ALMOST DISJOINT AND INDEPENDENT FAMILIES

STEFAN GESCHKE

ABSTRACT. I collect a number of proofs of the existence of large almost disjoint and independent families on the natural numbers. This is mostly the outcome of a discussion on math *overflow*.

1. Introduction

A family $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is an *independent* family (over ω) if for every pair \mathcal{A} , \mathcal{B} of disjoint finite subsets of \mathcal{F} the set

$$\bigcap \mathcal{A} \cap \left(\omega \setminus \bigcup \mathcal{B}\right)$$

is infinite. Fichtenholz and Kantorovich showed that there is an independent family on ω of size continuum [3] (also see [6] or [8]). I collect several proofs of this fundamental fact. A typical application of the existence of a large independent family is the result that there are $2^{2^{\aleph_0}}$ ultrafilters on ω due to Pospíšil [11]:

Given an independent family $(A_{\alpha})_{\alpha<2^{\aleph_0}}$, for every function $f:2^{\aleph_0}\to 2$ there is an ultrafilter p_f on ω such that for all $\alpha<2^{\aleph_0}$ we have $A_{\alpha}\in p_f$ iff $f(\alpha)=1$. Now $(p_f)_{f:2^{\aleph_0}\to 2}$ is a family of size $2^{2^{\aleph_0}}$ of pairwise distinct ultrafilters.

Independent families in some sense behave similarly to almost disjoint families. Subsets A and B of ω are almost disjoint if $A \cap B$ is finite. A family \mathcal{F} of infinite subsets of $\mathcal{P}(\omega)$ is almost disjoint any two distinct elements A, B of \mathcal{F} are almost disjoint.

2. Almost disjoint families

An easy diagonalisation shows that every countably infinite, almost disjoint family can be extended.

Lemma 2.1. Let $(A_n)_{n\in\omega}$ be a sequence of pairwise almost disjoint, infinite subsets of ω . Then there is an infinite set $A\subseteq\omega$ that is almost disjoint from all A_n , $n\in\omega$.

Proof. First observe that since the A_n are pairwise almost disjoint, for all $n \in \omega$ the set

$$\omega \setminus \bigcup_{k < n} A_k$$

is infinite. Hence we can choose a strictly increasing sequence $(a_n)_{n \in \omega}$ of natural numbers such that for al $n \in \omega$, $a_n \in \omega \setminus \bigcup_{k < n} A_k$. Clearly, if k < n, then $a_n \notin A_k$.

Date: November 24, 2011.

It follows that for every $k \in \omega$ the infinite set $A = \{a_n : n \in \omega\}$ is almost disjoint from A_k .

A straight forward application of Zorn's Lemma gives the following:

Lemma 2.2. Every almost disjoint family of subsets of ω is contained in a maximal almost disjoint family of subsets of ω .

Corollary 2.3. Every infinite, maximal almost disjoint family is uncountable. In particular, there is an uncountable almost disjoint family of subsets of ω .

Proof. The uncountability of an infinite, maximal almost disjoint family follows from Lemma 2.1. To show the existence of such a family, choose a partition $(A_n)_{n\in\omega}$ of ω into pairwise disjoint, infinite sets. By Lemma 2.2, the almost disjoint family $\{A_n : n \in \omega\}$ extends to a maximal almost disjoint family, which has to be uncountable by our previous observation.

Unfortunately, this corollary only guarantees the existence of an almost disjoint family of size \aleph_1 , not necessarily of size 2^{\aleph_0} .

Theorem 2.4. There is an almost disjoint family of subsets of ω of size 2^{\aleph_0} .

All the following proofs of Theorem 2.4 have in common that instead of on ω , the almost disjoint family is constructed as a family of subsets of some other countable set that has a more suitable structure.

First proof. We define the almost disjoint family as a family of subsets of the complete binary tree $2^{<\omega}$ of height ω rather than ω itself. For each $x \in 2^{\omega}$ let $A_x = \{x \mid n : n \in \omega\}$.

If $x, y \in 2^{\omega}$ are different and $x(n) \neq y(n)$, then $A_x \cap A_y$ contains no sequence of length > n. It follows that $\{A_x : x \in 2^{\omega}\}$ is an almost disjoint family of size continuum.

