ALMOST DISJOINT AND INDEPENDENT FAMILIES

STEFAN GESCHKE

Abstract

I collect a number of proofs of the existence of large almost disjoint and independent families on the natural numbers. This is mostly the outcome of a discussion on mathoverflow.

1. INTRODUCTION

A family $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is an independent family (over ω) if for every pair \mathcal{A}, \mathcal{B} of disjoint finite subsets of \mathcal{F} the set

$$
\bigcap \mathcal{A} \cap(\omega \backslash \bigcup \mathcal{B})
$$

is infinite. Fichtenholz and Kantorovich showed that there is an independent family on ω of size continuum [3] (also see [6] or [8]). I collect several proofs of this fundamental fact. A typical application of the existence of a large independent family is the result that there are $2^{2^{N_{0}}}$ ultrafilters on ω due to Pospísil [11]:

Given an independent family $\left(A_{\alpha}\right)_{\alpha<2^{\aleph_{0}}}$, for every function $f: 2^{\aleph_{0}} \rightarrow 2$ there is an ultrafilter p_{f} on ω such that for all $\alpha<2^{\aleph_{0}}$ we have $A_{\alpha} \in p_{f}$ iff $f(\alpha)=1$. Now $\left(p_{f}\right)_{f: 2^{\aleph_{0} \rightarrow 2}}$ is a family of size $2^{2^{\aleph_{0}}}$ of pairwise distinct ultrafilters.

Independent families in some sense behave similarly to almost disjoint families. Subsets A and B of ω are almost disjoint if $A \cap B$ is finite. A family \mathcal{F} of infinite subsets of $\mathcal{P}(\omega)$ is almost disjoint any two distinct elements A, B of \mathcal{F} are almost disjoint.

2. Almost disjoint families

An easy diagonalisation shows that every countably infinite, almost disjoint family can be extended.

Lemma 2.1. Let $\left(A_{n}\right)_{n \in \omega}$ be a sequence of pairwise almost disjoint, infinite subsets of ω. Then there is an infinite set $A \subseteq \omega$ that is almost disjoint from all $A_{n}, n \in \omega$.

Proof. First observe that since the A_{n} are pairwise almost disjoint, for all $n \in \omega$ the set

$$
\omega \backslash \bigcup_{k<n} A_{k}
$$

is infinite. Hence we can choose a strictly increasing sequence $\left(a_{n}\right)_{n \in \omega}$ of natural numbers such that for al $n \in \omega, a_{n} \in \omega \backslash \bigcup_{k<n} A_{k}$. Clearly, if $k<n$, then $a_{n} \notin A_{k}$.

It follows that for every $k \in \omega$ the infinite set $A=\left\{a_{n}: n \in \omega\right\}$ is almost disjoint from A_{k}.

A straight forward application of Zorn's Lemma gives the following:
Lemma 2.2. Every almost disjoint family of subsets of ω is contained in a maximal almost disjoint family of subsets of ω.

Corollary 2.3. Every infinite, maximal almost disjoint family is uncountable. In particular, there is an uncountable almost disjoint family of subsets of ω.

Proof. The uncountability of an infinite, maximal almost disjoint family follows from Lemma 2.1. To show the existence of such a family, choose a partition $\left(A_{n}\right)_{n \in \omega}$ of ω into pairwise disjoint, infinite sets. By Lemma 2.2, the almost disjoint family $\left\{A_{n}: n \in \omega\right\}$ extends to a maximal almost disjoint family, which has to be uncountable by our previous observation.

Unfortunately, this corollary only guarantees the existence of an almost disjoint family of size \aleph_{1}, not necessarily of size $2^{\aleph_{0}}$.

Theorem 2.4. There is an almost disjoint family of subsets of ω of size $2^{\aleph_{0}}$.
All the following proofs of Theorem 2.4 have in common that instead of on ω, the almost disjoint family is constructed as a family of subsets of some other countable set that has a more suitable structure.

