
A Comparative Study of Language Support for
Generic Programming

Ronald Garcia Jaakko Järvi Andrew Lumsdaine
Jeremy Siek Jeremiah Willcock

Open Systems Lab
Indiana University Bloomington

Bloomington, IN USA

{garcia,jajarvi,lums,jsiek,jewillco}@osl.iu.edu

ABSTRACT
Many modern programming languages support basic generic pro-
gramming, sufficient to implement type-safe polymorphic contain-
ers. Some languages have moved beyond this basic support to
a broader, more powerful interpretation of generic programming,
and their extensions have proven valuable in practice. This pa-
per reports on a comprehensive comparison of generics in six pro-
gramming languages: C++, Standard ML, Haskell, Eiffel, Java (with
its proposed generics extension), and Generic C#. By implement-
ing a substantial example in each of these languages, we identify
eight language features that support this broader view of generic
programming. We find these features are necessary to avoid awk-
ward designs, poor maintainability, unnecessary run-time checks,
and painfully verbose code. As languages increasingly support
generics, it is important that language designers understand the fea-
tures necessary to provide powerful generics and that their absence
causes serious difficulties for programmers.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—reusable li-
braries; D.3.2 [Programming Languages]: Language Classifica-
tions—multiparadigm languages; D.3.3 [Programming Langua-
ges]: Language Constructs and Features—abstract data types, con-
straints, polymorphism
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1. INTRODUCTION
Generic programming is an increasingly popular and important

paradigm for software development and many modern program-
ming languages provide basic support for it. For example, the use
of type-safe polymorphic containers is routine programming prac-
tice today. Some languages have moved beyond elementary gener-
ics to a broader, more powerful interpretation, and their extensions
have proven valuable in practice. One domain where generic pro-
gramming has been particularly effective is reusable libraries of
software components, an example of which is the Standard Tem-
plate Library (STL), now part of the C++ Standard Library [23, 45].
As the generic programming paradigm gains momentum, it is im-
portant to clearly and deeply understand the language issues. In
particular, it is important to understand what language features are
required to support the broader notion of generic programming.

To aid in this process, we present results of an in-depth study
comparing six programming languages that support generics: Stan-
dard ML [35], C++ [17], Haskell [21], Eiffel [30], Java (with the pro-
posed genericity extension) [6], and Generic C# [24, 33]. The first
four currently support generics while the latter two have proposed
extensions (and prototype implementations) that do so. These lan-
guages were selected because they are widely used and represent
the state of the art in programming languages with generics.

Our high-level goals for this study were the following:

• Understand what language features are necessary to support
generic programming;

• Understand the extent to which specific languages support
generic programming;

• Provide guidance for development of language support for
generics; and

• Illuminate for the community some of the power and sub-
tleties of generic programming.

It is decidedly not a goal of this paper to demonstrate that one lan-
guage is “better” than any other language. This paper is also not
a comparison of generic programming to object-oriented program-
ming (or to any other paradigm).

To conduct the study, we designed a model library by extract-
ing a small but significant example of generic programming from a
state-of-the art generic library (the Boost Graph Library [41]). The
model library was fully implemented in all six target languages.
This example was chosen because it includes a variety of generic
programming techniques (some beyond the scope of, say, the STL)
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and could therefore expose many subtleties of generic program-
ming. We attempted to create a uniform implementation across
all of the languages while still using the standard techniques and
idioms of each language. For each implementation, we evaluated
the language features available to realize different facets of generic
programming. In addition, we evaluated each implementation with
respect to software quality issues that generic programming en-
ables, such as modularity, safety, and conciseness of expression.

The results of this process constitute the main results of this pa-
per and are summarized in Table 1. The table lists the eight lan-
guage features that we identified as being important to generic pro-
gramming and shows the level of support for that feature in each
language. We find these features are necessary for the development
of high-quality generic libraries. Incomplete support of these fea-
tures can result in awkward designs, poor maintainability, unnec-
essary run-time checks, and painfully verbose code. As languages
increasingly support generics, it is important that language design-
ers understand the features necessary to provide powerful generics
and that their absence causes serious difficulties for programmers.

The rest of this paper describes how we reached the conclusions
in the table and why those language properties are important. The
paper is organized as follows. Section 2 provides a brief introduc-
tion to generic programming and defines the terminology we use
in the paper. Section 3 describes the design of the generic graph li-
brary that forms the basis for our comparisons. Sections 4 through 9
present the individual implementations of the graph library in the
selected languages. Each of these sections also evaluates the level
of support for generic programming provided by each language.
In Section 10 we discuss in detail the most important issues we
encountered during the course of this study and provide a detailed
explanation of Table 1. We present some conclusions in Section 11.

2. GENERIC PROGRAMMING
Definitions of generic programming vary. Typically, generic pro-

gramming involves type parameters for data types and functions.
While it is true that type parameters are required for generic pro-
gramming, there is much more to generic programming than just
type parameters. Inspired by the STL, we take a broader view of
generic programming and use the definition from [18] reproduced
in Figure 1.

Associated with this definition, terminology and techniques for
carrying out generic programming (and for supporting these key
ideas) have emerged.

