Data compression using Zopfli

Jyrki Alakuijala, Ph.D. and Lode Vandevenne, M.Sc.
Google Inc.

Abstract — We measure the performance of the Zopfli compression algorithm
and compare it with other implementations of deflate compression. We show
that Zopfli has the highest compression density of all deflate compatible
algorithms we compared, on four compression corpora we used for testing.
Zopfli uses significantly more time in compression, but decompression speed of
Zopfli-generated output is comparable with other algorithms.

Introduction

Zopfli is a new deflate compatible compressor that was inspired by compression improvements
developed originally for the lossless mode of WebP image compression. Being compatible with
deflate makes Zopfli compatible with zlib and gzip. Most internet browsers support deflate
decompression, and it has a wide range of other applications. This means that Zopfli-compatible
decompression is readily widely available.

In this study we compare the compression density of the Zopfli compressor with the
compression density of zlib [1], the most common deflate implementation used today, as well as
two lesser known deflate implementations, 7-zip [2] and kzip [3]. We use four data compression
corpora [4-7] to measure the compression density. We also measured the compression and
decompression speeds for one test corpus. In the conclusion we suggest a potentially important
use case for the new Zopfli data compression algorithm.

Data compression works by eliminating statistical redundancy from the data. The
redundancy can be, for example, in the form of some symbols occurring more often or
sequences of symbols repeating.

There are many benefits to higher compression density. The smaller compressed size
allows for storing more items in less space, faster data transmission, and lower web page load
latencies. Furthermore, the smaller compressed size has additional benefits in mobile use, such
as lower data transfer fees and reduced battery use. The higher data density is achieved by

using more exhaustive compression techniques, which make the compression a lot slower, but
the decompression speed is not affected.

Methods

We chose several sets of files (corpora) for running the compressors:

e a web-centric benchmark by downloading the homepages of the 10000 most popular
websites as given in the Alexa Internet directory [4]. 9148 pages were successfully
loaded to form our corpus.

e The Calgary Corpus is a collection of small text and binary data files, commonly used for
comparing data compression algorithms. [5]

e Canterbury Corpus, a compression corpus designed for lossless data compression. It
was suggested as a replacement for the older Calgary Corpus. [6]

e enwik8 [7] has been developed as a large text compression benchmark, consisting of
100 million bytes of English Wikipedia.

For running the benchmarks, we used an Ubuntu-derivative Linux operating system with
kernel 3.2.5 (x86_64) on Dell Precision T3500 Intel Xeon CPU X5650 running at 2.67 GHz. The
versions of the various software used in experiments are Zopfili
(https://code.google.com/p/zopfli/source/browse/ revision acc035299f8d), gzip 1.4, 7-Zip (A) [64]
9.20, and kzip (release 20091108). The compiler we used is gcc version 4.6.3. We run Zopfli and
kzip with default arguments, gzip with -9, and 7-zip with -mm=Deflate -mx=9.

Results

Compression results (Table 1) indicate that Zopfli produces the most dense output, but is
slowest (Table 2) of all the algorithms we tested. Uncompression time (Table 3) is unaffected by
the selection of the compression algorithm.

Table 1. Compressed data size for the four file corpora and for common compression
algorithms along with Zopfli. The output produced by Zopfli is 3.7-8.3 % smaller than
that of gzip -9.

Benchmark Corpus size gzip -9 7-zip kzip Zopfli
Alexa-top-10k 693'108'837 128'498'665 125'599'259 125163'521 123'755'118
Calgary 3'141'622 1'017°624 980’674 978993 974’579
Canterbury 2'818'976 730732 675163 674’321 669933

enwik8 100°000°000 36'445'248 35102'976 35025767 34'995'756

https://code.google.com/p/zopfli/source/browse/

Table 2. Compression times for enwik8. Zopfli is 81 times slower than the fastest
measured algorithm gzip -9.

