonnegatively curved geodesic space, 3.2 still holds. The
proof of this is somewhat involved, and the techniques are not used any
further in the rest of the paper; we therefore shift it to the appendix.

4 A General Criterion

The goal of this section is to establish Proposition 4.3 below. This result
yields a general criterion for the extensibility of a 1-Lipschitz map f : E →
Y to one additional point, where E is a finite subset of an arbitrary metric
space X and Y is a complete CAT(κ) space. In 4.2 it is shown that, in some
sense, there is a unique candidate for this extension (actually 4.2 applies
to a more general situation). We start with a simple fact. Recall that for
F ⊂ Y , G(F ) denotes the convex hull of F and G(F ) its closure.

Lemma 4.1. (radius versus diameter) Let Y be a CAT(κ) space and F a
subset of Y with diamF ≤ Dκ/2. Then diamG(F ) = diamF , and G(F )
is a strongly convex subset of Y . Moreover, if F is finite and diamF > 0,
then for all y ∈ F and δ > 0 there exist z ∈ U(y, δ)∩G(F ) and r < diamF
such that G(F ) ⊂ B(z, r).

Proof. By the inductive construction ofG(F ) described in section 2, in order
to prove that diamG(F ) = diamF it suffices to show that diamG1(C) =
diamC whenever C is a subset of Y with diamC ≤ Dκ/2. This follows
easily from the fact that triangles in Y with sides of length ≤ Dκ/2 are κ-
thin. Then G(F ) is strongly convex since segments in Y of length ≤ Dκ/2
are unique and depend continuously on their endpoints.

Now let F = {y0, . . . , yn}, where n ≥ 1 and yi 6= yj for i 6= j. We
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may assume that y = y0 and δ ≤ inf{d(yi, yj) : 0 ≤ i < j ≤ n}. We
construct points z0, . . . , zn ∈ G(F ) as follows. We put z0 := y = y0,
and for i = 1, . . . , n, assuming that zi−1 is already defined, we note that
d(zi−1, yi) ≥ δ/2i−1 and let zi be the point on the segment from zi−1 to yi
with d(zi−1, zi) = δ/2i. Then z := zn satisfies d(z, y) ≤ δ − δ/2n < δ, and
since diamG(F ) = diamF we see that d(z, yi) ≤ diamF − δ/2n =: r for all
yi. Hence F ⊂ B(z, r) and thus G(F ) ⊂ B(z, r). �

The following result is a partial generalization of [F, 2.10.40].
Proposition 4.2. (unique candidate) Let Y be a complete CAT(κ) space,
F = {y1, . . . , yn} ⊂ Y such that diamF ≤ Dκ/2, and h1, . . . , hn : R+ → R+
continuous, nondecreasing, unbounded functions with hi(0) = 0 for at least
one i. Define A(b) :=

⋂n
i=1B(yi, hi(b)) for b ≥ 0. Then c := inf{b ≥ 0 :

A(b) 6= ∅} < ∞ and A(c) = {y} for some y ∈ G(F ). Actually y ∈ G(F ′),
where F ′ := {yi ∈ F : d(yi, y) = hi(c)}.
Proof. We may assume that n ≥ 2 and yi 6= yj for i 6= j. According
to 4.1, diamG(F ) = diamF , and G(F ) is contained in some ball with
radius r < diamF . In particular, choosing b ≥ 0 such that hi(b) ≥ r for all
i, we have A(b) 6= ∅ and thus c < ∞. Moreover, we see that hj(c) ≤ r for
some j ∈ {1, . . . , n}.

We first show that A′(b) := A(b) ∩ G(F ) 6= ∅ for b > c. Since A′(b) ⊂
A′(b′) for b ≤ b′ it suffices to prove this for b close to c. Since hj(c) ≤
r < Dκ/2 we may thus assume that hj(b) < Dκ/2. Let y ∈ A(b); then
d(y,G(F )) ≤ d(y, yj) ≤ hj(b) < Dκ/2. Since Y is a complete CAT(κ)
space, there exists a unique point y′ ∈ G(F ) closest to y (this is shown by
adapting the argument for κ = 0 stated in [BrH]). For every yi ∈ F the
triangle with vertices y, y′, yi has perimeter < 2Dκ and is thus κ-thin. By
the choice of y′ it follows that γκy′(y, yi) ≥ π/2, and since d(y′, yi) ≤ Dκ/2
we deduce that d(y′, yi) ≤ d(y, yi). Thus y′ ∈ A′(b).

Next we show that A(c) ⊂ G(F ) and thus A′(c) = A(c). Assume the
contrary and let y ∈ A(c) \G(F ). The above argument shows that there is
a point y′ ∈ A′(c), and in fact d(y′, yi) < d(y, yi) ≤ hi(c) if hi(c) < Dκ/2.
Let δ > 0 be such that d(y′, yi) + δ < hi(c) for these i. By 4.1 there exists
z′ ∈ U(y′, δ) with d(z′, yi) < Dκ/2 for yi ∈ F . Then either d(z′, yi) <
d(y′, yi) + δ < hi(c) or d(z′, yi) < Dκ/2 ≤ hi(c) for each yi ∈ F . Since
hi(0) = 0 for at least one i, it follows that c > 0 and thus z′ ∈ A(b) for
some b < c, a contradiction.