Terminology
Fundamental to realizing generic algorithms is the notion of ab-
straction: generic algorithms are specified in terms of abstract prop-
erties of types, not in terms of particular types. Following the ter-
minology of Stepanov and Austern, we adopt the term concept to
mean the formalization of an abstraction as a set of requirements
on a type (or on a set of types) [1]. These requirements may be
semantic as well as syntactic. A concept may incorporate the re-
quirements of another concept, in which case the first concept is
said to refine the second. Types that meet the requirements of a
concept are said to model the concept. Note that it is not necessar-
ily the case that a concept will specify the requirements of just one
type—it is sometimes the case that a concept will involve multiple
types and specify their relationships.

Concepts play an important role in specifying generic algorithms.
Since a concept may be modeled by any concrete type meeting its
requirements, algorithms specified in terms of concepts must be
able to be used with multiple types. Thus, generic algorithms must
be polymorphic. For languages that explicitly support concepts,

Generic programming is a sub-discipline of computer science
that deals with finding abstract representations of efficient al-
gorithms, data structures, and other software concepts, and
with their systematic organization. The goal of generic pro-
gramming is to express algorithms and data structures in a
broadly adaptable, interoperable form that allows their direct
use in software construction. Key ideas include:

• Expressing algorithms with minimal assumptions about
data abstractions, and vice versa, thus making them as
interoperable as possible.

• Lifting of a concrete algorithm to as general a level as
possible without losing efficiency; i.e., the most abstract
form such that when specialized back to the concrete
case the result is just as efficient as the original algo-
rithm.

• When the result of lifting is not general enough to cover
all uses of an algorithm, additionally providing a more
general form, but ensuring that the most efficient spe-
cialized form is automatically chosen when applicable.

• Providing more than one generic algorithm for the same
purpose and at the same level of abstraction, when none
dominates the others in efficiency for all inputs. This
introduces the necessity to provide sufficiently precise
characterizations of the domain for which each algo-
rithm is the most efficient.

Figure 1: Definition of Generic Programming

concepts are used to constrain type parameters.
Traditionally, a concept consists of associated types, valid ex-

pressions, semantic invariants, and complexity guarantees. The
associated types of a concept specify mappings from the model-
ing type to other collaborating types (see Figure 4 for an example).
Valid expressions specify the operations that must be implemented
for the modeling type. At this point in the state of the art, type sys-
tems typically do not include semantic invariants and complexity
guarantees. Therefore, we state that for a type to properly model a
concept, the associated types and valid expressions specified by the
concept must be defined.

These primary aspects of generic programming, i.e., generic al-
gorithms, concepts, refinement, modeling, and constraints, are re-
alized in different ways in our different target programming lan-
guages. The specific language features that are used to support
generic programming are summarized in Table 2.

Example
A simple example illustrates these generic programming issues.
The example is initially presented in C++; Figure 2 shows versions
in all six languages.

In C++, type parameterization of functions is accomplished with
templates. The following is an example of a generic algorithm,
realized as a function template in C++:

template <class T>
const T& pick(const T& x, const T& y) {

if (better(x, y)) return x; else return y;
}

This algorithm applies the better function to its arguments and re-
turns the first argument if better returns true, otherwise it returns
the second argument.

Not every type can be used with pick. The concept Comparable
is defined to represent types that may be used with pick. Unfortu-
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C++ Standard ML Haskell Eiffel Java Generics Generic C#
Multi-type concepts -   

∗
# # #

Multiple constraints - G#  #
†

 #
‡

Associated type access   G# G# G# G#

Retroactive modeling -   # # #

Type aliases    # # #

Separate compilation #      

Implicit instantiation  #  #  #
‡

Concise syntax  G#  # G# #

∗Using the multi-parameter type class extension to Haskell 98 [22].†Planned language additions. ‡Planned for inclusion in Whidbey release of C#.

Table 1: The level of support for important properties for generic programming in the evaluated languages. “Multi-type concepts” indicates
whether multiple types cane be simultaneously constrained. “Multiple constraints” indicates whether more than one constraint can be placed
on a type parameter. “Associated type access” rates the ease in which types can be mapped to other types within the context of a generic
function. “Retroactive modeling” indicates the ability to add new modeling relationships after a type has been defined. “Type aliases”
indicates whether a mechanism for creating shorter names for types is provided. “Separate compilation” indicates whether generic functions
are type-checked and compiled independently from their use. “Implicit instantiation” indicates that type parameters can be deduced without
requiring explicit syntax for instantiation. “Concise syntax” indicates whether the syntax required to compose layers of generic components
is independent of the scale of composition. The rating of “-” in the C++ column indicates that while C++ does not explicitly support the feature,
one can still program as if the feature were supported due to the flexibility of C++ templates.

Role C++ ML Haskell Eiffel Java generics Generic C#

Generic algorithm function template functor polymorphic function generic class generic method generic method
Concept documentation signature type class deferred class interface interface
Refinement documentation include inheritance (⇒) inherit extends inherit (:)
Modeling documentation implicit instance inherit implements inherit (:)
Constraint documentation param sig (:) context (⇒) conformance (→) extends where

Table 2: The roles of language features used for generic programming.

nately, C++ does not support concepts directly so naming and docu-
mentation conventions have been established to represent them [1].
The Comparable concept is documented this way in C++:

Comparable
bool better(const T&, const T&)

Any type T is a model of Comparable if there is a better function
with the given signature. For int to model Comparable, we simply
define a better function for ints:

bool better(int i, int j) { return j < i; }
In C++ it is customary to identify concepts by appropriately nam-

ing template parameters. The previous example would normally be
written

template <class Comparable>
const Comparable&
pick(const Comparable& x, const Comparable& y) {

if (better(x, y)) return x; else return y;
}

We define two types, Apple and Orange

struct Apple {
Apple(int r) : rating(r) {}
int rating;
};
bool better(const Apple& a, const Apple& b)
{ return b.rating < a.rating; }

struct Orange {
Orange(const string& s) : name(s) { }
string name;
};

bool better(const Orange& a, const Orange& b)
{ return lexicographical compare(b.name.begin(), b.name.end(),

a.name.begin(), a.name.end()); }
Apple and Orange model the Comparable concept implicitly via
the existence of the better function for those types.