Compression algorithm Compression time
gzip -9 560s
7-zip -mm=Deflate -mx=9 128 s
kzip 336s
Zopfli 454 s

Table 3. Uncompression times for data that were compressed with different algorithms are
tested with running “gzip -d” for the compressed enwik8 corpus. We obtained the run times
from 9 runs, and chose the median time. The difference between fastest and slowest are

within 2.5 %.
Compression algorithm Uncompress time for “gzip -d” of enwik8
gzip -9 934 ms
7-zip -mm=Deflate -mx=9 949 ms
kzip 937 ms
Zopfli 926 ms
Discussion

Zopfli gives smaller deflate-compatible output size than gzip (3.7-8.3 % smaller), 7-zip, and kzip,
with more CPU time used at compression phase. This makes Zopfli ideal for uses where the
cost of CPU is small in relation to the output size. Such use could include denser compression
of static content for making websites faster.

Zopfli and gzip compress to gzip format, whereas kzip and 7-zip compress to zip format.
This may alter the sizes slightly as the container format has slightly different overhead. For
enwik8, the header overhead difference is below 0.0001 % in relation to the output size.

7-Zip can operate with the deflate format, but it can read and write several other archive
formats, and achieve higher compression ratios. In this study we only measured
deflate-compatible compression.

We could achieve faster results with gzip and other algorithms by specifying lower
compression density options. In this study we are interested on finding the smallest possible

compressed size, and because of this we have only run every algorithm with maximum
compression options. Zopfli also can run even longer to achieve slightly higher compression
density, but we chose to run it with default settings.

In the light of the results we presented, we recommend Zopfli for compression of static
content and other content where data transfer or storage costs are more significant than the
increase in CPU time. To our knowledge Zopfli typically produces the highest compression
density of any deflate-compatible algorithm.

Zopfli is opensourced at https://code.google.com/p/zopfli/. We invite everyone to try it out,
and hope that it will find many practical uses.

References

1. http://en.wikipedia.org/wiki/Zlib

2. http://en.wikipedia.org/wiki/7-Zip

3. http://www.advsys.net/ken/utils.htm

4. Alexa-top-10k corpus:

https://code.google.com/p/httparchive/source/browse/trunk/lists/Alexa10K.txt

Calgary corpus: http://www.data-compression.info/Corpora/CalgaryCorpus.zip

Canterbury corpus: http://corpus.canterbury.ac.nz/resources/cantrbry.zip

7. enwik8 corpus:
http://mattmahoney.net/dc/text.html http://mattmahoney.net/dc/enwik8.zip

8. P.Deutsch, RFC 1952—GZIP file format specification version 4.3,
http://www.ietf.org/rfc/rfc1952.txt

9. P. Deutsch, RFC 1951—DEFLATE Compressed Data Format Specification version 1.3,
http://www.ietf.org/rfc/rfc1951 .txt

oo

https://code.google.com/p/zopfli/
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FZlib&sa=D&sntz=1&usg=AFQjCNG4uO_1a-WqJl-hKrcwA67FpXGhkg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2F7-Zip&sa=D&sntz=1&usg=AFQjCNEe5jPJ84zstXrn2BO-SbTAc6zdPQ
http://www.google.com/url?q=http%3A%2F%2Fwww.advsys.net%2Fken%2Futils.htm&sa=D&sntz=1&usg=AFQjCNFejnUwaFCWwt1lPrSRETDIL7eRMw
https://code.google.com/p/httparchive/source/browse/trunk/lists/Alexa10K.txt
http://www.google.com/url?q=http%3A%2F%2Fmattmahoney.net%2Fdc%2Ftext.html&sa=D&sntz=1&usg=AFQjCNH7Y5E1vfhv9ZqaYL1jOQLXBFnzyQ
http://www.google.com/url?q=http%3A%2F%2Fmattmahoney.net%2Fdc%2Fenwik8.zip&sa=D&sntz=1&usg=AFQjCNHqOWU-wF5V6NMJJeDvteG3zX49dw
http://www.google.com/url?q=http%3A%2F%2Fwww.ietf.org%2Frfc%2Frfc1952.txt&sa=D&sntz=1&usg=AFQjCNGYG-d_Zp4KKrnEiTxj-pJlX5Egqg
http://www.google.com/url?q=http%3A%2F%2Fwww.ietf.org%2Frfc%2Frfc1951.txt&sa=D&sntz=1&usg=AFQjCNHg4ZLYP0icmjQuZid29lJp4U6eRw