Similarly, one can consider for each $x \in [0,1]$ the set B_x of finite initial segments of the decimal expansion of x. $\{B_x : x \in [0,1]\}$ is an almost disjoint family of size 2^{\aleph_0} of subsets of a fixed countable set.

Second proof. We again identify ω with another countable set, in this case the set \mathbb{Q} of rational numbers. For each $r \in \mathbb{R}$ choose a sequence $(q_n^r)_{n \in \omega}$ of rational numbers that is not eventually constant and converges to r. Now let $A_r = \{q_n^r : n \in \omega\}$.

For $s, r \in \mathbb{R}$ with $s \neq r$ choose $\varepsilon > 0$ so that

$$(s-\varepsilon,s+\varepsilon)\cap(r-\varepsilon,r+\varepsilon)=\emptyset.$$

Now $A_s \cap (s - \varepsilon, s + \varepsilon)$ and $A_r \cap (r - \varepsilon, r + \varepsilon)$ are both cofinite and hence $A_s \cap A_r$ is finite. It follows that $\{A_r : r \in \mathbb{R}\}$ is an almost disjoint family of size 2^{\aleph_0} .

Third proof. We construct an almost disjoint family on the countable set $\mathbb{Z} \times \mathbb{Z}$. For each angle $\alpha \in [0, 2\pi)$ let A_{α} be the set of all elements of $\mathbb{Z} \times \mathbb{Z}$ that have distance ≤ 1 to the line $L_{\alpha} = \{(x, y) \in \mathbb{R}^2 : y = \tan(\alpha) \cdot x\}$.

For two distinct angles α and β the set of points in \mathbb{R}^2 of distance ≤ 1 to both L_{α} and L_{β} is compact. It follows that $A_{\alpha} \cap A_{\beta}$ is finite. Hence $\{A_{\alpha} : \alpha \in [0, 2\pi)\}$ is an almost disjoint family of size continuum.

Fourth proof. We define a map $e:[0,1]\to\omega^{\omega}$ as follows: for each $x\in[0,1]$ and $n\in\omega$ let e(x)(n) be the integer part of $n\cdot x$.

For every $x \in [0,1]$ let $A_x = \{(n,e(x)(n)) : n \in \omega\}$. If x < y, then for all sufficiently large $n \in \omega$, e(x)(n) < e(y)(n). It follows that $\{A_x : x \in [0,1]\}$ is an almost disjoint family of subsets of $\omega \times \omega$.

Observe that e is an embedding of $([0,1], \leq)$ into $(\omega^{\omega}, \leq^*)$, where $f \leq^* g$ if for almost all $n \in \omega$, $f(n) \leq g(n)$.

3. Independent families

Independent families behave similarly to almost disjoint families. The following results are analogs of the corresponding facts for almost disjoint families.

Lemma 3.1. Let m be an ordinal $\leq \omega$ and let $(A_n)_{n < m}$ be a sequence of infinite subsets of ω such that for all pairs S, T of finite disjoint subsets of m the set

$$\bigcap_{n \in S} A_n \setminus \left(\bigcup_{n \in T} A_n\right)$$

is infinite. Then there is an infinite set $A \subseteq \omega$ that is independent over the family $\{A_n : n < m\}$ in the sense that for all pairs S, T of finite disjoint subsets of m both

$$\left(A \cap \bigcap_{n \in S} A_n\right) \setminus \left(\bigcup_{n \in T} A_n\right)$$

and

$$\bigcap_{n \in S} A_n \setminus \left(A \cup \bigcup_{n \in T} A_n \right)$$

are infinite.

Proof. Let $(S_n, T_n)_{n \in \omega}$ be an enumeration of all pairs of disjoint finite subsets of m such that every such pair appears infinitely often.

By the assumptions on $(A_n)_{n\in\omega}$, we can choose a strictly increasing sequence $(a_n)_{n\in\omega}$ such that for all $n\in\omega$,

$$a_{2n},a_{2n+1}\in\bigcap_{k\in S_n}A_k\setminus\left(\bigcup_{k\in T_n}A_k\right).$$

Now the set $A = \{a_{2n} : n \in \omega\}$ is independent over $\{A_n : n < m\}$. Namely, let S, T be disjoint finite subsets of m. Let $n \in \omega$ be such that $S = S_n$ and $T = T_n$. Now by the choice of a_{2n} ,

$$a_{2n} \in \left(A \cap \bigcap_{k \in S_n} A_k\right) \setminus \left(\bigcup_{k \in T_n} A_k\right).$$

On the other hand,

$$a_{2n+1} \in \bigcap_{k \in S_n} A_k \setminus \left(A \cup \bigcup_{k \in T_n} A_k \right).$$

Since there are infinitely many $n \in \omega$ with $(S,T) = (S_n,T_n)$, it follows that the sets

$$\left(A \cap \bigcap_{k \in S_n} A_k\right) \setminus \left(\bigcup_{k \in T_n} A_k\right)$$

and

$$\bigcap_{k \in S_n} A_k \setminus \left(A \cup \bigcup_{k \in T_n} A_k \right)$$

are both infinite.