First proof. We define the almost disjoint family as a family of subsets of the complete binary tree $2^{<\omega}$ of height ω rather than ω itself. For each $x \in 2^{\omega}$ let $A_{x}=\{x \upharpoonright n: n \in \omega\}$.

If $x, y \in 2^{\omega}$ are different and $x(n) \neq y(n)$, then $A_{x} \cap A_{y}$ contains no sequence of length $>n$. It follows that $\left\{A_{x}: x \in 2^{\omega}\right\}$ is an almost disjoint family of size continuum.

Similarly, one can consider for each $x \in[0,1]$ the set B_{x} of finite initial segments of the decimal expansion of $x .\left\{B_{x}: x \in[0,1]\right\}$ is an almost disjoint family of size $2^{\aleph_{0}}$ of subsets of a fixed countable set.

Second proof. We again identify ω with another countable set, in this case the set \mathbb{Q} of rational numbers. For each $r \in \mathbb{R}$ choose a sequence $\left(q_{n}^{r}\right)_{n \in \omega}$ of rational numbers that is not eventually constant and converges to r. Now let $A_{r}=\left\{q_{n}^{r}: n \in \omega\right\}$.

For $s, r \in \mathbb{R}$ with $s \neq r$ choose $\varepsilon>0$ so that

$$
(s-\varepsilon, s+\varepsilon) \cap(r-\varepsilon, r+\varepsilon)=\emptyset .
$$

Now $A_{s} \cap(s-\varepsilon, s+\varepsilon)$ and $A_{r} \cap(r-\varepsilon, r+\varepsilon)$ are both cofinite and hence $A_{s} \cap A_{r}$ is finite. It follows that $\left\{A_{r}: r \in \mathbb{R}\right\}$ is an almost disjoint family of size $2^{\aleph_{0}}$.

Third proof. We construct an almost disjoint family on the countable set $\mathbb{Z} \times \mathbb{Z}$. For each angle $\alpha \in[0,2 \pi)$ let A_{α} be the set of all elements of $\mathbb{Z} \times \mathbb{Z}$ that have distance ≤ 1 to the line $L_{\alpha}=\left\{(x, y) \in \mathbb{R}^{2}: y=\tan (\alpha) \cdot x\right\}$.

For two distinct angles α and β the set of points in \mathbb{R}^{2} of distance ≤ 1 to both L_{α} and L_{β} is compact. It follows that $A_{\alpha} \cap A_{\beta}$ is finite. Hence $\left\{A_{\alpha}: \alpha \in[0,2 \pi)\right\}$ is an almost disjoint family of size continuum.

Fourth proof. We define a map $e:[0,1] \rightarrow \omega^{\omega}$ as follows: for each $x \in[0,1]$ and $n \in \omega$ let $e(x)(n)$ be the integer part of $n \cdot x$.

For every $x \in[0,1]$ let $A_{x}=\{(n, e(x)(n)): n \in \omega\}$. If $x<y$, then for all sufficiently large $n \in \omega, e(x)(n)<e(y)(n)$. It follows that $\left\{A_{x}: x \in[0,1]\right\}$ is an almost disjoint family of subsets of $\omega \times \omega$.

Observe that e is an embedding of $([0,1], \leq)$ into $\left(\omega^{\omega}, \leq^{*}\right)$, where $f \leq^{*} g$ if for almost all $n \in \omega, f(n) \leq g(n)$.

3. Independent families

Independent families behave similarly to almost disjoint families. The following results are analogs of the corresponding facts for almost disjoint families.

