ON THE MOVEMENT OF SMALL PARTICLES SUSPENDED IN STATIONARY
LIQUIDS REQUIRED BY THE MOLECULAR-KINETIC THEORY OF HEAT
by A. Einstein
[4nnalen der Physik 17 (1905): 549-560]

It will be shown in this paper that, according to the molecular-kinetic
theory of heat, bodies of microscopically visible size suspended in liquids
must, as a result of thermal molecular motions, perform motions of such
magnitude that these motions can easily be detected by a microscope. It is
possible that the motions to be discussed here are idemtical with the
so-called "Brownian molecular motion"; however, the data available to me on
the latter are so imprecise that I could not form a definite opinion on this
matter. ' '

If it is really possible to observe the motion to be discussed here,
along with the laws it is expected to obey, then classical thermodynamics can
no longer be viewed as strictly valid even for microscopically distinguishable
spaces, and an exact determination of the real size of atoms becomes possible.
Conversely, if the prediction of this motion were to be proved wrong, this
fact would provide a weighty argument against the molecular-kinetic conception
of heat.

§1. 0On the osmotic pressure atiributable to suspended particles

Let 2z gram-molecules of a nonelectrolyte be dissolved in the partial
volume F* of a liquid of total volume - V. If the volume F* is separated
from the pure solvent by a wall that is permeable to the solvent but not to
the dissolved substance, then this wall is subjected to the so-called osmotic
pressure, which at sufficiently large values of F*/z satisfies the equation

pV* = RIz.



But if instead of the dissolved substance, the partial volume F* of
the liquid contains small suspended bodies that likewise cannot pass through
the solvent-permeable wall, then according to the classical theory of thermo-
dynamics we should not expect—at least if we neglect the force of gravity,
which does not interest us here—that a force be exerted on the wall; because
according to the customary conception, the "free energy" of the system does
not seem to depend on the position of the wall and of the suspended bodies,
but only on the total masses and properties of the suspended substance, the
liquid, and the wall, as well as on the pressure and temperature. To be sure,
the energy and entropy of the interfaces (capillary forces) should also be
considered in the calculation of the free emergy; but we can disregard them
since the changes in the position of the wall and the suspended bodies
considered here shall proceed without changes in the size and condition of the
contact surfaces.

But from the standpoint of the molecular-kinetic theory of heat we are
led to a different conception. According to this theory, a dissolved molecule
differs from a suspended body in size alone, and it is difficult to see why
suspended bodies should not produce the same osmotic pressure as an equal
number of dissolved molecules. We will have to assume that the suspended
bodies perform an irregular, even though very slow, motion in the liquid due
to the liquid's molecular motion; if prevented by the wall from leaving the
volume F*, they will exert forces upon the wall exactly as dissolved
molecules do. Thus, if n suspended bodies are present in the volume F*,
‘i.e., nf/V=wv in the unit volume, and if the separation between neighboring
bodies is sufficiently large, there will correspond to them an osmotic
pressure p of magnitude

RT n _ RT
PErER=T"

where N denotes the number of true molecules per gram-molecule. It shall be
shown in the next section that the molecular-kinetic theory of heat does
indeed lead to this broader conception of osmotic pressure.



§2. Osmotic pressure from the standpoint of the
molecular-kinetic theory of heatl

If piPy---py are state variables of a physical system that determine
completely the system's instantaneous state (e.g., the coordinates and
yelocity components of all the atoms of the system), and if the complete
system of the equations of change of these variables is given in the form

ap”
Y p,(py---pp) (v = 1,2,...4),

dp
where 2 aﬁﬂ = 0, then the entropy of the system is given by the expression
v

B _
S = g + 2k 1g J e ?ET dpl"‘dPE'

Here T denotes the absolute temperature, F the energy of the physical
system, and £ the energy as a function of the py's. The integral is to be
extended over all combinations of values of ?, consistent with the condi-
tions of the problem. & is connected with the comstant ¥ mentioned above
by the relation 2xN = R. We therefore get for the free energy F

EN
- T
F=- % T1g Je i dpl...dpe = - %T 1g B.

Let us now imagine a liquid enclosed in the volume ¥; let the partial
volume F* of V contain # dissociated molecules or suspended bodies,
which are retained in the volume F* by a semipermeable wall; this will
affect the integration limits of the integral B entering the expressions for
S and F. Let the total volume of the dissolved molecules or suspended bodies

In this section it is assumed that the reader is familiar with the author's
papers on the foundations of thermodynamics (cf. Ann. d. Phys. 9 (1902): 417
and 11 (1903): 120). Knowledge of the papers cited and of this section of
the present paper is not essential for the understanding of the present
paper's results.



be small compared with P*. In accordance with the theory mentiomed, this
system shall be completely described by the state variables p{---Pyg-

Even if the molecular picture were established down to the smallest
detail, the calculation of the integal B would be so difficult as to make an
exact calculation of F all but inconceivable. However, here we only have to
know how F depends on the size of the volume /* in which all the dissolved
molecules or suspended bodies (hereafter briefly called "particles") are
contained.