In order to prove that A(c) = A′(c) is nonempty and consists of a single
point, we show that diamA′(b)→ 0 for b ↓ c. If not, then there exists ε > 0
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such that for all b > c there are pb, qb ∈ A′(b) with d(pb, qb) ≥ ε. For yi ∈ F
and b > c the triangle with vertices yi, pb, qb is κ-thin. Let mb ∈ G(F ) be
the midpoint of pb and qb. Since d(pb, qb) ≥ ε we see that there exists b > c
such that d(mb, yi) < hi(c) for all i with hi(c) < Dκ/2. Let δ > 0 be such
that d(mb, yi) + δ < hi(c) for these i. As above we conclude that there
exists zb ∈ U(mb, δ) with d(zb, yi) < Dκ/2 for yi ∈ F , thus d(zb, yi) < hi(c)
for all yi ∈ F , contradicting the definition of c. Hence diamA′(b) → 0 for
b ↓ c. Since Y is complete and A′(b) 6= ∅ for b > c, it follows that A(c)
consists of a single point y ∈ G(F ).

It remains to show that y ∈ G(F ′). Clearly F ′ 6= ∅. Suppose that
d(y, yi) = hi(c) = Dκ/2 for all yi ∈ F ′. Then again, since d(y, yi) < hi(c) for
yi ∈ F \F ′, there would exist a point z close to y with d(z, yi) < hi(c) for all
yi ∈ F , which is impossible. Hence, there is yk ∈ F ′ with d(y, yk) < Dκ/2,
thus d(y,G(F ′)) < Dκ/2. Let y′ ∈ G(F ′) be the unique point closest to y,
and let σ : [0, d(y, y′)] → Y be the geodesic from y to y′. For every yi ∈ F
the triangle with vertices y, y′, yi has sides of length ≤ Dκ/2, and by the
choice of y′ it follows that d(σ(s), yi) ≤ hi(c) for all s ∈ [0, d(y, y′)] and
yi ∈ F ′. Since d(y, yi) < hi(c) for yi ∈ F \ F ′, and y is unique, we see that
all points σ(s) close to y must coincide with y, thus y = y′ ∈ G(F ′). �

Now let X,Y be metric spaces, E a finite subset of X, f : E → Y a
map, and x ∈ X \E. We say that f̄ : E ∪ {x} → Y is an optimal extension
of f if among all extensions of f to E ∪ {x}, f̄ minimizes the number

c(f̄) := max
x′∈E

d(f̄(x), f(x′))
d(x, x′)

.

Then d(f̄(x), f(x′)) ≤ c(f̄)d(x, x′) for all x′ ∈ E, and x′ is called a relevant
point if equality holds.

Proposition 4.3. (general criterion) Let X be an arbitrary metric space
and Y a complete CAT(κ) space. Let E be a finite subset of X, f : E → Y
a map with diam f(E) ≤ Dκ/2, and x ∈ X \E. Then there exists a unique
optimal extension f̄ : E ∪ {x} → Y of f , and f̄(x) ∈ G(f(E′)), where E′

is the set of relevant points in E. Moreover, f̄ is 1-Lipschitz whenever f
is 1-Lipschitz and the following condition holds: If the comparison angles
γκx(xi, xj) are defined for all i, j ∈ {1, . . . , k}, where x1, . . . , xk denote the
elements of E′, then

∑k
i,j=1 λiλj cos γκx(xi, xj) ≥ 0 for all (λ1, . . . , λk) ∈

(R+)k.

Proof. Let x1, . . . , xn be the (mutually distinct) elements of E. Then for
i = 1, . . . , n we let di := d(x, xi) > 0 and yi := f(xi). The first part of the
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theorem is an immediate consequence of 4.2, where we put hi(s) := sdi for
s ∈ R+. Let y := f̄(x) and c := c(f̄). Then d(y, yi) ≤ cdi, and by 4.1,
d(y, yi) ≤ diamG(f(E)) ≤ Dκ/2 for i = 1, . . . , n.

Now assume that f is 1-Lipschitz. By reordering the points x1, . . . , xn
if necessary we may assume that E′ = {x1, . . . , xk} as in the theorem.
Thus d(y, yi) = cdi for i = 1, . . . , k. If γκx(xi, xj) is undefined for some
xi, xj ∈ E′, then one of these points, xi say, satisfies di = d(x, xi) ≥ Dκ/2.
Since Dκ/2 ≥ d(y, yi) = cdi we get c ≤ 1, thus f̄ is 1-Lipschitz.

It remains to consider the case where
∑k
i,j=1 λiλj cos γκx(xi, xj) ≥ 0 for

(λ1, . . . , λk) ∈ (R+)k. We assume that c > 1 and derive a contradiction.
For i = 1, . . . , k we let σi : [0, cdi] → X be the unit speed geodesic from y
to yi and denote by vi := σ̇i(0) its ‘initial vector’ in the tangent cone TyY .