Lemma 3.1. Let m be an ordinal $\leq \omega$ and let $\left(A_{n}\right)_{n<m}$ be a sequence of infinite subsets of ω such that for all pairs S, T of finite disjoint subsets of m the set

$$
\bigcap_{n \in S} A_{n} \backslash\left(\bigcup_{n \in T} A_{n}\right)
$$

is infinite. Then there is an infinite set $A \subseteq \omega$ that is independent over the family $\left\{A_{n}: n<m\right\}$ in the sense that for all pairs S, T of finite disjoint subsets of m both

$$
\left(A \cap \bigcap_{n \in S} A_{n}\right) \backslash\left(\bigcup_{n \in T} A_{n}\right)
$$

and

$$
\bigcap_{n \in S} A_{n} \backslash\left(A \cup \bigcup_{n \in T} A_{n}\right)
$$

are infinite.
Proof. Let $\left(S_{n}, T_{n}\right)_{n \in \omega}$ be an enumeration of all pairs of disjoint finite subsets of m such that every such pair appears infinitely often.

By the assumptions on $\left(A_{n}\right)_{n \in \omega}$, we can choose a strictly increasing sequence $\left(a_{n}\right)_{n \in \omega}$ such that for all $n \in \omega$,

$$
a_{2 n}, a_{2 n+1} \in \bigcap_{k \in S_{n}} A_{k} \backslash\left(\bigcup_{k \in T_{n}} A_{k}\right) .
$$

Now the set $A=\left\{a_{2 n}: n \in \omega\right\}$ is independent over $\left\{A_{n}: n<m\right\}$. Namely, let S, T be disjoint finite subsets of m. Let $n \in \omega$ be such that $S=S_{n}$ and $T=T_{n}$. Now by the choice of $a_{2 n}$,

$$
a_{2 n} \in\left(A \cap \bigcap_{k \in S_{n}} A_{k}\right) \backslash\left(\bigcup_{k \in T_{n}} A_{k}\right) .
$$

On the other hand,

$$
a_{2 n+1} \in \bigcap_{k \in S_{n}} A_{k} \backslash\left(A \cup \bigcup_{k \in T_{n}} A_{k}\right) .
$$

Since there are infinitely many $n \in \omega$ with $(S, T)=\left(S_{n}, T_{n}\right)$, it follows that the sets

$$
\left(A \cap \bigcap_{k \in S_{n}} A_{k}\right) \backslash\left(\bigcup_{k \in T_{n}} A_{k}\right)
$$

and

$$
\bigcap_{k \in S_{n}} A_{k} \backslash\left(A \cup \bigcup_{k \in T_{n}} A_{k}\right)
$$

are both infinite.

Another straight forward application of Zorn's Lemma yields:
Lemma 3.2. Every independent family of subsets of ω is contained in a maximal independent family of subsets of ω.

Corollary 3.3. Every infinite maximal independent family is uncountable. In particular, there is an uncountable independent family of subsets of ω.

Proof. By Lemma 3.2, there is a maximal independent family. By Lemma 3.1 such a family cannot be finite or countably infinite.

As in the case of almost disjoint families, this corollary only guarantees the existence of independent families of size \aleph_{1}. But Fichtenholz and Kantorovich showed that there are independent families on ω of size continuum.

Theorem 3.4. There is an independent family of subsets of ω of size $2^{\aleph_{0}}$.
In the following proofs of this theorem, we will replace the countable set ω by other countable sets with a more suitable structure. Let us start with the original proof by Fichtenholz and Kantorovich [3] that was brought to my attention by Andreas Blass.

First proof. Let C be the countable set of all finite subsets of \mathbb{Q}. For each $r \in \mathbb{R}$ let

$$
A_{r}=\{a \in C: a \cap(-\infty, r] \text { is even }\} .
$$

Now the family $\left\{A_{r}: r \in \mathbb{R}\right\}$ is an independent family of subsets of C.
Let S and T be finite disjoint subsets of \mathbb{R}. A set $a \in C$ is an element of

$$
\bigcap_{r \in S} A_{r} \backslash\left(C \backslash \bigcup_{r \in T} A_{r}\right)
$$

if for all $r \in S, a \cap(-\infty, r]$ is odd and for all $r \in T, a \cap(-\infty, r]$ is even. But it is easy to see that there are infinitely many finite sets a of rational numbers that satisfy these requirements.

