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Etymology

» “k” Is for kernel

» “memcheck” Is a reference to Valgrind's
memcheck

» kmemcheck and memcheck: same concept,
different application and implementation




Error classes

» Using memory before it has been assigned a
value (“use-before-assign”)

» Using memory after it has been deallocated
(“use-after-free”)

» Leaking uninitialised memory to userspace
applications (“information leaks™)




Use-before-assign errors

- Memory Is allocated, < Example:

but not Initialised struct foo {
right away nt x

* For arrays: Not all inty;
elements are ¥
initialised

struct foo *f = kmalloc(...);

» Typically: Caller
(incorrectly) assumes  ™x=0;
completely initialised return f;
object




Use-after-free errors

» Pointers to freed memory still exist
» Example:

journal_destroy(sb->journal);

sb->journal = NULL,;

/* In a different function, also operating on journal objects: */
If (sb->journal)

journal_foo(sb->journal);




Information leak errors

Use-before-assign and use-after-free errors
can also be information leaks

More typically, some (partly or completely
uninitialised) data block is copied directly to
userspace

Could disclose sensitive information:
encryption keys, private data (unlikely)




Concept

Every byte of dynamically-allocatable memory
has a corresponding shadow state

Shadow state can be (simplified):
initialised, uninitialised, freed
Track every memory access:

Writes set shadow state to “initialised”

Reads are checked to make sure what iIs read
IS “Initialised”
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Shadow state

Memory: Ox4c | 0x69 | Ox6e | Ox75 | 0x78 | Ox00 | 0x91 | Oxc3




Memory allocator hooks

» kmalloc() and kfree()
» alloc_pages() and free_pages()

 Allocate (and initialise!) and deallocate the
shadow-state “bytemap”




Tracking memory accesses

» We exploit the paging mechanism of the MMU

- Pages are marked “non-present”
- Forces a page fault exception (#PF) on access

- Inspect the instruction and register state
- Update/verify shadow state

- Pages are marked “present”

- Continue execution




Single-stepping

» We exploit the built-in debugging mechanisms
of the CPU

- Page fault handler enables instruction single-
stepping

- Forces a Debug Exception (#DB) after the
Instruction has executed

- Pages are marked “non-present” again (to
catch the next memory access too!)

— Continue execution




Performance impact

No hard numbers, but:

Kernel needs about 2x RAM
Kernel boot takes about 10x the time

Slowdown depends on workload
- Userspace Is unaffected!

My 1.4 GHz laptop can boot X and play MP3s




Results

» About 10 patches in mainline Linux with fixes
for real problems

» Use-before-assign: 2
» Use-after-free: 4

I * Information leaks: 4

» Not too much :-(

\__ — — e - e ——




kmemcheck:

Example

A

Caught 16-bit read from uninitialized memory
0500110001508abf050010000500000002017300140000006£f72672e66726565
iiiiiiiiiiidiivuvuuuuvuuuvuuuuyuuuuUuuUuuUuuUuUuUUuUuUu

Pid: 3462, comm: wpa_supplicant Not tainted (2.
EIP: 0060:[<c05de6d4a>] EFLAGS: 00010296 CPU: O
EIP is at nla_parse+0x5a/0xf0
EAX: 00000008 EBX: fffffffd ECX: c06fl6c0 EDX:
ESI: 00000010 EDI: f6clba30 EBP: f6367c6c ESP:
DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068
CRO: 8005003b CR2: f781cc84 CR3: 3632f000 CR4:
DRO: cOead9bc DR1: 00000000 DR2: 00000000 DR3:
DR6: ffff4ff0 DR7: 00000400
[<c05d4b23>] rtnl_setlink+0x63/0x130
[<c05d5f75>] rtnetlink_rcv_msg+0x165/0x200
[<c05ddf66>] netlink rcv_skb+0x76/0xal
[<c05d5dfe>] rtnetlink rcv+0xle/0x30
[<c05dda21>] netlink unicast+0x281/0x290
[<c05ddbe9>] netlink_sendmsg+0x1b9/0x2b0
[<cO05beef2>] sock_sendmsg+0xd2/0x100
[<c05bf945>] sys_sendto+0xa5/0xd0
[<c05bf9a6>] sys_send+0x36/0x40
[<c05c03d6>] sys_socketcall+0xle6/0x2c0
[<c020353b>] sysenter_do_call+0x12/0x3f
[<ffffffff>] Oxffffffff