Let o be the origin of TyY . We claim that o belongs to the closure G of
the convex hull G = G({v1, . . . , vk}). Note that TyY is a Hadamard space
by 3.1. Assume that o 6∈ G; then there exists a unique point w ∈ G closest
to o. Clearly γ0

w(o, vi) ≥ π/2 for i = 1, . . . , k and therefore γ0
o(vi, w) < π/2.

Varying w a little we may additionally assume that w ∈ T ′yY , thus there
exists a geodesic τ : [0, b] → Y with τ(0) = y and τ̇(0) = w. Then we
have α(σi, τ) = γ0

o(vi, w) < π/2 for i = 1, . . . , k. Since d(y, yi) < cdi for
i = k+ 1, . . . , n, it follows that for t > 0 sufficiently small, d(τ(t), yi) < cdi
for i = 1, . . . , n. This contradicts the fact that f̄ is already optimal.

Hence, for every ε > 0 there exists v̄ ∈ G with ‖v̄‖ ≤ ε. Let λ =
(λ1, . . . , λk) ∈ ∆k−1 be such that (v̄, λ) ∈ C(v1, . . . , vk). Then by 2.6,

ε2 ≥ ‖v̄‖2 ≥
k∑

i,j=1

λiλj〈vi, vj〉

=
∑
i

λi
2 + 2

∑
i<j

λiλj〈vi, vj〉 .

Since
∑
i λi

2 ≥ 1/k and 〈vi, vj〉 ≥ −1 this implies that 2
∑
i<j λiλj ≥

(1/k)− ε2. Next we observe that for 1 ≤ i < j ≤ k,

〈vi, vj〉 = cosα(σi, σj) ≥ cos γκy (yi, yj) ,

where we have used the fact that the triangle with vertices y, yi, yj has
perimeter ≤ 3Dκ/2 and is thus κ-thin. Consider the corresponding points
x, xi, xj in X. Since d(yi, yj) ≤ d(xi, xj), d(xi, xj) > 0, and Dκ/2 ≥
d(y, yi) = cdi > di = d(x, xi), using the geometry of M2

κ we deduce
that cos γκy (yi, yj) > cos γκx(xi, xj). Hence, there exists δ > 0 such that
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〈vi, vj〉 ≥ cos γκx(xi, xj) + δ for 1 ≤ i < j ≤ k. We obtain

ε2 ≥
∑
i

λ2
i + 2

(∑
i<j

λiλj cos γκx(xi, xj)
)

+ δ
(
(1/k)− ε2)

=
(∑
i,j

λiλj cos γκx(xi, xj)
)

+ δ
(
(1/k)− ε2) .

The sum in the last line is nonnegative by assumption. Since the resulting
inequality ε2 ≥ δ((1/k) − ε2) is contradictory for ε > 0 sufficiently small,
we conclude that c ≤ 1. Thus f̄ is 1-Lipschitz. �

5 Main Results

In this section we prove the first two theorems stated in the introduction.
The proof of Theorem A consists of three steps. The first step is the

following proposition which now follows easily from 4.3 and 3.2.
Proposition 5.1. (finite plus one) Let κ ∈ R, X a geodesic metric space
such that all triangles of perimeter < 2Dκ in X are κ-thick, and Y a
complete CAT(κ) space. Let E be a finite subset of X, f : E → Y a 1-
Lipschitz map with diam f(E) ≤ Dκ/2, and x ∈ X \ E. Then there exists
a 1-Lipschitz extension f̄ : E ∪ {x} → Y of f with f̄(x) ∈ G(f(E)).

Proof. It remains to check that the condition given in 4.3 is satisfied. For
i = 1, . . . , k we pick a unit speed geodesic τi : [0, d(x, xi)] → X from x to
xi and let ui := τ̇i(0) ∈ TxX. Since triangles in X of perimeter < 2Dκ are
κ-thick we see that

cos γκx(xi, xj) ≥ cosα(τi, τj) = 〈ui, uj〉
for all i, j. Hence, the criterion of 4.3 is satisfied by 3.2. �

In the second step we show that 5.1 still holds if E is replaced by an arbi-
trary subset S of X. To this end we must prove that

⋂
s∈S B(f(s), d(x, s)) 6=

∅. Let ys := f(s) and rs := min{d(s, x),Dκ/2}; we actually show that⋂
s∈S B(ys, rs) 6= ∅. Since diam f(S) ≤ Dκ/2, this holds trivially if rs =

Dκ/2 for all s ∈ S. We may thus assume that rz < Dκ/2 for some z ∈ S.
The desired conclusion is then obtained from 5.1 together with the following
general Helly type theorem (compare [DGrKl]). Note that by 4.1, G(f(S))
(equipped with the metric induced from Y ) is a complete CAT(κ) space
with diamG(f(S)) = diam f(S) ≤ Dκ/2.
Proposition 5.2. (nonempty intersection) Let Y be a complete CAT(κ)
space and S an arbitrary index set. For s ∈ S let ys ∈ Y and rs ∈ [0,Dκ/2],
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and assume that rz < Dκ/2 for some z ∈ S. If
⋂
s∈E B(ys, rs) 6= ∅ for every

finite subset E of S, then
⋂
s∈S B(ys, rs) 6= ∅.