We finish by calling the generic algorithm pick with arguments
of type int, Apple, and Orange.

int main(int, char∗[]) {
int i = 0, j = 2;
Apple a1(3), a2(5);
Orange o1(”Miller”), o2(”Portokalos”);

int k = pick(i, j);
Apple a3 = pick(a1, a2);
Orange o3 = pick(o1, o2);

return EXIT SUCCESS;
}

3. A GENERIC GRAPH LIBRARY
To evaluate support for generic programming, a library of graph

data structures was implemented in each language. The library
provides generic algorithms associated with breadth-first search,
including Dijkstra’s single-source shortest paths and Prim’s min-
imum spanning tree algorithms [13,39]. The design presented here
descends from the generic graph library presented in [43], which
evolved into the Boost Graph Library (BGL) [41].

Figure 3 depicts the graph algorithms, their relationships, and
how they are parameterized. Each large box represents an algo-
rithm and the attached small boxes represent type parameters. An
arrow from one algorithm to another specifies that one algorithm is
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C++ ML Haskell

// concept Comparable:
// bool better(const T&, const T&)

template <class Comparable>
const Comparable& pick(const Comparable& x,

const Comparable& y) {
if (better(x, y)) return x; else return y;
}

struct Apple {
Apple(int r) : rating(r) {}
int rating;
};
bool better(const Apple& a, const Apple& b)
{ return b.rating < a.rating; }

int main(int, char∗[]) {
Apple a1(3), a2(5);
Apple a3 = pick(a1, a2);
}

signature Comparable =
sig

type value t
val better : value t ∗ value t→ bool

end

functor MakePick(C : Comparable) =
struct

type value t = C.value t
fun pick x y = if C.better(x,y) then x else y

end

structure Apple =
struct

datatype value t = AppleT of int
fun create n = AppleT n
fun better ((AppleT x),(AppleT y)) = y < x

end

structure PickApples = MakePick(Apple)
val a1 = Apple.create 5 and a2 = Apple.create 3
val a3 = PickApples.pick a1 a2

class Comparable t where
better :: (t, t)→ Bool

pick :: Comparable t⇒ (t, t)→ t
pick (x, y) = if (better (x, y)) then x else y

data Apple = MkApple Int

instance Comparable Apple where
better = (λ (MkApple m, MkApple n)→ n < m)

a1 = MkApple 3; a2 = MkApple 5
a3 = pick(a1, a2)

Eiffel Java Generics Generic C#
deferred class COMPARABLE[T]
feature

better (a: T) : BOOLEAN is deferred end
end

class PICK[T→ COMPARABLE[T]]
feature

go (a: T; b: T) : T is do
if a.better(b) then

Result := a
else

Result := b
end

end
end

class APPLE inherit COMPARABLE[APPLE] end
create make
feature

make(r: INTEGER) is do rating := r end
better (a: APPLE) : BOOLEAN is do

Result := rating < a.rating;
end

feature {APPLE}
rating : INTEGER

end

class ROOT CLASS
create make
feature make is

local
a1, a2, a3 : APPLE;
picker: pick[APPLE];

do
create picker;
create a1.make(3); create a2.make(5);
a3 := picker.go(a1, a2);

end
end

interface Comparable<T> {
boolean better(T x);
}

class pick {
static <T extends Comparable<T>>
T pick(T a, T b) {

if (a.better(b)) return a; else return b;
}
}

class Apple implements Comparable<Apple> {
Apple(int r) { rating = r; }
public boolean better(Apple x)
{ return x.rating < rating;}

int rating;
}

public class Main {
public static void main(String[] args) {

Apple a1 = new Apple(3),
a2 = new Apple(5);

Apple a3 = pick.go(a1, a2);
}
}

interface Comparable<T> {
bool better(T x);
}

class pick {
static T go<T>(T a, T b)

where T : Comparable<T> {
if (a.better(b)) return a; else return b;
}
}

class Apple : Comparable<Apple> {
public Apple(int r) {rating = r;}
public bool better(Apple x)
{ return x.rating < rating; }

private int rating;
}

public class Main eg {
public static int Main(string[] args) {

Apple a1 = new Apple(3),
a2 = new Apple(5);

Apple a3 = pick.go<Apple>(a1,a2);
return 0;
}
}

Figure 2: Comparing Apples to Apples. The Comparable concept, pick function, and Apple data type are implemented in each of our target
languages. A simple example using each language is also shown.
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implemented using the other. An arrow from a type parameter to
an unboxed name specifies that the type parameter must model that
concept. For example, the breadth-first search algorithm has three
type parameters: G, C, and Vis. Each of these have requirements: G
must model the Vertex List Graph and Incidence Graph concepts, C
must model the Read/Write Map concept, and Vis must model the
BFS Visitor concept. Finally, breadth-first search is implemented
using the graph search algorithm.