Another straight forward application of Zorn's Lemma yields:

Lemma 3.2. Every independent family of subsets of ω is contained in a maximal independent family of subsets of ω .

Corollary 3.3. Every infinite maximal independent family is uncountable. In particular, there is an uncountable independent family of subsets of ω .

Proof. By Lemma 3.2, there is a maximal independent family. By Lemma 3.1 such a family cannot be finite or countably infinite. \Box

As in the case of almost disjoint families, this corollary only guarantees the existence of independent families of size \aleph_1 . But Fichtenholz and Kantorovich showed that there are independent families on ω of size continuum.

Theorem 3.4. There is an independent family of subsets of ω of size 2^{\aleph_0} .

In the following proofs of this theorem, we will replace the countable set ω by other countable sets with a more suitable structure. Let us start with the original proof by Fichtenholz and Kantorovich [3] that was brought to my attention by Andreas Blass.

First proof. Let C be the countable set of all finite subsets of \mathbb{Q} . For each $r \in \mathbb{R}$ let

$$A_r = \{a \in C : a \cap (-\infty, r] \text{ is even}\}.$$

Now the family $\{A_r : r \in \mathbb{R}\}$ is an independent family of subsets of C.

Let S and T be finite disjoint subsets of \mathbb{R} . A set $a \in C$ is an element of

$$\bigcap_{r \in S} A_r \setminus \left(C \setminus \bigcup_{r \in T} A_r \right)$$

if for all $r \in S$, $a \cap (-\infty, r]$ is odd and for all $r \in T$, $a \cap (-\infty, r]$ is even. But it is easy to see that there are infinitely many finite sets a of rational numbers that satisfy these requirements.

The following proof is due to Hausdorff and generalizes to higher cardinals [4]. We will discuss this generalization in Section 4.

Second proof. Let

$$I = \{(n, A) : n \in \omega \land A \subseteq \mathcal{P}(n)\}$$

For all $X \subseteq \omega$ let $X' = \{(n, A) \in I : X \cap n \in A\}$. We show that $\{X' : X \in \mathcal{P}(\omega)\}$ is an independent family of subsets of I.

Let S and T be finite disjoint subsets of $\mathcal{P}(\omega)$. A pair $(n, A) \in I$ is in

$$\bigcap_{X \in S} X' \cap \left(I \setminus \bigcup_{X \in T} X'\right)$$

if for all $X \in S$, $X \cap n \in A$ and for all $X \in T$, $X \cap n \notin A$. Since S and T are finite, there is $n \in \omega$ such that for any two distinct $X, Y \in S \cup T$, $X \cap n \neq Y \cap n$. Let $A = \{X \cap n : X \in S\}$. Now

$$(n,A) \in \bigcap_{X \in S} X' \cap \left(I \setminus \bigcup_{X \in T} X'\right).$$

Since there are infinitely many n such that for any two distinct $X,Y\in S\cup T$, $X\cap n\neq Y\cap n$, this shows that

$$\bigcap_{X \in S} X' \cap \left(I \setminus \bigcup_{X \in T} X'\right)$$

is infinite. \Box

A combinatorially simple, topological proof of the existence of large independent families can be obtained using the Hewitt-Marczewski-Pondiczery theorem which says that the product space $2^{\mathbb{R}}$ is separable ([5, 9, 10], also see [2]). This is the *first* topological proof.

Third proof. For each $r \in R$ let $B_r = \{ f \in 2^{\mathbb{R}} : f(r) = 0 \}$. Now whenever S and T are finite disjoint subsets of \mathbb{R} ,

$$\bigcap_{r \in S} B_r \cap \left(2^{\mathbb{R}} \setminus \bigcup_{r \in T} B_r\right)$$

is a nonempty clopen subset of $2^{\mathbb{R}}$.