Proof. Let E := {E : E is a finite subset of S}. For E ∈ E let A(E) :=⋂
s∈E B(ys, rs) 6= ∅, and for r ≥ 0 define Ar(E) := A(E) ∩ B(yz, r). Note

that for r ≥ rz, Ar(E) ⊃ A(E ∪{z}) and thus Ar(E) 6= ∅, moreover Ar(E)
is strongly convex for r < Dκ/2.

Let % := inf{r ≥ 0 : Ar(E) 6= ∅ for all E ∈ E}; we claim that A%(E) 6= ∅
for each E ∈ E . We have % ≤ rz < Dκ/2, and clearly the limit δ :=
limr↓% diamAr(E) exists. If δ = 0 then by completeness of Y we see that
A%(E) consists of a single point. If δ > 0, then for r ∈ (%,Dκ/2) we choose
points pr, qr ∈ Ar(E) with d(pr, qr) ≥ δ/2. Since the triangle with vertices
yz, pr, qr is κ-thin it follows that for r sufficiently close to %, the midpoint
mr of pr and qr belongs to A%(E).

Next we claim that inf{diamA%(E) : E ∈ E} = 0. Namely, assuming
diamA%(E) ≥ ε > 0 for all E ∈ E , by a midpoint construction as above we
would find a number %′ < % with A%

′
(E) 6= ∅ for all E ∈ E , in contradiction

to the choice of %.
Now choose a sequence of sets Ei ∈ E , i = 1, 2,..., such that diamA%(Ei)

→ 0 for i→∞. Let (y1, r1), (y2, r2), . . . be an enumeration of the set of all
pairs (ys, rs) with s ∈ Ei for some i. Let Ak :=

⋂k
j=1B(yj , rj) and A%k :=

Ak ∩ B(yz, %). Then limk→∞ diamA%k = 0, and choosing ak ∈ A%k we get a
Cauchy sequence with limit a ∈ Y . For s ∈ S we have A%k ∩ B(ys, rs) 6= ∅
for all k (since A%(E) 6= ∅ for all E ∈ E), and thus a ∈ B(ys, rs). �

For the last step of the proof of Theorem A we consider the set L of
all 1-Lipschitz extensions f ′ : S′ → Y of f with S ⊂ S′ ⊂ X and f ′(S′) ⊂
G(f(S)) (and thus diam f ′(S′) ≤ Dκ/2, cf. 4.1). For f ′1, f

′
2 ∈ L we write

f ′1 ⊂ f ′2 if and only if S′1 ⊂ S′2 and f ′1 = f ′2|S′1, where S′1, S
′
2 are the domains

of f ′1, f
′
2 respectively. With respect to this partial ordering, clearly every

chain in L has an upper bound, thus by Zorn’s lemma L has a maximal
element f̄ . By the result of the second step f̄ is defined on all of X and
therefore Theorem A holds.

The proof of Theorem B is analogous; we only have to adapt the first
step. Note that by rescaling the metric on either X or Y , the Lipschitz
constant of f can be normalized, thus it remains to show that the following
holds.
Proposition 5.3. (finite sets mapped into trees) Let X be an arbitrary
metric space and Y a complete metric space which is CAT(κ) for all κ ∈ R.
Let E be a finite subset of X, f : E → Y a 1-Lipschitz map, and x ∈ X \E.
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Then there exists a 1-Lipschitz extension f̄ : E∪{x} → Y of f with f̄(x) ⊂
G(f(E)).

Proof. Let f̄ be the extension of f given by the first part of 4.3, and let
c := c(f̄). Since every triangle in Y is κ-thin for all κ it is easily seen
that G(f(E′)) = G1(f(E′)). Hence, since f̄(x) ∈ G(f(E′)), there exist
two points x1, x2 ∈ E′ such that cd(x, x1) + cd(x, x2) = d(f̄(x), f(x1)) +
d(f̄(x), f(x2)) = d(f(x1), f(x2)) ≤ d(x1, x2) ≤ d(x, x1) + d(x, x2), thus
c ≤ 1. �

6 Quadruples

Next we prove Theorem C stated in the introduction. LetE = {x1, x2, x3} ⊂
X. The given map f : E → Y can clearly be decomposed into f2 ◦f1, where
f1 : E →M2

κ is a 1-Lipschitz map and f2 : f1(E)→ Y is isometric. There-
fore it suffices to prove the two special cases of the theorem where either
X = M2

κ and f : E → Y is isometric, or Y = M2
κ .

In the first case it suffices to extend f to points contained in the convex
hull of E. The existence of such extensions is ensured by (a special case
of) a theorem due to Reshetnyak [Re]. (This is essentially a ruled surface
construction. Note that here 5.1 does not apply since Y is not assumed to
be complete.)

