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Particle Physics
Michaelmas Term 2011

Prof Mark Thomson

Handout 7 : Symmetries and the Quark Model

Introduction/Aims
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� Symmetries play a central role in particle physics; one aim of 
particle physics is to discover the fundamental symmetries of our
universe

� In this handout will apply the idea of symmetry to the quark model 
with the aim of :
� Deriving hadron wave-functions
� Providing an introduction to the more abstract ideas of 

colour and QCD (handout 8)
� Ultimately explaining why hadrons only exist as qq (mesons)

qqq (baryons) or qqq (anti-baryons)

+ introduce the ideas of the SU(2) and SU(3) symmetry groups 
which play a major role in particle physics (see handout 13)
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Symmetries and Conservation Laws
�Suppose physics is invariant under the transformation

e.g. rotation of the coordinate axes
•To conserve probability normalisation require

has to be unitaryi.e.

•For physical predictions to be unchanged by the symmetry transformation,
also require all QM matrix elements unchanged

i.e. require

therefore commutes with the Hamiltonian

�Now consider the infinitesimal transformation    (    small )

(      is called the generator of the transformation)
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• For       to be unitary

neglecting terms in

i.e.        is Hermitian and therefore corresponds to an observable quantity       !
•Furthermore,

i.e.        is a conserved quantity.

But from QM

Symmetry          Conservation Law

Example:
� For each symmetry of nature have an observable conserved quantity

Infinitesimal spatial translation
i.e. expect physics to be invariant under

•Translational invariance of physics implies momentum conservation !
is conserved

but

The generator of the symmetry transformation is     ,
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• In general the symmetry operation may depend on more than one parameter

For example for an infinitesimal 3D linear translation  : 

• So far have only considered an infinitesimal transformation, however a finite 
transformation can be expressed as a series of infinitesimal transformations

Example: Finite spatial translation in 1D:                     with

i.e. obtain the expected Taylor expansion

Symmetries in Particle Physics : Isospin
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•The proton and neutron have very similar masses and the nuclear
force is found to be approximately charge-independent, i.e.

•To reflect this symmetry, Heisenberg (1932) proposed that if you could
“switch off” the electric charge of the proton 

There would be no way to distinguish 
between a proton and neutron

•Proposed that the  neutron and proton should be considered as 
two states of a single entity; the nucleon

� Analogous to the spin-up/spin-down states of a spin-½ particle

ISOSPIN
� Expect physics to be invariant under rotations in this space
•The neutron and proton form an isospin doublet with total isospin I = ½ and

third component I3 = ± ½



Flavour Symmetry of the Strong Interaction
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We can extend this idea to the quarks:

� Assume the strong interaction treats all quark flavours equally (it does)
•Because :

The strong interaction possesses an approximate flavour symmetry
i.e. from the point of view of the strong interaction nothing changes
if all up quarks are replaced by down quarks and vice versa.

• Choose the basis

• Express the invariance of the strong interaction under as
invariance under “rotations” in an abstract isospin space

The 2x2 unitary matrix depends on 4 complex numbers, i.e. 8 real parameters
But there are four constraints from

8 – 4 = 4 independent matrices
•In the language of group theory the four matrices form the U(2) group
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not a flavour transformation and of no relevance here.

• One of the matrices corresponds to multiplying by a phase factor

• The remaining three matrices form an SU(2) group (special unitary) with
• For an infinitesimal transformation, in terms of the Hermitian generators

• A linearly independent choice for        are the Pauli spin matrices
•

• The proposed flavour symmetry of the strong interaction has the same
transformation properties as SPIN !