The family $(B_r)_{r \in \mathbb{R}}$ is the prototypical example of an independent family of size continuum on any set. A striking fact about the space $2^{\mathbb{R}}$ is that it is separable. Namely, let D denote the collection of all functions $f: \mathbb{R} \to 2$ such that there are rational numbers $q_0 < q_1 < \cdots < q_{2n-1}$ such that for all $x \in \mathbb{R}$,

$$f(x) = 1 \quad \Leftrightarrow \quad x \in \bigcup_{i < n} (q_{2i}, q_{2i+1}).$$

D is a countable dense subset of $2^{\mathbb{R}}$.

For each $r \in \mathbb{R}$ let $A_r = B_r \cap D$. Now for all pairs S, T of finite disjoint subsets of \mathbb{R} ,

$$\bigcap_{r \in S} A_r \cap \left(D \setminus \bigcup_{r \in T} A_r \right) = D \cap \bigcap_{r \in S} B_r \cap \left(2^{\mathbb{R}} \setminus \bigcup_{r \in T} B_r \right)$$

is infinite, being the intersection of a dense subset with a nonempty open subset of a topological space without isolated points. It follows that $(A_r)_{r\in\mathbb{R}}$ is an independent family of size continuum on the countable set D.

The *second topological proof* of Theorem 3.4 was pointed out by Ramiro de la Vega.

Fourth proof. Let \mathcal{B} be a countable base for the topology on \mathbb{R} that is closed under finite unions. Now for each $r \in \mathbb{R}$ consider the set $A_r = \{B \in \mathcal{B} : r \in B\}$. Then $(A_r)_{r \in \mathbb{R}}$ is an independent family of subsets of the countable \mathcal{B} .

Namely, let S and T be disjoint finite subsets of \mathbb{R} . The set $\mathbb{R} \setminus T$ is open and hence there are open sets $U_s \in \mathcal{B}$, $s \in S$, such that each U_s contains s and is disjoint from T. Since \mathcal{B} is closed under finite unions, $U = \bigcup_{s \in S} U_s \in \mathcal{B}$. Clearly, there are actually infinitely many possible choices of a set $U \in \mathcal{B}$ such that $S \subseteq U$ and $T \cap U = \emptyset$. This shows that $\bigcap_{r \in S} A_r \setminus (\bigcup_{r \in T} A_r)$ is infinite.

A variant of the Hewitt-Marczewski-Pondiczery argument was mentioned by Martin Goldstern who claims to have heard it from Menachem Kojman.

Fifth proof. Let P be the set of all polynomials with rational coefficients. For each $r \in \mathbb{R}$ let $A_r = \{p \in P : p(r) > 0\}$. If $S, T \subseteq \mathbb{R}$ are finite and disjoint, then there is a polynomial in P such that p(r) > 0 for all $r \in A$ and $p(r) \le 0$ for all $r \in T$. All positive multiples of p satisfy the same inequalities. It follows that $(A_r)_{r \in \mathbb{R}}$ is an independent family of size 2^{\aleph_0} over the countable set P.

The next proof was pointed out by Tim Gowers. This is the *dynamical proof*.

Sixth proof. Let X be a set of irrationals that is linearly independent over \mathbb{Q} . Kronecker's theorem states that for every finite set $\{r_1,\ldots,r_k\}\subseteq X$ with pairwise distinct r_i , the closure of the set $\{(nr_1,\ldots,nr_k):n\in\mathbb{Z}\}$ is all of the k-dimensional torus $\mathbb{R}^k/\mathbb{Z}^k$.

For each $r \in X$ let A_r be the set of all $n \in \mathbb{Z}$ such that the integer part of $n \cdot r$ is even. Then $\{A_r : r \in X\}$ is an independent family of size continuum. To see this, let $S, T \subseteq X$ be finite and disjoint. By Kronecker's theorem ([7], also see [1]) there are infinitely many $n \in \mathbb{Z}$ such that for all $r \in S$, the integer part of $n \cdot r$ is even and for all $r \in T$, the integer part of $n \cdot r$ is odd. For all such n,

$$n \in \bigcap_{r \in S} A_r \cap \bigcap_{r \in T} \mathbb{Z} \setminus A_r.$$

The following proof was mentioned by KP Hart. Let us call it the *almost disjoint* proof.

