

General Approach

- Sketch general structural layout
- Determine roof loading
- Determine required lumber dimensions
- Transfer load down the structure

Is all lumber the same? • Different types of wood perform differently under loads • Important to design for the type of wood used in construction • Today, we'll focus on Southern Pine

Lumber Grades Visually Graded (Most Common) Select Structural (SS) No. 1 No. 2 No. 3 Machine Stress Rated (MSR) Machine Evaluated Lumber (MEL)

Lumber Dimensions

- Nominal Dimensions ≠ Actual Dimensions
- Example:
 - -2" x 4" Lumber = 1.5" x 3.5"

Size Range	Adjustment
< 6 inches	- ½ inch
≥ 8 inches	- ¾ inch

Types of Loads

- Live Loads
 - Dynamic loading associated with roof usage
- Dead Loads
 - Static loading from structure and equipment
- Snow Loads
- Wind Loads
- Concentrated Loads

Importance of Building Codes

- Guidance and requirements for structure
- Vary between states
- May contain special provisions for green roofs

North Carolina Building Code

- Roof Gardens:
 - -Intensive
 - -100 psf live load
- Landscaped Roofs:
 - Extensive
 - -20 psf live load

When is your roof most likely to fail?

During rainfall, when materials are saturated

Roof Loading

<u>Material</u>	<u>Load</u>
Conventional Roof	7-10 psf
Drainage Layer (saturated)	2-3 psf
Soil Media (saturated)	Next Slide
Plants	1-2 psf

Green Roof Soils

<u>Media</u>	Saturated Density lb/ft³
Expanded Clay / Slate	60 – 95 lb/ft³
Stalite Extensive Mix 1	91 lb/ft³
Erth Foods Extensive Mix ²	82 lb/ft³

- 1. 55% Expanded Slate, 30% Root Zone Sand, 15% Compost
- 2. 75% Expanded Clay, 10% River Sand, 5% Biosolid Compost

Green Roof Soils

- Soil Load = Soil Density * (Soil Depth/12)
 - Soil Load (psf)
 - Soil Density (lb/ft3)
 - Soil Depth (in)
- Example:
 - 91 (lb/ft3) * (4 (in) / 12) = 30.4 psf

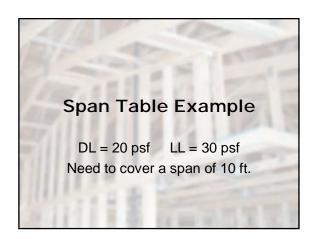
Now we know the live and dead roof load.

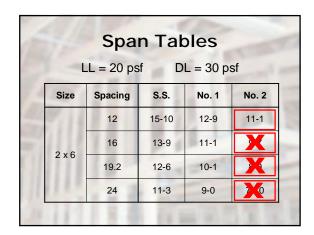
What's next?

Size the structural members

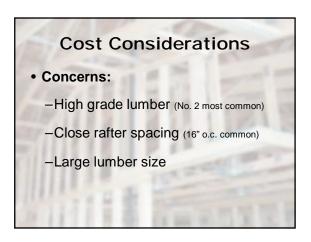
Plywood

- Span Rating: X / Y
 - X = maximum span for roof sheathing
 - -Y = maximum span for subfloor
- Subfloor span rating is recommended for green roofs

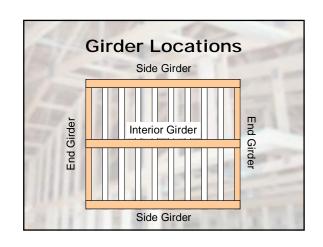

Thickness	Typical Span Rating
1/2"	32/16
5/8"	42/20
3/4"	48/24

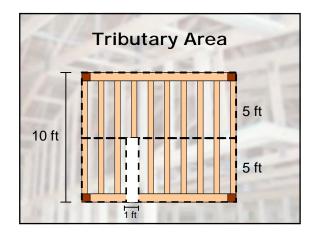

Allowable Loads

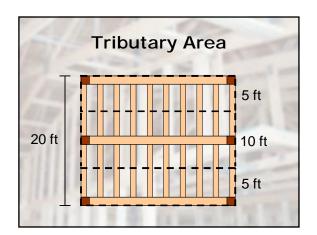
- · Need to prevent failure from:
 - -Bending stress
 - -Deflection
- One approach:
 - Apply adjustment factors to known allowable stresses

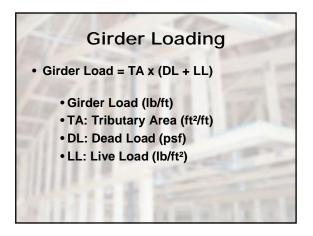

Span Tables

- · Inputs:
 - Load
 - Joist Size
 - Joist Spacing
- Output:
 - Maximum span length
- · Factor of safety built into the tables






Sizing Girders • Girders carry the load from the rafters • May support different loads due to location • Load is assumed to be uniform • Load can be estimated using tributary area



Tributary Area

- Determine area that is contributing load to a structural member
- Generally spans half the distance to the next similar structural member

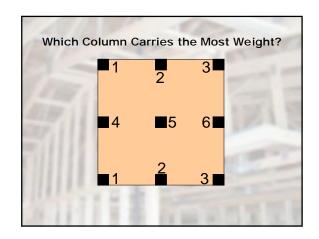


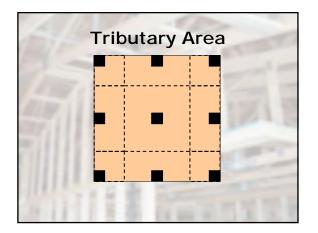
Girder Example

- Live Load = 20 psf
- Dead Load = 30 psf
- Span = 10 ft
- Tributary Area = 10 ft²/ft
- Load = 10 ft²/ft * (20 psf + 30 psf) = 500 lb/ft

Size	Allowable Load	# Needed
2x6	50 lb/ft	500 lb/ft / 50 lb/ft = 10
2x8	95 lb/ft	500 / 95 = 5.26 = 6
2x10	150 lb/ft	500 / 150 = 3.33 = 4
2x12	210 lb/ft	500 / 210 = 2.38 = 3

End Girders


- · Function similar to rafters
- May experience more stress due to construction and usage
- Typically double the rafter lumber


What if I can't find a large enough girder?