• Define ISOSPIN:
• Check this works, for an infinitesimal transformation

Which is, as required, unitary and has unit determinant



Properties of Isopin
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• Isospin has the exactly the same properties as spin

As in the case of spin, have three non-commuting operators,                , and 
even though all three correspond to observables, can’t know them simultaneously. 
So label states in terms of total isospin and the third component of isospin

NOTE: isospin has nothing to do with spin – just the same mathematics

• The eigenstates are exact analogues of the eigenstates of ordinary
angular momentum

with
• In terms of isospin:

d u

• In general
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• Can define isospin ladder operators – analogous to spin ladder operators

Step up/down in      until reach end of multiplet

• Ladder operators turn             and 

u � d d � u

� Combination of isospin: e.g. what is the isospin of a system of two d quarks,
is exactly analogous to combination of  spin  (i.e. angular momentum)

• additive :

• in integer steps from                   to
� Assumed symmetry of Strong Interaction under isospin transformations

implies the existence of conserved quantites
• In strong interactions       and    are conserved, analogous to conservation of

and       for angular momentum



Combining Quarks
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Goal: derive proton wave-function
• First combine two quarks, then combine the third
• Use requirement that fermion wave-functions are anti-symmetric
Isospin starts to become useful in defining states of more than one quark.

e.g. two quarks, here we have four possible combinations:

•We can immediately identify the extremes

To obtain the             state use  ladder operators 

The final state, , can be found from orthogonality with

(      additive)

Note:       represents two
states with the same value
of

Prof. M.A. Thomson Michaelmas 2011 217

• From four possible combinations of isospin doublets obtain a triplet of
isospin 1 states and a singlet isospin 0 state

• Can move around within multiplets using ladder operators

• States with different total isospin are physically different – the isospin 1 triplet is
symmetric under interchange of quarks 1 and 2 whereas singlet is anti-symmetric

• Use ladder operators and orthogonality to group the 6 states into isospin multiplets, 
e.g. to obtain the       states, step up from

• note, as anticipated

� Now add an additional up or down quark. From each of the above 4 states
get two new isospin states with

6 2
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�Derive the               states from 

6From the        states on previous page, use orthoganality to find                 states�

The        states on the previous page give another doublet2�
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�The eight states 
are grouped into an isospin quadruplet and two isospin doublets

•Different multiplets have different symmetry properties

A quadruplet of states which
are symmetric under the 
interchange of any two quarks

Mixed symmetry. 
Anti-symmetric for  1         2

Mixed symmetry. 
Symmetric for  1         2

S

MS

MA

• Mixed symmetry states have no definite symmetry under interchange of 
quarks               etc. 



Combining Spin
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• Can apply exactly the same mathematics to determine the possible spin 
wave-functions for a combination of 3 spin-half particles

A quadruplet of states which
are symmetric under the 
interchange of any two quarks

S

Mixed symmetry. 
Symmetric for  1         2

MS

Mixed symmetry. 
Anti-symmetric for  1         2MA

• Can now form total wave-functions for combination of three quarks

Baryon Wave-functions (ud)
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�Quarks are fermions so require that the total wave-function is anti-symmetric under
the interchange of any two quarks

� the total wave-function can be expressed in terms of: 

� The colour wave-function for all bound qqq states is anti-symmetric (see handout 8)
• Here we will only consider the lowest mass, ground state, baryons where there

is no internal orbital angular momentum. 
• For L=0 the spatial wave-function is symmetric (-1)L.

anti-symmetric
Overall anti-symmetric

symmetric

� Two ways to form a totally symmetric wave-function from spin and  isospin states:

� combine totally symmetric spin and isospin wave-functions 

Spin 3/2
Isospin 3/2
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� combine mixed symmetry spin and mixed symmetry isospin states
• Both    and      are sym. under inter-change of  quarks 

• However, it is not difficult to show that the (normalised) linear combination:

is totally symmetric (i.e. symmetric under )

Spin 1/2
Isospin 1/2

• Not sufficient,  these combinations have no definite symmetry under 

• The spin-up proton wave-function is therefore:

NOTE: not always necessary to use the fully symmetrised proton wave-function,
e.g. the first 3 terms are sufficient for calculating the proton magnetic moment

Anti-quarks and Mesons (u and d)
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�The u, d quarks and u, d anti-quarks are represented as isospin doublets