The core algorithm of this library is graph search, which tra-
verses a graph and performs user-defined operations at certain points
in the search. The order in which vertices are visited is controlled
by a type argument, B, that models the Bag concept. This concept
abstracts a data structure with insert and remove operations but no
requirements on the order in which items are removed. When B is
bound to a FIFO queue, the traversal order is breadth-first. When
it is bound to a priority queue based on distance to a source vertex,
the order is closest-first, as in Dijkstra’s single-source shortest paths
algorithm. Graph search is also parameterized on actions to take at
event points during the search, such as when a vertex is first dis-
covered. This parameter, Vis, must model the Visitor concept. The
graph search algorithm also takes a type parameter C for mapping
each vertex to its color and C is required to model the Read/Write
Map concept.

The Read Map and Read/Write Map concepts represent variants
of an important abstraction in the graph library: the property map.
In practice, graphs represent domain-specific entities. For exam-
ple, a graph might depict the layout of a communication network,
vertices representing endpoints and edges representing direct links.
In addition to the number of vertices and the edges between them,
a graph may associate values to its elements. Each vertex of a com-
munication network graph might have a name and each edge a max-
imum transmission rate. Some algorithms require access to domain
information associated with the graph representation. For example,
Prim’s minimum spanning tree algorithm requires “weight” infor-
mation associated with each edge in a graph. Property maps pro-
vide a convenient implementation-agnostic means of expressing, to
algorithms, relations between graph elements and domain-specific
data. Some graph data structures directly contain associated val-
ues with each node; others use external associative data structures
to express these relationships. Interfaces based on property maps
work equally well with both representations.

The graph algorithms are all parameterized on the graph type.
Graph search takes one type parameter G, which must model two
concepts, Incidence Graph and Vertex List Graph. The Incidence
Graph concept defines an interface for accessing out-edges of a ver-
tex. Vertex List Graph specifies an interface for accessing the ver-
tices of a graph in an unspecified order. The Bellman-Ford shortest
paths algorithm [4] requires a model of the Edge List Graph con-
cept, which provides access to all the edges of a graph.

That graph capabilities are partitioned among three concepts il-
lustrates generic programming’s emphasis on algorithm require-
ments. The Bellman-Ford shortest paths algorithm requires of a
graph only the operations described by the Edge List Graph con-
cept. Graph search, in contrast, requires the functionality of both
its required concepts. By partitioning the functionality of graphs,
each algorithm can be used with any data type that meets its mini-
mum requirements. If the three graph concepts were replaced with
one, each algorithm would require more from its graph type param-
eter than necessary—and would thus unnecessarily restrict the set
of types with which it could be used.

The graph library design is suitable for evaluating generic pro-
gramming capabilities of languages because it includes a rich vari-
ety of generic programming techniques. Most of the algorithms are

implemented using other library algorithms: breadth-first search
and Dijkstra’s shortest paths use graph search, Prim’s minimum
spanning tree algorithm uses Dijkstra’s algorithm, and Johnson’s
all-pairs shortest paths algorithm uses both Dijkstra’s and Bellman-
Ford shortest paths. Type parameters for some algorithms, such as
the G parameter to breadth-first search, must model multiple con-
cepts. In addition, the algorithms require certain relationships be-
tween type parameters. For example, consider the graph search
algorithm. The C type argument, as a model of Read/Write Map, is
required to have an associated key type. The G type argument is
required to have an associated vertex type. Graph search requires
that these two types be the same.

The graph library is used throughout the remainder of this paper
as a common basis for discussion. Though the entire library was
implemented in each language, discussion is limited for brevity.
We focus on the interface of the breadth-first search algorithm and
the infrastructure surrounding it, including concept definitions and
an example use of the algorithm. The interested reader can find the
full implementations for each language, including instructions for
compilation, at the following URL:
http://www.osl.iu.edu/research/comparing/

4. GRAPH LIBRARY IN C++

C++ generics were intentionally designed to exceed what is re-
quired to implement containers. The resulting template system
provides a platform for experimentation with, and insight into the
expressive power of, generic programming. Before templates, C++

was primarily considered an object-oriented programming language.
Templates were added to C++ for the same reason that generics
were added to several other languages in our study: to provide
a means for developing type safe containers [46, §15.2]. Greater
emphasis was placed on clean and consistent design than restric-
tion and policy. For example, although function templates are not
necessary to develop type-safe polymorphic containers, C++ has al-
ways supported classes and standalone functions equally; support-
ing function templates in addition to class templates preserves that
design philosophy. Early experiments in developing generic func-
tions suggested that more comprehensive facilities would be bene-
ficial. These experiments also inspired design decisions that differ
from the object-oriented generics designs (Java generics, Generic
C#, and Eiffel). For example, C++ does not contain any explicit
mechanism for constraining template parameters. During C++ stan-
dardization, several mechanisms were proposed for constraining
template parameters, including subtype-based constraints. All pro-
posed mechanisms were found to either undermine the expressive
power of generics or to inadequately express the variety of con-
straints used in practice [46, §15.4].

Two C++ language features combine to enable generic program-
ming: templates and function overloading. C++ includes both func-
tion templates and class templates; we use function templates to
represent generic algorithms. We discuss the role of function over-
loading in the next section. In C++, templates are not separately
type checked. Instead, type checking is performed after instantia-
tion at each call site. Type checking of the bound types can only
succeed when the input types have satisfied the type requirements
of the function template body. Unfortunately, because of this, if a
generic algorithm is invoked with an improper type, byzantine and
potentially misleading error messages may result.