Now consider the case Y = M2
κ . For given f : E → M2

κ and x ∈ X \ E
let f̄ : E ∪{x} be the optimal extension of f whose existence is asserted by
the first part of 4.3. Then f̄(x) ∈ G(f(E′)), where E′ is the set of relevant
points in E. Let c := c(f̄) and y := f̄(x). If y ∈ f(E′), then clearly c = 0.
If y lies between two points of f(E′), then the same computation as in
the proof of 5.3 shows that c ≤ 1. Finally, if y belongs to the interior of
G(f(E′)), then E′ = E and the sum of the mutual angles spanned by the
segments from y to the points of f(E) is equal to 2π. Since f is 1-Lipschitz
and the quadruple (x;x1, x2, x3) satisfies the γκ condition, it follows easily
that c ≤ 1, thus f̄ is 1-Lipschitz. This proves Theorem C.

Finally, using Theorem C, we deduce the following results characterizing
spaces of curvature ≥ κ or ≤ κ by means of extensibility of 1-Lipschitz maps
(defined on three points) into or from the model spaceM2

κ . We remark that,
following Wald [W], Berestovskij characterized spaces of bounded curvature
by means of isometric embeddings of quadruples, cf. [Be], [Pl].
Proposition 6.1. (characterizing curvature ≥ κ) A metric space X has
curvature ≥ κ (as defined in 1.1) if and only if every p ∈ X possesses a
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neighborhood U with the following property: Whenever x1, . . . , x4 ∈ U and
f : {x1, x2, x3} → M2

κ is a 1-Lipschitz map, then there exists a 1-Lipschitz
extension f̄ : {x1, . . . , x4} →M2

κ of f .

Proposition 6.2. (characterizing curvature ≤ κ) A metric space Y has
curvature ≤ κ (as defined in 1.3) if and only if every q ∈ Y possesses a
strongly convex neighborhood U with the following property: Whenever
x1, . . . , x4 ∈ M2

κ and f : {x1, x2, x3} → U is a 1-Lipschitz map, then there
exists a 1-Lipschitz extension f̄ : {x1, . . . , x4} → U of f .

Besides the fact that domain and target space are interchanged, the lat-
ter statement differs from the first only by the additional requirement that
U be strongly convex (meaning that for all y1, y2 ∈ U there exists a unique
geodesic τ : [0, 1]→ Y from y1 to y2, and τ([0, 1]) ⊂ U .) Proposition 6.2 is
no longer true without this assumption. Note also that both results remain
true if the first occurrence of “1-Lipschitz” in each statement is replaced
by “distance preserving”.
Proof of 6.1. Assume that every p ∈ X has a neighborhood U such
that all quadruples in U satisfy the γκ condition. We may assume that
diamU < Dκ/2. If x1, . . . , x4 ∈ U and f : {x1, x2, x3} → M2

κ is a 1-
Lipschitz map, then by Theorem C there exists a 1-Lipschitz extension
f̄ : {x1, . . . , x4} →M2

κ of f .
Conversely, let U be a neighborhood of p with the property stated in 6.1,

and assume without loss of generality that diamU < Dκ/2. Let E :=
{x1, x2, x3} ⊂ U and x ∈ U \ E. Then there is a distance preserving map
f : E →M2

κ . Let f̄ : E ∪{x} →M2
κ be the optimal extension of f given by

the first part of 4.3, and let yi := f(xi), i = 1, 2, 3, and y := f̄(x). Since
by assumption there exists a 1-Lipschitz extension of f , f̄ is 1-Lipschitz as
well. Hence, we have d(yi, yj) = d(xi, xj) and d(y, yi) ≤ cd(x, xi) for all i, j
and for some c ≤ 1, moreover y ∈ G(F ′) for F ′ := {yi : d(y, yi) = cd(x, xi)}.

We consider three different cases. If y ∈ F ′, then c = 0 and thus f̄ is con-
stant, hence x1 = x2 = x3 and Γx := γκx(x1, x2)+γκx(x1, x3)+γκx(x2, x3) = 0.
Next consider the case where y 6∈ F ′ and F ′ = f(E). Then the mutual an-
gles ∠y(y1, y2),∠y(y1, y3),∠y(y2, y3) subtended by the segments from y to
y1, y2, y3 add up to 2π. Since f is isometric and d(y, yi) = cd(x, xi) ≤
d(x, xi) < Dκ/2 for i = 1, 2, 3, it follows that γκx(xi, xj) ≤ ∠y(yi, yj) for
i < j, thus Γx ≤ 2π. It remains to consider the case where y 6∈ F ′ and
F ′ = {y1, y2} say. We claim that then γκx(x1, x3) + γκx(x2, x3) ≤ π (and
thus Γx ≤ 2π). We choose points y′1, y

′
2, y
′
3 ∈ M2

κ such that d(y, y′3) =
cd(x, x3) ≥ d(y, y3), and, for i = 1, 2, d(y, y′i) = cd(x, xi) = d(y, yi) and
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d(y′i, y
′
3) = d(xi, x3) = d(yi, y3). As in the second case it follows that