The following proof is due to Hausdorff and generalizes to higher cardinals [4]. We will discuss this generalization in Section 4.

Second proof. Let

$$
I=\{(n, A): n \in \omega \wedge A \subseteq \mathcal{P}(n)\}
$$

For all $X \subseteq \omega$ let $X^{\prime}=\{(n, A) \in I: X \cap n \in A\}$. We show that $\left\{X^{\prime}: X \in \mathcal{P}(\omega)\right\}$ is an independent family of subsets of I.

Let S and T be finite disjoint subsets of $\mathcal{P}(\omega)$. A pair $(n, A) \in I$ is in

$$
\bigcap_{X \in S} X^{\prime} \cap\left(I \backslash \bigcup_{X \in T} X^{\prime}\right)
$$

if for all $X \in S, X \cap n \in A$ and for all $X \in T, X \cap n \notin A$. Since S and T are finite, there is $n \in \omega$ such that for any two distinct $X, Y \in S \cup T, X \cap n \neq Y \cap n$. Let $A=\{X \cap n: X \in S\}$. Now

$$
(n, A) \in \bigcap_{X \in S} X^{\prime} \cap\left(I \backslash \bigcup_{X \in T} X^{\prime}\right)
$$

Since there are infinitely many n such that for any two distinct $X, Y \in S \cup T$, $X \cap n \neq Y \cap n$, this shows that

$$
\bigcap_{X \in S} X^{\prime} \cap\left(I \backslash \bigcup_{X \in T} X^{\prime}\right)
$$

is infinite.

A combinatorially simple, topological proof of the existence of large independent families can be obtained using the Hewitt-Marczewski-Pondiczery theorem which says that the product space $2^{\mathbb{R}}$ is separable ($[5,9,10]$, also see [2]). This is the first topological proof.

Third proof. For each $r \in R$ let $B_{r}=\left\{f \in 2^{\mathbb{R}}: f(r)=0\right\}$. Now whenever S and T are finite disjoint subsets of \mathbb{R},

$$
\bigcap_{r \in S} B_{r} \cap\left(2^{\mathbb{R}} \backslash \bigcup_{r \in T} B_{r}\right)
$$

is a nonempty clopen subset of $2^{\mathbb{R}}$.
The family $\left(B_{r}\right)_{r \in \mathbb{R}}$ is the prototypical example of an independent family of size continuum on any set. A striking fact about the space $2^{\mathbb{R}}$ is that it is separable. Namely, let D denote the collection of all functions $f: \mathbb{R} \rightarrow 2$ such that there are rational numbers $q_{0}<q_{1}<\cdots<q_{2 n-1}$ such that for all $x \in \mathbb{R}$,

$$
f(x)=1 \quad \Leftrightarrow \quad x \in \bigcup_{i<n}\left(q_{2 i}, q_{2 i+1}\right)
$$

D is a countable dense subset of $2^{\mathbb{R}}$.

For each $r \in \mathbb{R}$ let $A_{r}=B_{r} \cap D$. Now for all pairs S, T of finite disjoint subsets of \mathbb{R},

$$
\bigcap_{r \in S} A_{r} \cap\left(D \backslash \bigcup_{r \in T} A_{r}\right)=D \cap \bigcap_{r \in S} B_{r} \cap\left(2^{\mathbb{R}} \backslash \bigcup_{r \in T} B_{r}\right)
$$

is infinite, being the intersection of a dense subset with a nonempty open subset of a topological space without isolated points. It follows that $\left(A_{r}\right)_{r \in \mathbb{R}}$ is an independent family of size continuum on the countable set D.

The second topological proof of Theorem 3.4 was pointed out by Ramiro de la Vega.

Fourth proof. Let \mathcal{B} be a countable base for the topology on \mathbb{R} that is closed under finite unions. Now for each $r \in \mathbb{R}$ consider the set $A_{r}=\{B \in \mathcal{B}: r \in B\}$. Then $\left(A_{r}\right)_{r \in \mathbb{R}}$ is an independent family of subsets of the countable \mathcal{B}.