4.1 Implementation
The breadth first search function template is shown in Figure 4.

C++ does not provide direct support for constraining type parame-
ters; standard practice is to express constraints in documentation in
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Breadth-First Search
G

<uses>

Dijkstra Shortest Paths

G D W < +

<uses>

Johnson All-Pairs

G W < +
<uses>

<uses>

Prim Min Span Tree

G D W <
<uses>

Graph Search
G VisB

Incidence Graph

<models>

Vertex List Graph

<models>

Bellman-Ford Shortest Paths

G D W < +

Edge List Graph

<models>

Read-Map

Read/Write-Map

<models>
<models>

Read/Write-Map

<models>

Read-Map

<models>

C

Read/Write-Map

<models>Vertex List Graph

<models>
Vis

BFS Visitor

<models>

Visitor

<models>

Bag

<models>

C

Read/Write-Map

<models>

Figure 3: Graph algorithm parameterization and reuse within the graph library. Arrows for redundant models relationships are not shown.
For example, the type parameter G of breadth-first search must also model Incidence Graph because breadth-first search uses graph search.

template <class G, class C, class Vis>
void breadth first search(const G& g,

typename graph traits<G>::vertex s, C c, Vis vis);

constraints:
G models Vertex List Graph and Incidence Graph
C models Read/Write Map
map traits<C>::key == vertex
map traits<C>::value models Color
Vis models BFS Visitor

Figure 4: Breadth-first search as a function template.

conjunction with meaningful template parameter names [1]. Tech-
niques for checking constraints in C++ can be implemented as a li-
brary [29, 42]. These techniques, however, are distinct from ac-
tual language support and involve insertion of what are essentially
compile-time assertions into the bodies of generic algorithms.

The graph traits class template provides access to the associated
types of the graph type. Here we use graph traits to access the ver-
tex type. Traits classes are an idiom used in C++ to map types to
other types or functions [37]. A traits class is a class template. For
each type in the domain of the map a specialized version of the class
template is created containing nested typedefs and member func-
tions. In Figure 5 we specialize graph traits for the AdjacencyList
class, which models Graph.

Inside the breadth first search function, calls to functions asso-
ciated with the concepts, such as out edges from Incidence Graph,
are resolved by the usual function overloading rules for C++. That is,
each is resolved to the best overload for the given argument types.

Documentation for the graph concepts is shown in Table 3. In
addition to function signatures, the concepts specify access to as-
sociated types such as vertex, edge, and iterator types through the
graph traits class.

A sketch of a concrete adjacency list implementation is shown
in Figure 5. The AdjacencyList class is a model of the Incidence
Graph and Vertex List Graph concepts, but this fact is implicit. There
is no mechanism for specifying that AdjacencyList models these
concepts. The graph traits class is specialized for AdjacencyList
so the associated types can be accessed from within function tem-
plates.

The definitions of the Read/Write Map and Read Map concepts
are in Table 4 and the definition of the BFS Visitor concept is in
Table 5.

Graph
graph traits<G>::vertex
graph traits<G>::edge
vertex src(edge, const G&);
vertex tgt(edge, const G&);

Incidence Graph refines Graph
graph traits<G>::out edge iter models Iterator
pair<out edge iter> out edges(vertex, const G&);
int out degree(vertex, const G&);

Vertex List Graph
graph traits<G>::vertex iter models Iterator
pair<vertex iter> vertices(const G&);
int num vertices(const G&);

Table 3: Documentation for the graph concepts.

class AdjacencyList {
public:

...
private:

vector< list<int> > adj lists;
};
template <> struct graph traits<AdjacencyList> {

typedef int vertex;
typedef pair<int, int> edge;
typedef list<int>::const iterator out edge iter;
...
};

Figure 5: Sketch of a concrete graph implementation.

Read Map
map traits<M>::key
map traits<M>::value
value get(const M&, key);

Read/Write Map refines Read Map
void put(M&, key, value);

Table 4: Documentation for the mapping concepts.
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BFS Visitor
void V::discover vertex(vertex, G);
void V::finish vertex(vertex, G);
void V::examine edge(edge, G);
void V::tree edge(edge, G);
void V::non tree edge(edge, G);
void V::gray target(edge, G);
void V::black target(edge, G);

Table 5: Documentation for the BFS Visitor concept.

In the code below, an example use of the breadth first search
function is presented. The vertices of a graph are output in breadth-
first order by creating the test vis visitor that overrides the function
discover vertex; empty implementations of the other visitor func-
tions are provided by default bfs visitor. A graph is constructed us-
ing the AdjacencyList class, and then the call to breadth first search
is made. The call site is the point where type checking occurs for
the body of the breadth first search function template; function
templates are not separately type checked. This type check ensures
that the argument types satisfy the needs of the body of the generic
function, but it does not verify that the types model the concepts
required by the algorithm (because the needs of the body may be
less than the declared constraints for the function).

typedef graph traits<AdjacencyList>::vertex vertex;

struct test vis : public default bfs visitor {
void discover vertex(vertex v, const AdjacencyList& g)
{ cout << v << ” ”; }

};

int main(int, char∗[]) {
int n = 7;
typedef pair<int,int> E;
E edges[] = { E(0,1), E(1,2), E(1,3), E(3,4),

E(0,4), E(4,5), E(3,6) };
AdjacencyList g(n, edges);
vertex s = get vertex(0, g);
vector property map color(n, white);
breadth first search(g, s, color, test vis());
return EXIT SUCCESS;
}

4.2 Evaluation of C++ Generics
C++ templates succeed in enabling the expression of generic algo-

rithms, even for large and complex generic libraries. It is relatively
easy to convert concrete functions to function templates, and func-
tion templates are just as convenient for the client to call as normal
functions. The traits mechanism provides a way to access associ-
ated types, an area where several other languages fail.