Seventh proof. Let \mathcal{F} be an almost disjoint family on ω of size continuum. To each $A \in \mathcal{F}$ we assign the collection A' of all finite subsets of ω that intersect A. Now $\{A': A \in \mathcal{F}\}$ is an independent family of size continuum.

Given disjoint finite sets $S, T \subseteq \mathcal{F}$, by the almost disjointness of \mathcal{F} , each $A \in S$ is almost disjoint from $\bigcup T$. It follows that there are infinitely many finite subsets of ω that intersect all $A \in S$ but do not intersect any $A \in T$. Hence

$$\bigcap_{A \in S} A' \cap \left(\omega \setminus \bigcup_{A \in T} A'\right)$$

is infinite. \Box

The last proof was communicated by Peter Komjáth. This is the *proof by finite* approximation.

Eighth proof. First observe that for all $n \in \omega$ there is a family $(X_k)_{k < n}$ of subsets of 2^n such that for any two disjoint sets $S, T \subseteq n$,

$$\bigcap_{k \in S} X_k^n \cap \left(2^n \setminus \bigcup_{k \in T} X_k\right)$$

is nonempty. Namely, let $X_k = \{ f \in 2^n : f(k) = 0 \}.$

Now choose, for every $n \in \omega$, a family $(X_s^n)_{s \in 2^n}$ of subsets of a finite set Y_n such that for disjoint sets $S, T \subseteq 2^n$,

$$\bigcap_{s \in S} X_s^n \cap \left(2^n \setminus \bigcup_{s \in T} X_s^n\right)$$

is nonempty. We may assume that the Y_n , $n \in \omega$, are pairwise disjoint.

For each $\sigma \in 2^{\omega}$ let $X_{\sigma} = \bigcup_{n \in \omega} X_{\sigma \mid n}^{n}$. Now $\{X_{\sigma} : \sigma \in 2^{\omega}\}$ is an independent family of size 2^{\aleph_0} on the countable set $\bigcup_{n \in \omega} Y_n$.

4. Independent families on larger sets

We briefly point out that for every cardinal κ there is an independent family of size 2^{κ} of subsets of κ . We start with a corollary of the Hewitt-Marczewski-Pondiczery Theorem higher cardinalities.

Lemma 4.1. Let κ be an infinite cardinal. Then $2^{2^{\kappa}}$ has a dense subset D such that for every nonempty clopen subset A of $2^{2^{\kappa}}$, $D \cap A$ is of size κ . In particular, $2^{2^{\kappa}}$ has a dense subset of size κ .

Proof. For each finite partial function s from κ to 2 let [s] denote the set $\{f \in 2^{\kappa} : s \subseteq f\}$. The product topology on 2^{κ} is generated by all sets of the form [s]. Every clopen subset of 2^{κ} is compact and therefore the union of finitely many sets of the form [s]. It follows that 2^{κ} has exactly κ clopen subsets. The continuous functions from 2^{κ} to 2 are just the characteristic functions of clopen sets. Hence there are only κ continuous functions from 2^{κ} to 2. Let D denote the set of all continuous functions from 2^{κ} to 2.

Since finitely many points in 2^{κ} can be separated simultaneously by pairwise disjoint clopen sets, every finite partial function from 2^{κ} to 2 extends to a continuous functions defined on all of 2^{κ} . It follows that D is a dense subset of $2^{2^{\kappa}}$ of size κ .

Now, if A is a nonempty clopen subset of $2^{2^{\kappa}}$, then there is a finite partial function s from 2^{κ} to 2 such that $[s] \subseteq A$. Cleary, the number of continuous extensions of s to all of 2^{κ} is κ . Hence $D \cap A$ is of size κ .

As in the case of independent families on ω , from the previous lemma we can derive the existence of large independent families of subsets of κ .

Theorem 4.2. For every infinite cardinal cardinal κ , there is a family \mathcal{F} of size 2^{κ} such that for all disjoint finite sets $\mathcal{A}, \mathcal{B} \subseteq \mathcal{F}$, the set

$$(\bigcap A) \setminus \bigcup B$$

is of size κ .