Namely, let S and T be disjoint finite subsets of \mathbb{R}. The set $\mathbb{R} \backslash T$ is open and hence there are open sets $U_{s} \in \mathcal{B}, s \in S$, such that each U_{s} contains s and is disjoint from T. Since \mathcal{B} is closed under finite unions, $U=\bigcup_{s \in S} U_{s} \in \mathcal{B}$. Clearly, there are actually infinitely many possible choices of a set $U \in \mathcal{B}$ such that $S \subseteq U$ and $T \cap U=\emptyset$. This shows that $\bigcap_{r \in S} A_{r} \backslash\left(\bigcup_{r \in T} A_{r}\right)$ is infinite.

A variant of the Hewitt-Marczewski-Pondiczery argument was mentioned by Martin Goldstern who claims to have heard it from Menachem Kojman.

Fifth proof. Let P be the set of all polynomials with rational coefficients. For each $r \in \mathbb{R}$ let $A_{r}=\{p \in P: p(r)>0\}$. If $S, T \subseteq \mathbb{R}$ are finite and disjoint, then there is a polynomial in P such that $p(r)>0$ for all $r \in A$ and $p(r) \leq 0$ for all $r \in T$. All positive multiples of p satisfy the same inequalities. It follows that $\left(A_{r}\right)_{r \in \mathbb{R}}$ is an independent family of size $2^{\aleph_{0}}$ over the countable set P.

The next proof was pointed out by Tim Gowers. This is the dynamical proof.
Sixth proof. Let X be a set of irrationals that is linearly independent over \mathbb{Q}. Kronecker's theorem states that for every finite set $\left\{r_{1}, \ldots, r_{k}\right\} \subseteq X$ with pairwise distinct r_{i}, the closure of the set $\left\{\left(n r_{1}, \ldots, n r_{k}\right): n \in \mathbb{Z}\right\}$ is all of the k-dimensional torus $\mathbb{R}^{k} / \mathbb{Z}^{k}$.

For each $r \in X$ let A_{r} be the set of all $n \in \mathbb{Z}$ such that the integer part of $n \cdot r$ is even. Then $\left\{A_{r}: r \in X\right\}$ is an independent family of size continuum. To see this, let $S, T \subseteq X$ be finite and disjoint. By Kronecker's theorem ([7], also see [1]) there are infinitely many $n \in \mathbb{Z}$ such that for all $r \in S$, the integer part of $n \cdot r$ is even and for all $r \in T$, the integer part of $n \cdot r$ is odd. For all such n,

$$
n \in \bigcap_{r \in S} A_{r} \cap \bigcap_{r \in T} \mathbb{Z} \backslash A_{r}
$$

The following proof was mentioned by KP Hart. Let us call it the almost disjoint proof.

Seventh proof. Let \mathcal{F} be an almost disjoint family on ω of size continuum. To each $A \in \mathcal{F}$ we assign the collection A^{\prime} of all finite subsets of ω that intersect A. Now $\left\{A^{\prime}: A \in \mathcal{F}\right\}$ is an independent family of size continuum.

Given disjoint finite sets $S, T \subseteq \mathcal{F}$, by the almost disjointness of \mathcal{F}, each $A \in S$ is almost disjoint from $\bigcup T$. It follows that there are infinitely many finite subsets of ω that intersect all $A \in S$ but do not intersect any $A \in T$. Hence

$$
\bigcap_{A \in S} A^{\prime} \cap\left(\omega \backslash \bigcup_{A \in T} A^{\prime}\right)
$$

is infinite.

The last proof was communicated by Peter Komjáth. This is the proof by finite approximation.