The C++ template mechanism, however, has some drawbacks in
the area of modularity. The complete implementations of templates
reside in header files (or an equivalent). Thus, users must recom-
pile when template implementations change. In addition, at call
sites to function templates, the arguments are not type checked
against the interface of the function—the interface is not expressed
in the code— but instead the body of the function template is type
checked. As a result, when a function template is misused, the re-
sulting error messages point to lines within the function template.
The internals of the library are thus needlessly exposed to the user
and the real reason for the error becomes harder to find.

Another problem with modularity is introduced by the C++ over-
load resolution rules. During overload resolution, functions within
namespaces that contain the definitions of the types of the argu-
ments are considered in the overload set (“argument-dependent look-

up”). As a result, any function call inside a function template may
resolve to functions in other namespaces. Sometimes this may be
the desired result, but other times not. Typically, the operations
required by the constraints of the function template are meant to
bind to functions in the client’s namespace, whereas other calls are
meant to bind to functions in the namespace of the generic library.
With argument-dependent lookup, these other calls can be acci-
dentally hijacked by functions with the same name in the client’s
namespace.

Nevertheless, C++ templates still provide type safety with gener-
icity; there is no need to use downcasts or similar mechanisms
when constructing generic libraries. Of course, C++ itself is not
fully type safe because of various loopholes that exist in the type
system. These loopholes, however, are orthogonal to templates.
The template system does not introduce new issues with respect to
type safety.

Finally, since templates are purely a means for obtaining static
(compile-time) polymorphism, there is no run-time performance
penalty due to templates per se. Generic libraries, however, make
heavy use of procedural and data abstraction which can induce
run-time overheads, though good optimizing compilers are adept
at at flattening these layers of abstraction. C++ can therefore be an
excellent tool for applications where run-time efficiency is criti-
cal [44, 47]. Heavy use of templates can sometimes lead to signif-
icant increases in executable size, although there are programming
idioms that ameliorate this problem.

5. GRAPH LIBRARY IN ML
Generic programs in Standard ML leverage three language fea-

tures: structures, signatures, and functors. Structures group pro-
gram components into named modules. They manage the visibil-
ity of identifiers and at the same time package related functions,
types, values, and other structures. Signatures constrain the con-
tents of structures. A signature prescribes what type names, values,
and nested structures must appear in a structure. A signature also
prescribes a type for each value, and a signature for each nested
structure. In essence, signatures play the same role for structures
as types play for values. Functors are templates for creating new
structures and are parameterized on values, types, and structures.
Multiple structures of similar form can be represented using a sin-
gle functor that emphasizes characteristics the structures hold in
common. Differences between these structures are captured by the
functor’s parameters. Functors represent ML’s primary mechanism
for generics. As illustrated in the following, structures, signatures,
and functors together enable generic programming.

5.1 Implementation
Concepts are expressed in ML using signatures. The following

code shows ML representations of graph concepts for the breadth-
first search algorithm:

signature GraphSig =
sig

type graph t
eqtype vertex t

end

signature IncidenceGraphSig =
sig

include GraphSig
type edge t
val out edges : graph t→ vertex t→ edge t list
val source : graph t→ edge t→ vertex t
val target : graph t→ edge t→ vertex t

end
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signature VertexListGraphSig =
sig

include GraphSig
val vertices : graph t→ vertex t list
val num vertices : graph t→ int

end

For signature names, we use the convention of affixing Sig to the
end of corresponding concept names. The GraphSig signature rep-
resents the Graph concept and requires graph t and vertex t types.
It also requires vertex t to be an equality type, meaning vertex t
values can be compared using the = operator.

IncidenceGraphSig and VertexListGraphSig demonstrate con-
cept refinement in ML. The clause include GraphSig in each sig-
nature imports the contents of the GraphSig signature. The include
directive cannot, however, represent all refinements between con-
cepts. Though a signature may include more than one other signa-
ture, all included signatures must declare different identifiers. Con-
sider the following code:

(∗ ERROR: VertexListGraphSig and IncidenceGraphSig overlap ∗)
signature VertexListAndIncidenceGraphSig =
sig

include VertexListGraphSig
include IncidenceGraphSig

end

This example shows an incorrect attempt to describe a Vertex List
And Incidence Graph concept that refines both the Vertex List Graph
and Incidence Graph concepts. The ML type system rejects this ex-
ample because both VertexListGraphSig and IncidenceGraphSig
share the vertex t and graph t names from the GraphSig signa-
ture. To work around this issue, an algorithm that would other-
wise require a model of the Vertex List and Incidence Graph con-
cept instead requires two arguments, a model of Vertex List Graph
and a model of Incidence Graph, and places additional restrictions
on those arguments. The implementation of breadth-first search in
ML, shown later, demonstrates this technique.

