Finding errors with

kmemcheck

Vegard Nossum <vegardno@ifi.ulo.no>

Etymology

» “k” Is for kernel

» “memcheck” Is a reference to Valgrind's
memcheck

» kmemcheck and memcheck: same concept,
different application and implementation

Error classes

» Using memory before it has been assigned a
value (“use-before-assign”)

» Using memory after it has been deallocated
(“use-after-free”)

» Leaking uninitialised memory to userspace
applications (“information leaks™)

Use-before-assign errors

- Memory Is allocated, < Example:

but not Initialised struct foo {
right away nt x

* For arrays: Not all inty;
elements are ¥
initialised

struct foo *f = kmalloc(...);

» Typically: Caller
(incorrectly) assumes ™x=0;
completely initialised return f;
object

Use-after-free errors

» Pointers to freed memory still exist
» Example:

journal_destroy(sb->journal);

sb->journal = NULL,;

/* In a different function, also operating on journal objects: */
If (sb->journal)

journal_foo(sb->journal);

Information leak errors

Use-before-assign and use-after-free errors
can also be information leaks

More typically, some (partly or completely
uninitialised) data block is copied directly to
userspace

Could disclose sensitive information:
encryption keys, private data (unlikely)

Concept

Every byte of dynamically-allocatable memory
has a corresponding shadow state

Shadow state can be (simplified):
initialised, uninitialised, freed
Track every memory access:

Writes set shadow state to “initialised”

Reads are checked to make sure what iIs read
IS “Initialised”

A —— S—
Shadow state

Memory: Ox4c | 0x69 | Ox6e | Ox75 | 0x78 | Ox00 | 0x91 | Oxc3

Memory allocator hooks

» kmalloc() and kfree()
» alloc_pages() and free_pages()

 Allocate (and initialise!) and deallocate the
shadow-state “bytemap”

Tracking memory accesses

» We exploit the paging mechanism of the MMU

- Pages are marked “non-present”
- Forces a page fault exception (#PF) on access

- Inspect the instruction and register state
- Update/verify shadow state

- Pages are marked “present”

- Continue execution

Single-stepping

» We exploit the built-in debugging mechanisms
of the CPU

- Page fault handler enables instruction single-
stepping

- Forces a Debug Exception (#DB) after the
Instruction has executed

- Pages are marked “non-present” again (to
catch the next memory access too!)

— Continue execution

Performance impact

No hard numbers, but:

Kernel needs about 2x RAM
Kernel boot takes about 10x the time

Slowdown depends on workload
- Userspace Is unaffected!

My 1.4 GHz laptop can boot X and play MP3s

Results

» About 10 patches in mainline Linux with fixes
for real problems

» Use-before-assign: 2
» Use-after-free: 4

I * Information leaks: 4

» Not too much :-(

__ — — e - e ——

kmemcheck:

Example

A

Caught 16-bit read from uninitialized memory
0500110001508abf050010000500000002017300140000006£f72672e66726565
iiiiiiiiiiidiivuvuuuuvuuuvuuuuyuuuuUuuUuuUuuUuUuUUuUuUu

Pid: 3462, comm: wpa_supplicant Not tainted (2.
EIP: 0060:[<c05de6d4a>] EFLAGS: 00010296 CPU: O
EIP is at nla_parse+0x5a/0xf0
EAX: 00000008 EBX: fffffffd ECX: c06fl6c0 EDX:
ESI: 00000010 EDI: f6clba30 EBP: f6367c6c ESP:
DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068
CRO: 8005003b CR2: f781cc84 CR3: 3632f000 CR4:
DRO: cOead9bc DR1: 00000000 DR2: 00000000 DR3:
DR6: ffff4ff0 DR7: 00000400
[<c05d4b23>] rtnl_setlink+0x63/0x130
[<c05d5f75>] rtnetlink_rcv_msg+0x165/0x200
[<c05ddf66>] netlink rcv_skb+0x76/0xal
[<c05d5dfe>] rtnetlink rcv+0xle/0x30
[<c05dda21>] netlink unicast+0x281/0x290
[<c05ddbe9>] netlink_sendmsg+0x1b9/0x2b0
[<cO05beef2>] sock_sendmsg+0xd2/0x100
[<c05bf945>] sys_sendto+0xa5/0xd0
[<c05bf9a6>] sys_send+0x36/0x40
[<c05c03d6>] sys_socketcall+0xle6/0x2c0
[<c020353b>] sysenter_do_call+0x12/0x3f
[<ffffffff>] Oxffffffff