Eighth proof. First observe that for all $n \in \omega$ there is a family $\left(X_{k}\right)_{k<n}$ of subsets of 2^{n} such that for any two disjoint sets $S, T \subseteq n$,

$$
\bigcap_{k \in S} X_{k}^{n} \cap\left(2^{n} \backslash \bigcup_{k \in T} X_{k}\right)
$$

is nonempty. Namely, let $X_{k}=\left\{f \in 2^{n}: f(k)=0\right\}$.
Now choose, for every $n \in \omega$, a family $\left(X_{s}^{n}\right)_{s \in 2^{n}}$ of subsets of a finite set Y_{n} such that for disjoint sets $S, T \subseteq 2^{n}$,

$$
\bigcap_{s \in S} X_{s}^{n} \cap\left(2^{n} \backslash \bigcup_{s \in T} X_{s}^{n}\right)
$$

is nonempty. We may assume that the $Y_{n}, n \in \omega$, are pairwise disjoint.
For each $\sigma \in 2^{\omega}$ let $X_{\sigma}=\bigcup_{n \in \omega} X_{\sigma \mid n}^{n}$. Now $\left\{X_{\sigma}: \sigma \in 2^{\omega}\right\}$ is an independent family of size $2^{\aleph_{0}}$ on the countable set $\bigcup_{n \in \omega} Y_{n}$.

4. Independent families on Larger sets

We briefly point out that for every cardinal κ there is an independent family of size 2^{κ} of subsets of κ. We start with a corollary of the Hewitt-MarczewskiPondiczery Theorem higher cardinalities.

Lemma 4.1. Let κ be an infinite cardinal. Then $2^{2^{\kappa}}$ has a dense subset D such that for every nonempty clopen subset A of $2^{2^{\kappa}}, D \cap A$ is of size κ. In particular, $2^{2^{\kappa}}$ has a dense subset of size κ.

Proof. For each finite partial function s from κ to 2 let $[s]$ denote the set $\left\{f \in 2^{\kappa}\right.$: $s \subseteq f\}$. The product topology on 2^{κ} is generated by all sets of the form $[s]$. Every clopen subset of 2^{κ} is compact and therefore the union of finitely many sets of the form $[s]$. It follows that 2^{κ} has exactly κ clopen subsets. The continuous functions from 2^{κ} to 2 are just the characteristic functions of clopen sets. Hence there are only κ continous functions from 2^{κ} to 2 . Let D denote the set of all continuous functions from 2^{κ} to 2 .

Since finitely many points in 2^{κ} can be separated simultaneously by pairwise disjoint clopen sets, every finite partial function from 2^{κ} to 2 extends to a continuous functions defined on all of 2^{κ}. It follows that D is a dense subset of $2^{2^{\kappa}}$ of size κ.

Now, if A is a nonempty clopen subset of $2^{2^{\kappa}}$, then there is a finite partial function s from 2^{κ} to 2 such that $[s] \subseteq A$. Cleary, the number of continuous extensions of s to all of 2^{κ} is κ. Hence $D \cap A$ is of size κ.

As in the case of independent families on ω, from the previous lemma we can derive the existence of large independent families of subsets of κ.

Theorem 4.2. For every infinite cardinal cardinal κ, there is a family \mathcal{F} of size 2^{κ} such that for all disjoint finite sets $\mathcal{A}, \mathcal{B} \subseteq \mathcal{F}$, the set

$$
\left(\cap_{\mathcal{A}}\right) \backslash \cup_{\mathcal{B}}
$$

is of size κ.
First proof. Let $D \subseteq 2^{2^{\kappa}}$ be as in Lemma 4.1. For each $x \in 2^{\kappa}$ let $B_{x}=\left\{f \in 2^{2^{\kappa}}\right.$: $f(x)=0\}$ and $A_{x}=D \cap B_{x}$. Whenever S and T are disjoint finite subsets of 2^{κ}, then

$$
\left(\bigcap_{x \in S} B_{x}\right) \backslash \bigcup_{x \in T} B_{x}
$$

is a nonempty clopen subset of $2^{2^{\kappa}}$. It follows that

$$
\left(\bigcap_{x \in S} A_{x}\right) \backslash \bigcup_{x \in T} A_{x}=D \cap\left(\left(\bigcap_{x \in S} B_{x}\right) \backslash \bigcup_{x \in T} B_{x}\right)
$$