Let us denote by Ty Y10 Y the rectangulaf coordinates of the center
of gravity of the first particle, by Ty Yos 29 those of the second, etc.,
and by Tos Yyo 2y those of the last particle, and assign to the centers of
gravity of the particles the infinitesimally small parallelepiped-shaped
regions dz,dy,dz,, dz2dy2dz2...dzndyndzn, all of which shall lie in F*. Ve
now seek the value of the integral occurring in the expression for F, with
the restriction that the centers of gravity of the particles shall lie in the
regions just assigned to them. In any case, this integral can be put into the

form
dB = dzldyl...dzn.J,

where J 1is independent of dzidyl, etc., as well as of V*, i.e., of the
position of the semipermeable wall. But J is also independent of the
particular choice of the positions of the center-of-gravity regions and of the
value of F*, as we will show immediately. For if a second system of infin-
itesimally small regions were assigned to the centers of gravity of the
particles and demoted by dxidyidzi, dzédyédzé...dz;dy; dz;, and if these
regions differed from the originally assigned ones by their position alone,
but not by their size, and if, likewise, all of them were contained in V*, we
- would similarly have

dB' = dzjdy;...dz;.J0",
where
dxldyl...dzn = dxidyi...dz;.
Hence)

a__J
ar - I



But from the molecular theory of heat, presented in the papers cited!,
it can easily be deduced that dB/B and dB'/B are equal to the probabili-
ties that at an arbitrarily chosen moment the centers of gravity of the
particles will be found in the regions (dzy...dz;) and (dzj...dz}),
respectively. If the motions of the individual particles are (in sufficient
approximation) independent of each other, and the liquid is homogeneous and no
forces act upon the particles, then the probabilities corresponding to the two
systems of regions must be the same if the size of the regions is the same, so

that we have

dB _ db'
F - F

But it follows from this equation and the one preceding it that
J=J.

This proves that J does not depend on either /* or Tys Yp---2,e
Integrating, we get

| B = J Jiz,...dz = JP,

and from that

F=-M g ien1gm
=-F 18 g

and
_OF _RTn _ RT |

PE-9F"TFAN- TV
This consideration demonstrates that the existence of osmotic pressure
is a consequence of the molecular-kinetic theory of heat, and that, according
to this theory, at great dilutions numerically equal quantities of dissolved
molecules and suspended particles behave completely identically with regard to
osmotic pressure.

1A. Einstein, 4an. d. Phys. 11 (1903): 170.



83. Theory of diffusion of small suspended spheres

Suppose that suspended particles are randomly distributed in a liquid.
We wish to investigate their state of dynamic equilibrium under the assumption:
that a force K, which depends on the position but not on the time, acts on
the individual particles. For the sake of simplicity, we will assume that the
force is everywhere in the direction of the J-axis.
‘ If the number of suspended particles per unit volume is v, then in the
case of thermodynamic equilibrium » is such a function of =z that the
variation of the free energy vanishes for an arbitrary virtual displacement
&z of the suspended substance. Thus '

OF = 8F - 165 = 0.

Let us assume that.the liquid has a cross section 1 perpendicular to the
X-axis, and that it is bounded by the planes z =0 and z = £. We then have

{
8F = - J Kvdzdz
0

and
8§ = Js R %-ggg dr = - %»fs gg Szdz.
Hence, the equilibrium conditior sought is
(1) g+ BTO
or

kv - g% = 0.

The last equation states that the force XK is balanced by the forces of
osmotic pressure.

Ve use equation (1) to determine the coefficient of diffusion of the
suspended substance. The state of dynamic equilibrium that we have just
considered can be conceived as a superposition of two processes proceeding in
opposite directions, namely,



1. a motion of the suspended substance under the influence of the force
f which is exerted on each suspended particle,

2. a process of diffusion, which is to be conceived as the result of
the random motions of the particles due to thermal molecular motion.

If the suspended particles are of spherical shape (where P is the
radius of the sphere) and the coefficient of friction of the liquid is k,
then the force K imparts to the individual particle the velocity!

K
and

vk
BrkP

particles pass through the unit cross section per unit time.
Further, if ) denotes the coefficient of diffusion of the suspended
substance and p the mass of a particle, then ‘

=D 9 ”) gram

or

ﬁv
D g

particles will pass through the unit cross section per unit time due to
diffusion. Since there should be dynamic equilibrium, we must have

(2) 2 - Dgﬂ_o

From the two conditions (1) and (2) found for dynamic equilibrium we can
calculate the coefficient of diffusion. We obtain

) _ AT 1
= N '6xkP -

ICf., e.g., G. Kirchhoff, "Vorlesungen iber Nechanik" [Lectures on Mechanics],
Lecture 26, §4.



Thus, apart from universal constants and the absolute temperature, the
coefficient of diffusion of the suspended substance depends only on the
coefficient of friction of the liquid and the size of the suspended particles.

[

§4. On the random motion of particles suspended in a liquid
and their relation to diffusion

We shall now turn to a closer examination of the random motions which,
caused by thermal molecular motion, give rise to the diffusion investigated in
the last sectiom.