(foclba30)

6.27-rc3-00054-g6397ab9-dir
00000005
c0alle88

000006d0
00000000

e ———————— i
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Example, continued

/* nla_ok - check if the netlink attribute fits into the remaining bytes
* @remaining: number of bytes remaining in attribute stream */
static inline int nla_ok (const struct nlattr *nla, int remaining) {
return remaining >= sizeof (*nla)
&& nla->nla_len >= sizeof (*nla) && nla->nla_len <= remaining;

}

/* nla_next - next netlink attribute in attribute stream
* @remaining: number of bytes remaining in attribute stream */
static inline struct nlattr *nla_next (const struct nlattr *nla, int *remaining) {
int totlen = NLA ALIGN (nla->nla_len);

*remaining —-= totlen;

return (struct nlattr *) ((char *) nla + totlen);
}
/* nla_for_ each_ attr - iterate over a stream of attributes

* (@pos: loop counter, set to current attribute

* (@head: head of attribute stream

* @len: length of attribute stream

* @rem: initialized to len, holds bytes currently remaining in stream */
#define nla_for_each_attr (pos, head, len, rem) \

for (pos = head, rem = len; \
nla_ok (pos, rem); \
pos = nla_next (pos, & (rem)))

e ———————— i




Complications

Instructions with more than one memory
operand (we still only get one page fault)

Processor peculiarities
DMA accesses (doesn't go through the MMU)

SMP
Loca
Bitfie

(Symmetric Multi-Processing)
(on-stack) variables
ds (shadow state has byte granularity)




SMP

Updating shared page tables is racy:

- CPU 1 marks page “non-present”
- CPU 2 writes data to page
- CPU 1 marks page “present”

Currently limited to 1 CPU

So
So

ution 1: Per-CPU page tables
ution 2: Instruction emulation




Local (on-stack) variables

- Can't mark stack pages “non-present”

» (Would cause triple fault when trying to call the
page fault handler)

» WIll cause false-positive reports; example:
void func(struct foo *x) {
[* Oops: */
struct foo y = *x;




Local variables, continued

» Solution 1: Don't track known-problematic
allocations

- Trade-off between coverage and false
positives

» Solution 2: Single-step all instructions




Bitfields

» Example: » Assembly code:

struct foo {

Int x:1; call kmalloc
Inty:1;
I3 # Oops:
movzbl (Y%eax), %oedx
struct foo *f = kmalloc(...); andl $-2, %edx
f->x = 1; orl $2, %edx
f->y = 2; movb %dI, (%eax)

e ———————— i




Bitfields, continued

» Solution 1: Annotate bitfields

- Requires marking up the source code
- Not fool-proof

» Solution 2: Single-step all instructions

» Solution 3: Change gcc to emit kmemcheck-
friendly code?




Single-stepping everything

» Most kernel code would be single-stepped
» Every instruction Is decoded in software
 Bit (instead of byte) granularity!
* No need for page faults
* We get (for free):

- SMP, bitfields, local variables

* Drawbacks:

- Slowdown?
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Changing GCC

» C code: » Assembly code:
void func(int *p) { - movl 8(%ebp), Y%eax
*n = 40; - movl $40, (Y%eax)
}

+ movl $40, 4(%esp)
+ movl 8(%ebp), Yoeax

+ movl %eax, (Yesp)

+ call kmemcheck_write_int




‘ Changing GCC, continued

» Difficulty?

» We get (probably with hard work):
- SMP, bitfields, local variables

» Drawback:
- Who wants to do it? ;-)




Thanks & credits

- Pekka Enberg (slab maintainer, kmemcheck
co-maintainer)

* Ingo Molnar (x86 maintainer)

» Many others for showing interest!
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