- Laminated Veneer Lumber
- Steel Columns

Column Loading

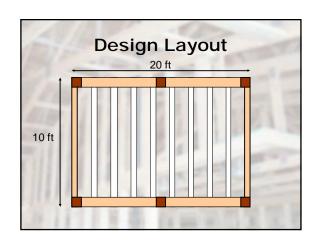
- · Similar procedure to girder sizing
- Use tributary area to determine column load
- Column Load = TA x (LL + DL)
 - Column Load (lbs)
 - TA: Tributary Area (ft²)
 - LL: Live Load (psf)
 - DL: Dead Load (psf)

Is it a good idea to specify different column dimensions for each tributary area?

Sizing Footers

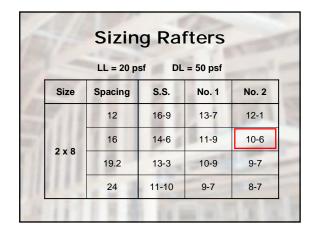
- Typically constructed from concrete
- Typical soil load capacity = 2000 lb/ft²
- Footer Area (ft²) = Column Load / 2000 lb/ft²
- Footer Depth = ½ of width or length

Difficulties with Retrofits

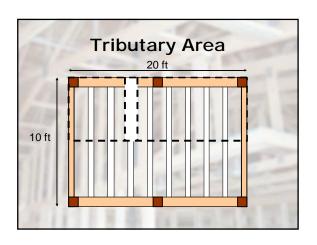

- Need to obtain detailed structural plans
- Need to account for any changes since plans were produced
- Permission / liability concerns
- May not be practical of cost effective to make changes to the structure


Design Example

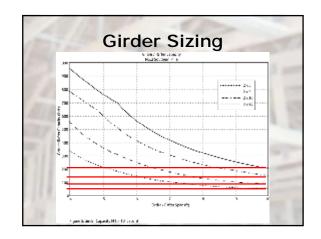
- · Design a carport with a green roof on top
- Dimensions: 20 ft L x 10 ft W x 9 ft H
- Support 4" of Stalite Extensive Mix

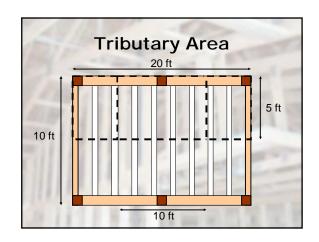

General Procedure

- 1. Sketch structure layout
- 2. Determine roof loading
- 3. Determine rafter size and spacing
- 4. Determine required beam size
- 5. Determine required column size
- 6. Determine footer size



	Sizin	g Ra	rters	
	LL = 20 ps	sf DL	. = 50 psf	
Size	Spacing	S.S.	No. 1	No. 2
	12	13-5	10-9	9-5
	16	11-7	9-4	8-1
2 x 6	19.2	10-7	8-6	7-5
	24	9-6	7-7	6-8





Girder Sizing

- Tributary Area = 5 ft²/ft
- Load = $5 \text{ ft}^2/\text{ft}$ * (20 psf + 45.4 psf) = 327 lb/ft
- Span = 10 ft

Size	Allowable # Needed		
2x6	50 lb/ft	327 lb/ft / 50 lb/ft = 6.54 = 7	
2x8	95 lb/ft	327 / 95 = 3.44 = 4	
2x10	150 lb/ft	327 / 150 = 2.18 = 3	
2x12	210 lb/ft	327 / 210 = 1.56 = 2	

Column Loading

- Tributary Area = 5 ft x 10 ft = 50 ft²
- Load = $50 \text{ ft}^2 \text{ x} (20 \text{ psf} + 45.4 \text{ psf}) = 3270 \text{ lbs}$
- Effective Length = 9 ft

Effective Length	4x4	4x6	4x8	4x10
9 ft.	5720	8970	11780	14980

Footer Sizing

- Column Load = 3270 lb
- Footer Area = 3270 lb / 2000 lb/ft² = 1.64 ft²
- Footer Dimensions = 1.28 ft x 1.28 ft
- Footer Depth = 1.28 ft / 2 = 0.64 ft

Resources

- National Design Specification for Wood Construction: American Forest & Paper Association
- ASTM E 2397: Standard Practice for Determination of Dead Loads and Live Loads associated with Green Roof Systems

Notes

- Saturated 4" Stalite: 30.4 psf Sedum: 1-2 psf (already in live load) Drain Materials: 2-3 psf saturated (dead) Standard roof materials: 10 psf
- Total Dead Load typically 30-35 psf (just due to green roof)
- Soil bearing capacity: 2000 lb/ft²
- 35% porosity for green roof media
- Standard size is 4' x 8' C-D-X: Used for structural sheathing where appearance is not important

Water Weight (psf) = Porosity * 62.4

Porosity = 35% Water Weight = 0.35 * 62.4 = 22 psf

Lumber Weight

- Southern Pine = 37.3 lb/ft3
- Spruce Pine = 28.6 lb/ft3
- 3/8" plywood = 1.1 psf
- ½" plywood = 1.5 psf