(foclba30)

6.27-rc3-00054-g6397ab9-dir
00000005
c0alle88

000006d0
00000000

e ———————— i

e — S S —

Example, continued

/* nla_ok - check if the netlink attribute fits into the remaining bytes
* @remaining: number of bytes remaining in attribute stream */
static inline int nla_ok (const struct nlattr *nla, int remaining) {
return remaining >= sizeof (*nla)
&& nla->nla_len >= sizeof (*nla) && nla->nla_len <= remaining;

}

/* nla_next - next netlink attribute in attribute stream
* @remaining: number of bytes remaining in attribute stream */
static inline struct nlattr *nla_next (const struct nlattr *nla, int *remaining) {
int totlen = NLA ALIGN (nla->nla_len);

*remaining —-= totlen;

return (struct nlattr *) ((char *) nla + totlen);
}
/* nla_for_ each_ attr - iterate over a stream of attributes

* (@pos: loop counter, set to current attribute

* (@head: head of attribute stream

* @len: length of attribute stream

* @rem: initialized to len, holds bytes currently remaining in stream */
#define nla_for_each_attr (pos, head, len, rem) \

for (pos = head, rem = len; \
nla_ok (pos, rem); \
pos = nla_next (pos, & (rem)))

e ———————— i

Complications

Instructions with more than one memory
operand (we still only get one page fault)

Processor peculiarities
DMA accesses (doesn't go through the MMU)

SMP
Loca
Bitfie

(Symmetric Multi-Processing)
(on-stack) variables
ds (shadow state has byte granularity)

SMP

Updating shared page tables is racy:

- CPU 1 marks page “non-present”
- CPU 2 writes data to page
- CPU 1 marks page “present”

Currently limited to 1 CPU

So
So

ution 1: Per-CPU page tables
ution 2: Instruction emulation

Local (on-stack) variables

- Can't mark stack pages “non-present”

» (Would cause triple fault when trying to call the
page fault handler)

» WIll cause false-positive reports; example:
void func(struct foo *x) {
[* Oops: */
struct foo y = *x;

Local variables, continued

» Solution 1: Don't track known-problematic
allocations

- Trade-off between coverage and false
positives

» Solution 2: Single-step all instructions

Bitfields

» Example: » Assembly code:

struct foo {

Int x:1; call kmalloc
Inty:1;
I3 # Oops:
movzbl (Y%eax), %oedx
struct foo *f = kmalloc(...); andl $-2, %edx
f->x = 1; orl $2, %edx
f->y = 2; movb %dI, (%eax)

e ———————— i

Bitfields, continued

» Solution 1: Annotate bitfields

- Requires marking up the source code
- Not fool-proof

» Solution 2: Single-step all instructions

» Solution 3: Change gcc to emit kmemcheck-
friendly code?

Single-stepping everything

» Most kernel code would be single-stepped
» Every instruction Is decoded in software
 Bit (instead of byte) granularity!
* No need for page faults
* We get (for free):

- SMP, bitfields, local variables

* Drawbacks:

- Slowdown?

A E———— ——
Changing GCC

» C code: » Assembly code:
void func(int *p) { - movl 8(%ebp), Y%eax
*n = 40; - movl $40, (Y%eax)
}

+ movl $40, 4(%esp)
+ movl 8(%ebp), Yoeax

+ movl %eax, (Yesp)

+ call kmemcheck_write_int

‘ Changing GCC, continued

» Difficulty?

» We get (probably with hard work):
- SMP, bitfields, local variables

» Drawback:
- Who wants to do it? ;-)

Thanks & credits

- Pekka Enberg (slab maintainer, kmemcheck
co-maintainer)

* Ingo Molnar (x86 maintainer)

» Many others for showing interest!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