Program components that model concepts are implemented as
structures. The following code shows the adjacency list graph im-
plemented in ML:

structure ALGraph =
struct

datatype graph t = Data of int ∗ int list Array.array
type vertex t = int
type edge t = int ∗ int

fun create(nv : int) = Data(nv,Array.array(nv,[]))

fun add edge (G as Data(n,g),(src:int),(tgt:int)) =
( Array.update(g,src,tgt::Array.sub(g,src)); G )

fun vertices (Data(n,g)) = List.tabulate(n,fn a => a);
fun num vertices (Data(n,g)) = n
fun out edges (Data(n,g)) v = map (fn n => (v,n)) (Array.sub(g,v))
fun adjacent vertices (Data(n,g),v) = Array.sub(g,v)
fun source (Data(n,g)) (src,tgt) = src
fun target (Data(n,g)) (src,tgt) = tgt

fun edges (Data(n,g)) =
#2(Array.foldl (fn (tgts:int list,(src,sofar:(int∗int) list)) =>

(src+1,(map (fn n => (src,n)) tgts) @ sofar))
(0,[]) g)

end;

The ALGraph structure encapsulates types that represent graph val-
ues and functions that operate on them. Because it meets the re-
quirements of the GraphSig, VertexListGraphSig, and Incidence-
GraphSig signatures, ALGraph is said to model the Graph, Ver-

tex List Graph, and Incidence Graph concepts. ALGraph defines
additional functions that fall outside the requirements of the three
signatures. The create function, for example, constructs a value of
type graph t, which represents a graph with nv vertices.

In ML, algorithms are implemented using functors. The follow-
ing code illustrates the general structure of a generic breadth-first
search implementation:

functor MakeBFS(Params : BFSPSig) =
struct

fun breadth first search g v vis map = ...
end;

Generic algorithms are instantiated by way of functor application.
When a functor is applied to parameters that satisfy certain require-
ments, it creates a new structure specialized for the functor param-
eters. The MakeBFS functor takes one parameter, a structure that
fulfills the requirements of the following signature:

signature BFSPSig =
sig

structure G1 : IncidenceGraphSig
structure G2 : VertexListGraphSig
structure C : ColorMapSig
structure Vis : BFSVisitorSig
sharing G1 = G2 = Vis
sharing type C.key t = G1.vertex t

end

The signature dictates that Params must contain four nested struc-
tures, each corresponding to an algorithm parameter. BFSPSig en-
forces concept requirements by constraining its nested structures
with signatures. The G1 structure, for example, is constrained by
the IncidenceGraphSig signature.

The breadth-first search algorithm ideally requires a graph type
argument that models both the Incidence Graph and Vertex List
Graph concepts. Because the signatures that represent these two
concepts cannot be composed, the implementation requires two
arguments, constrained by the signatures IncidenceGraphSig and
VertexListGraphSig respectively. When the MakeBFS functor is
applied, the same structure is bound to both type parameters.

In addition to listing required structures, BFSPSig specifies that
some type names in the structures must refer to identical types.
These are denoted as sharings. Two sharings appear in the BFSPSig
signature. The first is a structure sharing among G1, G2, and Vis.
It states that if the three structures share any nested element name in
common, then the name must refer to the same entity for all three
structures. For example, each of the three structures is required
by its signature to contain a nested type vertex t. The sharing re-
quires that G1.vertex t, G2.vertex t, and Vis.vertex t must refer to
the same type. The second sharing, a type sharing, declares that
C.key t and G1.vertex t must be the same type. Sharings emphasize
that in addition to the signature requirements placed on each sub-
structure of Params, certain relationships between structures must
also hold.

ML supports multi-parameter functors, but it does not support
sharing specifications among the parameters. As a workaround,
functors that implement generic algorithms accept a single struc-
ture parameter whose signature lists the algorithm’s arguments and
specifies the necessary relationships among them. Since the struc-
ture argument to the functor can be defined at the point of applica-
tion, the single parameter solution is reasonable.

The following code shows a call to breadth first search:

structure BFS =
MakeBFS(struct

structure G1 = ALGraph
structure G2 = ALGraph
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structure C = ALGColorMap
structure Vis = VisitImpl

end)

BFS.breadth first search g src (VisitImpl.create())
(ALGColorMap.create(graph));

First, the algorithm is instantiated by applying MakeBFS to a struc-
ture, defined in place, that meets BFSPSig’s requirements. The
ALGraph structure is used to match both the IncidenceGraphSig
and VertexListGraphSig signatures. Although this is awkward, it
avoids the explicit declaration of a VertexListAndIncidenceGraph-
Sig signature, which cannot be constructed by composing the two
mentioned signatures. The ALGColorMap structure models the
Read/Write Map concept. The VisitImpl structure models the BFS
Visitor concept and encapsulates user-defined callbacks. The three
structures together meet the sharing requirements of BFSPSig. Ap-
plication of the MakeBFS functor defines the BFS structure, which
encapsulates a breadth first search function specialized with the
above structures. Finally, BFS.breadth first search is called with
parameters that match the now concrete type requirements.

5.2 Evaluation of ML
ML language mechanisms provide good support for generic pro-

gramming. Signatures and structures conveniently express con-
cepts and concept models using nested types and functions to im-
plement associated types and valid expressions. The structure rep-
resentation of concept models enables modularity by managing iden-
tifier visibility. Functors can express any generic algorithm of sim-
ilar complexity to the described graph library algorithms. Signa-
tures effectively constrain generic algorithms with respect to the
concepts upon which the algorithms are parameterized. Sharing
specifications enable separate type checking of generic algorithms
and their call sites. They capture additional requirements on the
concept parameters to an algorithm. All necessary sharing rela-
tionships between functor parameters must be declared explicitly.
If not, ML will issue type checking errors when the functor is an-
alyzed. When a functor is applied, ML verifies that its arguments
also meet the sharing and signature requirements imposed on the
functor.