is of size κ. It follows that $\mathcal{F}=\left\{A_{x}: x \in 2^{\kappa}\right\}$ is as desired.
We can translate this topological proof into combinatorics as follows:
The continuous functions from 2^{κ} to 2 are just characteristic functions of clopen sets. The basic clopen sets are of the form $[s]$, where s is a finite partial function from κ to 2 . All clopen sets are finite unions of sets of the form $[s]$. Hence we can code clopen subsets of 2^{κ} in a natural way by finite sets of finite partial functions from κ to 2 . We formulate the previous proof in this combinatorial setting. The following proof is just a generalization of our second proof of Theorem 3.4. This is essentially Hausdorff's proof of the existence large independent families in higher cardinalities.

Second proof. Let D be the collection of all finite sets of finite partial functions from κ to 2 . For each $f: 2^{\kappa} \rightarrow 2$ let A_{f} be the collection of all $a \in D$ such that for all $s \in a$ and all $x: \kappa \rightarrow 2$ with $s \subseteq x$ we have $f(x)=1$.

Claim 4.3. For any two disjoint finite sets $S, T \subseteq 2^{\kappa}$ the set

$$
\left(\bigcap_{x \in S} A_{x}\right) \backslash \bigcup_{x \in T} A_{x}
$$

is of size κ.

For all $x \in S$ and all $y \in T$ there is $\alpha \in \kappa$ such that $x(\alpha) \neq y(\alpha)$. It follows that for every $x \in S$ there is a finite partial function s from κ to 2 such that $s \subseteq x$ and for all $y \in T, s \nsubseteq T$. Hence there is a finite set a of finite partial functions from κ to 2 such that all $x \in S$ are extensions of some $s \in a$ and no $y \in T$ extends any $s \in a$. Now $a \in\left(\bigcap_{x \in S} A_{x}\right) \backslash \bigcup_{x \in T} A_{x}$. But for every $\alpha<\kappa$ we can build the set a in such a way that α is in the domain of some $s \in a$. It follows that there are in fact κ many distinct sets $a \in\left(\bigcap_{x \in S} A_{x}\right) \backslash \bigcup_{x \in T} A_{x}$.

References

[1] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York (1957)
[2] R. Engelking, General topology, translated from the Polish by the author, second edition. Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin (1989)
[3] G. M. Fichtenholz, L. V. Kantorovich, Sur le opérations linéares dans l'espace de fonctions bornées, Studia Math. 5 (1935), 69-98
[4] F. Hausdorff, Über zwei Sätze von G. Fichtenholz und L. Kantorovich, Studia Math. 6 (1936), 18-19
[5] E. Hewitt, A remark on density characters, Bull. Amer. Math. Soc. 52 (1946), 641-643
[6] T. Jech, Set theory. The third millennium edition, revised and expanded, Springer Monographs in Mathematics. Springer-Verlag, Berlin (2003)
[7] L. Kronecker, Näherungsweise ganzzahlige Auflösung linearer Gleichungen, Monatsber. Königlich. Preuss. Akad. Wiss. Berlin (1884), 1179-1193, 1271-1299.
[8] K. Kunen, Set theory, An introduction to independence proofs, Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam-New York (1980)
[9] E. Marczewski, Séparabilité et multiplication cartésienne des espaces topologiques, Fund. Math. 34 (1947), 127-143
[10] E. S. Pondiczery, Power problems in abstract spaces, Duke Math. J. 11 (1944), 835-837
[11] B. Pospísisil, Remark on bicompact spaces, Ann. of Math. (2) 38 (1937), 845-846

Hausdorff Center for Mathematics, Endenicher Allee 62, 53115 Bonn, Germany
E-mail address: stefan.geschke@hcm.uni-bonn.de