γκx(xi, x3) ≤ ∠y(y′i, y′3) for i = 1, 2. Since d(y, y′3) ≥ d(y, y3), the points
y, y′1, y

′
2, y
′
3 span a convex quadrilateral, thus ∠y(y′1, y′3) +∠y(y′2, y′3) ≤ π. �

Proof of 6.2. If Y has curvature ≤ κ then every q ∈ Y possesses a strongly
convex neighborhood U such that diamU < Dκ/2 and every triangle with
vertices in U is κ-thin. Then by Theorem C, whenever x1, . . . , x4 ∈ M2

κ

and f : {x1, x2, x3} → U is a 1-Lipschitz map, there exists a 1-Lipschitz
extension f̄ : {x1, . . . , x4} → U of f .

Conversely, assume that U is a strongly convex neighborhood of q with
the property stated in 6.2. Let y1, y2, y3 ∈ U be the vertices of a triangle
with perimeter < 2Dκ, τ : [0, 1] → Y the geodesic from y2 to y3, and
t ∈ [0, 1]. Then pick x1, x2, x3 ∈M2

κ such that there is a distance preserving
map f : {x1, x2, x3} → U with f(xi) = yi, i = 1, 2, 3, and let σ : [0, 1]→M2

κ

be the geodesic from x2 to x3. By assumption there exists a 1-Lipschitz
extension f̄ : {x1, x2, x3, σ(t)} → U of f , and since τ is uniquely determined,
f̄(σ(t)) = τ(t). Thus d(y1, τ(t)) ≤ d(x1, σ(t)). By applying this argument
twice we see that all triangles of perimeter < 2Dκ in U are κ-thin. �

Appendix A: Proof of 3.2

It remains to prove Proposition 3.2. We introduce the following notation.
For κ ∈ R consider a triangle with sides of length b1, b2 > 0 and c ≥ 0 inM2

κ ,
where b1+b2+c < 2Dκ. Let γ denote the angle at the vertex opposite to the
side of length c. We write the law of cosines implicitly as c = cκ(b1, b2; γ)
or γ = γk(b1, b2; c); besides the explicit formulas for κ = 0 we will only use
the fact that c/t = ct2κ(b1/t, b2/t; γ) and γ = γt2κ(b1/t, b2/t; c/t) for t > 0.
Further we denote by lκ(b1, b2; c) the distance from the midpoint of the
side of length c to the opposite vertex of the triangle; this is also defined if
b1 = 0 or b2 = 0. Then lκ(b1, b2; c)/t = lt2κ(b1/t, b2/t; c/t) for t > 0, and

4l0(b1, b2; c)2 = 2b12 + 2b22 − c2 ,
cf. 1.4. Now let X be a locally geodesic space of curvature ≥ κ, and let
x ∈ X. For i = 1, 2 and a > 0 let σi : [0, a] → X be a (possibly constant)
geodesic with σi(0) = x, and recall from section 3 that vi := σ̇i(0) is
an element of T ′xX whose ‘norm’ ‖vi‖ is equal to the speed of σi. Thus
d(x, σi(t)) = t‖vi‖ for t ∈ [0, a]. The squared distance between v1 and v2
in T ′xX is given by

dx(v1, v2)2 = ‖v1‖2 + ‖v2‖2 − 2‖v1‖‖v2‖ cosα(σ1, σ2) ,
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and the ‘scalar product’ of v1 and v2 satisfies

2〈v1, v2〉 = ‖v1‖2 + ‖v2‖2 − dx(v1, v2)2 .

In the first equation α(σ1, σ2) is undefined if ‖v1‖ = 0 or ‖v2‖ = 0; then
the term ‖v1‖‖v2‖ cosα(σ1, σ2) is considered to be zero.

We start with the following observation.
Lemma A.1. For σ1, v1, σ2, v2 as above the limit limt↓0 d(σ1(t), σ2(t))/t
exists and is equal to dx(v1, v2).

Proof. We may assume that ‖v1‖, ‖v2‖ > 0. For i = 1, 2 and 0 < t ≤ a let
bi(t) := d(x, σi(t)) = t‖vi‖. By the definition of γκx(σ1(t), σ2(t)) =: γκ(t),

d
(
σ1(t), σ2(t)

)
/t = cκ

(
b1(t), b2(t); γκ(t)

)
/t

= ct2κ
(
‖v1‖, ‖v2‖; γκ(t)

)
for t sufficiently small. Since limt↓0 γκ(t) = α(σ1, σ2) the lemma follows. �

We also need the following partial refinement of A.1.
Lemma A.2. For all Λ, ε > 0 there exists δ > 0 such that the following
holds. Whenever σ1, σ2 are geodesics as above with speed ‖σ̇1(0)‖, ‖σ̇2(0)‖ ≤
Λ, then d(σ1(t), σ2(t))/t ≤ dx(σ̇1(0), σ̇2(0)) + ε for 0 < t ≤ δ (and t ≤ a).