First proof. Let $D \subseteq 2^{2^{\kappa}}$ be as in Lemma 4.1. For each $x \in 2^{\kappa}$ let $B_x = \{f \in 2^{2^{\kappa}} : f(x) = 0\}$ and $A_x = D \cap B_x$. Whenever S and T are disjoint finite subsets of 2^{κ} , then

$$\left(\bigcap_{x\in S} B_x\right) \setminus \bigcup_{x\in T} B_x$$

is a nonempty clopen subset of $2^{2^{\kappa}}$. It follows that

$$\left(\bigcap_{x\in S} A_x\right) \setminus \bigcup_{x\in T} A_x = D \cap \left(\left(\bigcap_{x\in S} B_x\right) \setminus \bigcup_{x\in T} B_x\right)$$

is of size κ . It follows that $\mathcal{F} = \{A_x : x \in 2^{\kappa}\}$ is as desired.

We can translate this topological proof into combinatorics as follows:

The continuous functions from 2^{κ} to 2 are just characteristic functions of clopen sets. The basic clopen sets are of the form [s], where s is a finite partial function from κ to 2. All clopen sets are finite unions of sets of the form [s]. Hence we can code clopen subsets of 2^{κ} in a natural way by finite sets of finite partial functions from κ to 2. We formulate the previous proof in this combinatorial setting. The following proof is just a generalization of our second proof of Theorem 3.4. This is essentially Hausdorff's proof of the existence large independent families in higher cardinalities.

Second proof. Let D be the collection of all finite sets of finite partial functions from κ to 2. For each $f: 2^{\kappa} \to 2$ let A_f be the collection of all $a \in D$ such that for all $s \in a$ and all $s : \kappa \to 2$ with $s \subseteq s$ we have f(s) = 1.

Claim 4.3. For any two disjoint finite sets $S, T \subseteq 2^{\kappa}$ the set

$$\left(\bigcap_{x\in S}A_x\right)\setminus\bigcup_{x\in T}A_x$$

is of size κ .

For all $x \in S$ and all $y \in T$ there is $\alpha \in \kappa$ such that $x(\alpha) \neq y(\alpha)$. It follows that for every $x \in S$ there is a finite partial function s from κ to 2 such that $s \subseteq x$ and for all $y \in T$, $s \not\subseteq T$. Hence there is a finite set a of finite partial functions from κ to 2 such that all $x \in S$ are extensions of some $s \in a$ and no $y \in T$ extends any $s \in a$. Now $a \in (\bigcap_{x \in S} A_x) \setminus \bigcup_{x \in T} A_x$. But for every $\alpha < \kappa$ we can build the set a in such a way that α is in the domain of some $s \in a$. It follows that there are in fact κ many distinct sets $a \in (\bigcap_{x \in S} A_x) \setminus \bigcup_{x \in T} A_x$.

References

- [1] J. W. S. Cassels, **An introduction to Diophantine approximation**, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York (1957)
- [2] R. Engelking, **General topology**, translated from the Polish by the author, second edition. Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin (1989)
- [3] G. M. Fichtenholz, L. V. Kantorovich, Sur le opérations linéares dans l'espace de fonctions bornées, Studia Math. 5 (1935), 69–98
- [4] F. Hausdorff, Über zwei Sätze von G. Fichtenholz und L. Kantorovich, Studia Math. 6 (1936), 18–19
- [5] E. Hewitt, A remark on density characters, Bull. Amer. Math. Soc. 52 (1946), 641-643
- [6] T. Jech, Set theory. The third millennium edition, revised and expanded, Springer Monographs in Mathematics. Springer-Verlag, Berlin (2003)
- [7] L. Kronecker, Näherungsweise ganzzahlige Auflösung linearer Gleichungen, Monatsber.
 Königlich. Preuss. Akad. Wiss. Berlin (1884), 1179–1193, 1271–1299.
- [8] K. Kunen, **Set theory, An introduction to independence proofs**, Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam-New York (1980)
- [9] E. Marczewski, Séparabilité et multiplication cartésienne des espaces topologiques, Fund. Math. 34 (1947), 127–143
- [10] E. S. Pondiczery, Power problems in abstract spaces, Duke Math. J. 11 (1944), 835–837
- [11] B. Pospíšil, Remark on bicompact spaces, Ann. of Math. (2) 38 (1937), 845–846

 $\label{thm:continuous} Hausdorff \ Center \ for \ Mathematics, \ Endenicher \ Allee \ 62, \ 53115 \ Bonn, \ Germany \\ E-mail \ address: \ {\tt stefan.geschke@hcm.uni-bonn.de}$