Obviously, we must assume that each individual particle performs a
motion that is independent of the motions of all the other particles;
similarly, the motions of one and the same particle in different time
intervals will have to be conceived as mutually independent processes so long
as we think of these time intervals as chosen not to be too small.

Ve now introduce into the consideration a time interval 7, which shall
be very small compared with observable time intervals but still so large that
the motions performed by a particle during two consecutive time intervals 7
may be considered as mutually independent events.

Suppose, now, that a total of n particles is present in a liquid. In a
time interval 7, the Jf-coordinates of the individual particles will increase
by A, where A has a different (positive or negative) value for each
particle. A certain frequency law will hold for A: the number dr of
particles experiencing a displacement lying between A and A+ dA in the
time interval 7 will be expressed by an equation of the form

dn = np(A)dA,

fﬂ p(A)dA = 1, ’

and ¢ differs from zero for very small values of A only, and satisfies
the condition

where

@A) = o(-A).



Now we investigate how the coefficient of diffusion depends on ¢,
restricting ourselves again to the case that the number v of particles per
unit volume depends only oo =z and ¢.

Let v = f(z,t) be the number of particles per unit volume; we then
calculate the distribution of the particles at time ¢+ 7 from their
distribution at time ¢. From the definition of the function (A) we can
easily obtain the number of particles found at time ¢+ 7 between two planes
perpendicular to the JX-axis with abscissas z and z+dz. We obtain

A=+w
flz,t + 1)dz = dz. J flz + A)p(A)dA.

But since r is very small, we can put

flz,t + 1) = f(z,t) + 7 %% .

Further, we expand f(z + A,t) in powers of A:

flz + Ayt) = f(z,t) + A 0f§;,t) + %% aagéf’t)...ad inf.

We can perform this expansion under the integral since only very small values
of A contribute anything to the latter. We obtain

f+ %-T = f. iw W(A)dA + gg ij Ap(A)dA + %—}é th %(A)dA,,,

On the right-hand side, the second, fourth, etc., terms vanish since plz) =
¢(-z), while among the first, third, fifth, etc., terms, each subsequent term
is very small compared with the one preceding it. From this equation we get,
by taking into account that

+00
(p(A)dA =1 1}
0

putting

+00
1 J_m L) = D,



and only considering the first and third term of the right-hand side:

(1) S-pf.

This is the familiar differential equation for diffusion, and 7 can be
recognized as the diffusion coefficient.

Another important consideration can be linked to this development. We
assumed that all the individual particles are referred to the same coordinate
system. However, this is not necessary since the motions of the individual
particles are mutually independent. We will now refer the motion of each
particle to a coordinate system whose origin coincides at time ¢ = 0 with
the position of the center of gravity of the particle in question, with the
difference that f(z,t)dz now denotes the number of particles whose
f-coordinate has increased between the times ¢ =0 and ¢ =t by a quantity
lying between z and z + dz. Thus, the function f varies according to
equation (1) in this case as well. Further, it is obvious that for z 2 0 and
t = 0 we must have

+00
flz.t) = 0 and j Flz,t)dz = n.

The problem, which coincides with the problem of diffusion from one point
(neglecting the interaction between the diffusing particles), is now
completely determined mathematically; its solution is

_7;2
/3

flz,t) = L ¢
40 i

The frequency distribution of the changes of position occurring in the
arbitrary time ¢ is thus the same as the distribution of random errors,
which was to be expected. What is of importance, however, is how the constant
in the exponent is related to the coefficient of diffusion. With the help of
this equation we now calculate the displacement Ax in the direction of the
f-axis that a particle experiences on the average, or, to be more precise, the



square root of the arithmetic mean of the squares of displacements in the
direction of the Jf-axis; we get

The mean displacement is thus proportional to the square root of time.
It can easily be shown that the square root of the mean of the squares of the

total displacements of the particles has the value Az{g.

85. Formula for the mean displacement of suspended particles.
4 new method of determining the true size of atoms

In §3 we found the following value for the coefficient of diffusion J of
a substance suspended in a liquid in the form of small spheres of radius P:

D = RT 1
- N 6xk?P -

Further, we found in §4 that the mean value of the displacements of the
particles in the direction of the J-axis in time ¢ equals

), = {71

), = {1 |W7” e -

This equation shows how Az must depend on T, %k, and P.

Ve now wish to calculate the magnitude of Az for one second if X is
taken to be 6-10%3 in accordance with the results of the kinetic theory of
gases; water at 17°C (k = 1.35-102) shall be chosen as the liquid, and the
diameter of the particles shall be 0.001 mm. We obtain

Eliminating J, we get



Az = 8:10° cm = 0.8 micron.

Thus, the mean displacement in 1 min. would be about 6 microns.

Conversely, the relation found can be used for the determination of N.
Ve obtain

A 1
- Ig 37kP ¢

Let us hope that a researcher will soon succeed in solving the problem
posed here, which is of such importance in the theory of heat!

Bern, May 1905. (Received on 11 May 1905)