Proof. We use the notation of the preceding proof and assume that ‖v1‖, ‖v2‖
> 0. Since γκ(t) ≤ α(σ1, σ2) for t sufficiently small we get

d
(
σ1(t), σ2(t)

)
/t ≤ ct2κ

(
‖v1‖, ‖v2‖;α(σ1, σ2)

)
.

In view of ‖v1‖, ‖v2‖ ≤ Λ and the fact that c0(‖v1‖, ‖v2‖;α(σ1, σ2)) =
dx(v1, v2) the claim follows easily. �

The next two results are variations of the formula for l0.
Lemma A.3. Let σ1, σ2, τ : [0, a]→ X be geodesics with σ1(0) = σ2(0) =
τ(0) = x and σ̇1(0) =: v1, σ̇2(0) =: v2, τ̇(0) =: w. For 0 < t ≤ a let
νt : [0, t] → X be a geodesic from σ1(t) to σ2(t), and let mt := νt(t/2).
Then 4 lim inf t↓0 d(mt, τ(t))2/t2 ≥ 2dx(v1, w)2 + 2dx(v2, w)2 − dx(v1, v2)2.

Proof. Let bi(t) := d(σi(t), τ(t)), i = 1, 2, and c(t) := d(σ1(t), σ2(t)). For t
sufficiently small the triangle with vertices σ1(t), σ2(t), τ(t) is κ-thick, thus

d
(
mt, τ(t)

)
/t ≥ lκ

(
b1(t), b2(t); c(t)

)
/t

= lt2κ
(
b1(t)/t, b2(t)/t; c(t)/t

)
.

Now the claim follows from A.1 and the formula for l0. �
In particular, A.3 applies to the constant geodesic τ(t) ≡ x and thus

gives a lower bound on lim inf t↓0 d(x,mt)2/t2. We show that in this case
actually equality holds.
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Lemma A.4. Let σ1, v1, σ2, v2, νt, and mt = νt(t/2) be given as in A.3.
Then 4 limt↓0 d(x,mt)2/t2 = 2‖v1‖2 + 2‖v2‖2 − dx(v1, v2)2.

Proof. In view of A.3 it suffices to establish the corresponding upper bound
on lim supt↓0 d(x,mt)2/t2. Let bi(t) := d(x, σi(t)) = t‖vi‖, i = 1, 2, and
c(t) := d(σ1(t), σ2(t)). For 0 < t ≤ a consider the triangle with sides
σ1|[0, t], σ2|[0, t], νt, and let σ̄t1 : [0, t] → X be the geodesic defined by
σ̄t1(s) := σ1(t−s). We may assume that each of the three sides has positive
length.

We claim that the limit limt↓0 α(σ̄t1, ν
t) exists and is equal to the eu-

clidean comparison angle γ0
v1

(o, v2) = γ0(‖v1‖, dx(v1, v2); ‖v2‖) =: γ0.
Namely, by A.1,

lim
t↓0

γκσ1(t)
(
x, σ2(t)

)
= lim

t↓0
γκ
(
b1(t), c(t); b2(t)

)
= lim

t↓0
γt2κ

(
‖v1‖, c(t)/t; ‖v2‖

)
= γ0 ,

and by [BuGP, 7.5], the difference α(σ̄t1, ν
t)− γκσ1(t)(x, σ2(t)) tends to zero

for t ↓ 0. (For completeness we remark that the proof in [BuGP] contains
a minor inconsistency. One has to use the fact that the sum of the angles
in a small triangle in M2

κ is close (not equal) to 2π.)
Now, since X has curvature ≥ κ, we see that for t sufficiently small,

d(x,mt)/t ≤ cκ
(
b1(t), c(t)/2;α(σ̄t1, ν

t)
)
/t

= ct2κ
(
‖v1‖, c(t)/(2t);α(σ̄t1, ν

t)
)
.

Using A.1 again, together with the above claim, we obtain

4 lim sup
t↓0

d(x,mt)2/t2 ≤ 4c0
(
‖v1‖, dx(v1, v2)/2; γ0

)2
= 4l0

(
‖v1‖, ‖v2‖; dx(v1, v2)

)2
.

Now the lemma follows from the formula for l0. �

Lemma A.5. Let v1, v2 ∈ T ′xX, W a bounded subset of T ′xX (i.e. {‖w‖ :
w ∈ W} is bounded), and µ1, µ2 ≥ 0 with µ1 + µ2 = 1. Then for every
η > 0 there exists v ∈ T ′xX such that ‖v‖2 ≤ µ1

2‖v1‖2 + 2µ1µ2〈v1, v2〉 +
µ2

2‖v2‖2 + η and 〈v,w〉 ≤ µ1〈v1, w〉+ µ2〈v2, w〉+ η for all w ∈W .