•Subtle point: The ordering and the minus sign in the anti-quark doublet ensures 
that anti-quarks and quarks transform in the same way (see Appendix I).  This is 
necessary if we want physical predictions to be invariant under 

• Consider the effect of ladder operators on the anti-quark isospin states

e.g

•The effect of the ladder operators on anti-particle isospin states are: 

Compare with



Light ud Mesons

Prof. M.A. Thomson Michaelmas 2011 224

• Consider the        combinations in terms of isospin 

To obtain the               states use ladder operators and orthogonality

� Can now construct meson states from combinations of up/down quarks

The bar indicates 
this is the isospin
representation of 
an anti-quark

• Orthogonality gives:
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�To summarise:

Triplet of             states and a singlet state

•You will see this written as

Quark doublet Anti-quark doublet

•To show the state obtained from orthogonality with                is a singlet use 
ladder operators

similarly

� A singlet state is a “dead-end” from the point of view of ladder operators



SU(3) Flavour
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� Extend these ideas to include the strange quark. Since don’t
have an exact symmetry. But        not so very different from                  and can
treat the strong interaction (and resulting hadron states) as if it were 
symmetric under

• NOTE: any results obtained from this assumption are only approximate
as the symmetry is not exact.

• The 3x3 unitary matrix depends on 9 complex numbers, i.e. 18 real parameters
There are 9 constraints from

Can form 18 – 9  = 9 linearly independent matrices 

These 9 matrices form a U(3) group. 

• The remaining 8 matrices have           and form an SU(3) group

• The assumed uds flavour symmetry can be expressed as

• As before, one matrix is simply the identity multiplied by a complex phase and 
is of no interest in the context of flavour symmetry

• The eight matrices (the Hermitian generators) are:
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�In SU(3) flavour, the three quark states are represented by:

�In SU(3) uds flavour symmetry contains SU(2) ud flavour symmetry which allows
us to write the first three matrices:

u � di.e.

with

� The third component of isospin is now written

� “counts the number of up quarks – number of down quarks in a state 

d u� As before, ladder operators
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u � s

d � s

� Now consider the matrices corresponding to the u � s and d � s

•Define the eighth matrix,      ,  as the linear combination:

which specifies the “vertical position” in the 2D plane

• Hence in addition to   have two other traceless diagonal matrices 

• However the three diagonal matrices are not be independent. 

d u

s
“Only need two axes (quantum numbers) 
to specify a state in the 2D plane”: (I3,Y)
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�The other six matrices form six ladder operators which step between the states

u � d

u � s

d � s

d u

s

with

and the eight Gell-Mann matrices



Quarks and anti-quarks in SU(3) Flavour
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Quarks

d u

s

•The anti-quarks have opposite SU(3) flavour quantum numbers

du

s
Anti-Quarks

SU(3) Ladder Operators
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•SU(3) uds flavour symmetry contains ud, us
and ds SU(2) symmetries

•Consider the                symmetry “V-spin” which has
the associated       ladder operator

SU(3) LADDER
OPERATORS

d u

s

with

s

u d

�The effects of the six ladder operators are:

all other combinations give zero
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Light (uds) Mesons

•The three central states, all of which have can be obtained using
the ladder operators and orthogonality. Starting from the outer states can reach
the centre in six ways

•Only two of these six states are linearly independent. 
•But there are three states with 
•Therefore one state is not part of the same

multiplet, i.e. cannot be reached with ladder ops.

• Use ladder operators to construct uds mesons from the nine possible         states
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• First form two linearly independent orthogonal states from:

� If the SU(3) flavour symmetry were exact, the choice of states wouldn’t
matter. However,      and the symmetry is only approximate.