Proof. It suffices to prove the result for µ1 = µ2 = 1/2. By applying this
iteratively one obtains the lemma for arbitrary dyadic µ1 which is enough
to establish the general claim.
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For i = 1, 2 let σi : [0, a] → X be geodesics with σ̇i(0) = vi. Then for
0 < t ≤ a let %t : [0, t]→ X be a geodesic from x to a midpoint mt of σ1(t)
and σ2(t). We claim that for t sufficiently small, v := %̇t(0) does the job.
To obtain the first inequality we note that by A.4,

4 lim
t↓0

∥∥%̇t(0)
∥∥2 = 4 lim

t↓0
d(x,mt)2/t2

= 2‖v1‖2 + 2‖v2‖2 − dx(v1, v2)2

= ‖v1‖2 + 2〈v1, v2〉+ ‖v2‖2 .
Now let w ∈ W , and let τ : [0, b] → X be a geodesic with τ̇(0) = w.
Since W is bounded there exists Λ > 0 (independent of w) such that
‖v1‖, ‖v2‖, ‖w‖ ≤ Λ. Then by A.4, ‖%̇t(0)‖ = d(x,mt)/t ≤ Λ for small
t. Let ε > 0. Then A.2 yields d(%t(t), τ(t))2/t2 ≤ dx(%̇t(0), w)2 + ε′ for t
sufficiently small, where ε′ := ε(4Λ + ε). Thus

2
〈
%̇t(0), w

〉
≤
∥∥%̇t(0)

∥∥2 + ‖w‖2 − d
(
%t(t), τ(t)

)2
/t2 + ε′

=
(
d(x,mt)2 − d(mt, τ(t))2)/t2 + ‖w‖2 + ε′ .

Using A.3 and A.4 we obtain
lim sup
t↓0

(
d(x,mt)2 − d(mt, τ(t))2)/t2 + ‖w‖2

≤
(
‖v1‖2 + ‖v2‖2 − dx(v1, w)2 − dx(v2, w)2)/2 + ‖w‖2

= 〈v1, w〉+ 〈v2, w〉 .
Thus v = %̇t(0) does the job for t sufficiently small. �

We generalize A.5 to arbitrary convex combinations and obtain 3.2 as
an immediate corollary.
Lemma A.6. Let k ≥ 1, v1, . . . , vk ∈ T ′xX, λ = (λ1, . . . , λk) ∈ ∆k−1, and
W a bounded subset of T ′xX. Then for every η > 0 there exists v ∈ T ′xX
such that ‖v‖2 ≤∑k

i,j=1 λiλj〈vi, vj〉+ η and 〈v,w〉 ≤∑k
i=1 λi〈vi, w〉+ η for

all w ∈W .

Proof. We prove the result by induction on k. For k = 1 it is trivial
and for k = 2 it is contained in A.5. Now we go from k − 1 to k. Let
v1, . . . , vk, λ = (λ1, . . . , λk), and W be given as in the lemma. Without loss
of generality we may assume that µ1 := λ1+. . .+λk−1 6= 0. Define µ2 := λk
and λ′i := λi/µ1, i = 1, . . . , k−1; then µ1+µ2 = 1 and λ′ := (λ′1, . . . , λ

′
k−1) ∈

∆k−2. We use the induction hypothesis for v1, . . . , vk−1 ∈ T ′xX, λ′ ∈ ∆k−2,
and W ′ := W ∪ {vk} ⊂ T ′xX. Let η′ > 0. Then there exists v′ ∈ T ′xX with

‖v′‖2 ≤
k−1∑
i,j=1

λ′iλ
′
j〈vi, vj〉+ η′ ,



558 U. LANG AND V. SCHROEDER GAFA

〈v′, w′〉 ≤
k−1∑
i=1

λ′i〈vi, w′〉+ η′

for all w′ ∈ W ′ = W ∪ {vk}. Applying A.5 to v′, vk, W , and µ1, µ2 we get
the existence of v ∈ T ′xX such that

‖v‖2 ≤ µ1
2‖v′‖2 + 2µ1µ2〈v′, vk〉+ µ2

2‖vk‖2 + η′ ,

〈v,w〉 ≤ µ1〈v′, w〉+ µ2〈vk, w〉+ η′

for all w ∈W . Hence,

‖v‖2 ≤ µ1
2
( k−1∑
i,j=1

λ′iλ
′
j〈vi, vj〉+ η′

)
+ 2µ1µ2

( k−1∑
i=1

λ′i〈vi, vk〉+ η′
)

+ µ2
2‖vk‖2 + η′

=
k∑

i,j=1

λiλj〈vi, vj〉+ (µ1µ2 + µ1 + 1)η′ ,

〈v,w〉 ≤ µ1

( k−1∑
i=1

λ′i〈vi, w〉+ η′
)

+ µ2〈vk, w〉+ η′

=
k∑
i=1

λi〈vi, w〉+ (µ1 + 1)η′ .

Since µ1, µ2 ≤ 1 this yields the desired result. �
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[BaGSc] W. Ballmann, M. Gromov, V. Schroeder, Manifolds of Nonposi-
tive Curvature, Birkhäuser, Basel, 1985.
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Flächen, Ergebnisse eines math. Kolloquiums, Wien 7 (1935), 24–46.

U. Lang V. Schroeder
Department of Mathematics Institut für Mathematik
Stanford University Universität Zürich-Irchel
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