• Experimentally observe three light mesons with m~140 MeV:
• Identify one state (the       ) with the isospin triplet (derived previously)

• The second state can be obtained by taking the linear combination of the other
two states which is orthogonal to the

with orthonormality:

• The final state (which is not part of the same multiplet) can be obtained by 
requiring it to be orthogonal to         and

SINGLET



�It is easy to check that         is a singlet state using ladder operators
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which confirms that is a “flavourless” singlet

•Therefore the combination of a quark and anti-quark yields nine states 
which breakdown into an OCTET and a SINGLET

• In the language of group theory: 

� Compare with combination of two spin-half particles
TRIPLET of spin-1 states: 

spin-0 SINGLET:
•These spin triplet states are connected by ladder operators just as the meson

uds octet states are connected by SU(3) flavour ladder operators
•The singlet state carries no angular momentum – in this sense the

SU(3) flavour singlet is “flavourless”
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PSEUDOSCALAR MESONS (L=0, S=0, J=0, P= –1 )

VECTOR MESONS (L=0, S=1, J=1, P= –1 )

•Because SU(3) flavour is only approximate
the physical states with                 can be
mixtures of the octet and singlet states. 
Empirically find:

singlet

•For the vector mesons the physical states
are found to be approximately “ideally mixed”:

MASSES



Combining uds Quarks to form Baryons
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� Have already seen that constructing Baryon states is a fairly tedious process 
when we derived the proton wave-function. Concentrate on multiplet structure
rather than deriving all the wave-functions.

� Everything we do here is relevant to the treatment of colour
• First combine two quarks: 

�Yields a symmetric sextet and anti-symmetric triplet:

Same “pattern”
as the anti-quark
representation

SYMMETRIC ANTI-SYMMETRIC
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•Now add the third quark:

•Best considered in two parts, building on the sextet and triplet. Again concentrate 
on the multiplet structure (for the wave-functions refer to the discussion of proton
wave-function).

� Building on the sextet:

Mixed
Symmetry

Octet
Symmetric
Decuplet
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•Just as in the case of uds mesons we are combining              and again
obtain an octet and a singlet

� Building on the triplet:

� In summary, the combination of three uds quarks decomposes into

Totally
Anti-symmetric

Singlet

Mixed
Symmetry

Octet

• Can verify the wave-function
is a singlet by using ladder operators, e.g.

Very Important for
following discussion
of COLOUR
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BARYON DECUPLET (L=0, S=3/2, J=3/2, P= +1 )

�(1318)

Mass in MeV

�(1384)

�(1232)

�(1672)

� The baryon states (L=0) are:
• the spin 3/2 decuplet of symmetric flavour and symmetric 

spin wave-functions

Baryon Decuplet

� If SU(3) flavour were an exact symmetry all masses would be the same
(broken symmetry)
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Baryon Octet
� The spin 1/2 octet is formed from mixed symmetry flavour and

mixed symmetry spin wave-functions 

See previous discussion proton for how to obtain wave-functions 

BARYON OCTET (L=0, S=1/2, J=1/2, P= +1 )

939

�(1193)

Mass in MeV

�(1116)

�(1318)

� NOTE: Cannot form a totally symmetric wave-function based on the 
anti-symmetric flavour singlet as there no totally anti-symmetric
spin wave-function for 3 quarks

Summary
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� Considered SU(2) ud and SU(3) uds flavour symmetries

� Although these flavour symmetries are only approximate can still be
used to explain observed multiplet structure for mesons/baryons

� In case of SU(3) flavour symmetry results, e.g. predicted wave-functions
should be treated with a pinch of salt as

� Introduced idea of singlet states being “spinless” or “flavourless”

� In the next handout apply these ideas to colour and QCD…



Appendix: the SU(2) anti-quark representation
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Non-examinable

•The quark doublet           transforms as 

• Define anti-quark doublet 

Complex

conjugate

•Express in terms of anti-quark doublet

•Hence      transforms as
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•In general a 2x2 unitary matrix can be written as

•Giving

•Therefore the anti-quark doublet

transforms in the same way as the quark doublet

�NOTE: this is a special property of SU(2) and for SU(3) there is no
analogous representation of the anti-quarks