Technically, functors are not the only means for implementing
generic algorithms. ML programmers often use polymorphic func-
tions and parameterized data types to achieve genericity. An exam-
ple of this style of programming follows.

(∗ concept ∗)
datatype ’a Comparable = Cmp of (’a→ ’a→ bool);

(∗ models ∗)
datatype Apples = Apple of int;
fun better apple (Apple x) (Apple y) = x > y;

datatype Oranges = Orange of int;
fun better orange (Orange x) (Orange y) = x > y;

(∗ algorithm ∗)
fun pick ((Cmp better):’a Comparable) (x:’a) (y:’a) =

if (better x y) then x else y;

(∗ examples ∗)
pick (Cmp better apple) (Apple 4) (Apple 3);
pick (Cmp better orange) (Orange 3) (Orange 4);

This example implements the better algorithm in terms of the Com-
parable concept. Here a concept is realized using a parameterized
data type that holds a table of functions or dictionary. The con-
cept’s associated types are the data type’s parameters, and its valid
expressions are the dictionary functions. In addition to other val-

ues, a generic algorithm takes a dictionary for each concept model
it requires. The algorithm is then implemented in terms of the func-
tions from the dictionaries.

This style of generic programming in ML, though possible, is
not ideal. In larger ML programs, managing dictionaries man-
ually becomes cumbersome and increases the code base signifi-
cantly. This situation is analogous to implementing virtual tables in
C rather than leveraging the object-oriented programming features
of C++. In fact, some Haskell environments lower programs that use
generics (type classes) to equivalent Haskell programs that use this
dictionary-passing style. Automating the mechanisms of generic
programming is preferable to implementing them manually.

Using ML functors to implement generic algorithms enables the
convenient application of algorithms to a variety of user-defined
components. Functors in ML only require their arguments to con-
form structurally to the specified signatures. Since ML structures
can implicitly conform to signatures, a structure need not be de-
signed with a signature in mind. Thus, a generic ML algorithm,
written in terms of signatures, can operate on any structures that
meets its requirements.

In order to promote modularity, a language may allow program
components that model concepts to be statically checked against
concepts prior to their use with generic algorithms. When a struc-
ture is defined in ML, it may be constrained by a signature. In this
manner a structure’s conformity to a signature can be confirmed
apart from its use in a generic algorithm. Constraining a structure
with a signature limits its interface to that described by the sig-
nature. This may not be the desired result if the structure defines
members that the signature does not declare. For example, if the
ALGraph structure were declared:

structure ALGraph : IncidenceGraphSig = ...

then it would no longer meet the VertexListGraphSig requirements
because vertices and num vertices would not be visible.

Rather than constrain the structure directly, the conformity of
ALGraph to the necessary signatures can be checked as shown in
the following code outline:

structure ALGraph =
struct

...
end

structure ALGraphCheck1 : IncidenceGraphSig = ALGraph;
structure ALGraphCheck2 : VertexListGraphSig = ALGraph;

The structures ALGraphCheck1 and ALGraphCheck2 are both as-
signed ALGraph and constrained by the IncidenceGraphSig and
VertexListGraphSig signatures respectively. Each of these struc-
tures confirms statically that ALGraph conforms to the correspond-
ing signature without limiting access to its structure members. This
technique as a side effect introduces the unused ALGraphCheck1
and ALGraphCheck2 structures.

As previously described, the include mechanism for signature
combination in ML cannot express concept refinements that involve
overlapping concepts. Ramsey [40] discusses this shortcoming and
suggests language extensions to address it.

6. GRAPH LIBRARY IN HASKELL
The Haskell community uses the term “generic” to describe a

form of generative programming with respect to algebraic datatypes
[2, 15, 19]. Thus the typical use of the term “generic” with respect
to Haskell is somewhat different from our use of the term. How-
ever, Haskell does provide support for generic programming as we
have defined it here and that is what we present in this section.
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The specification of the graph library in Figure 3 translates natu-
rally into polymorphic functions in Haskell. In Haskell, a function
is polymorphic if an otherwise undefined type name appears in the
type of a function; such a type is treated as a parameter. Constraints
on type parameters are given in the context of the function, i.e., the
code between :: and ⇒. The context contains class assertions. In
Haskell, concepts are represented with type classes. Although the
keyword Haskell uses is class, type classes are not to be confused
with object-oriented classes. In traditional object-oriented termi-
nology, one talks of objects being instances of a class, whereas in
Haskell, types are instances of type classes. A class assertion de-
clares which concepts the type parameters must model. In Haskell,
the term instance corresponds to our term model. So instead of
saying that a type models a concept, one would say a type is an
instance of a type class.

6.1 Implementation
As with the previous languages, we focus on the interface of

breadth-first search. The Haskell version of this function is shown
below. The first line gives the name, and the following three are the
context of the function. The function is curried; it has five parame-
ters and the return type is a, a user defined type for the output data
accumulated during the search.

breadth first search ::
(VertexListGraph g v, IncidenceGraph g e v,
ReadWriteMap c v Color,
BFSVisitor vis a g e v)⇒

g→ v→ c→ vis→ a→ a

The following are the type classes for the Graph, Incidence Graph,
and Vertex List Graph concepts:

class Graph g e v | g→ e, g→ v where
src :: e→ g→ v
tgt :: e→ g→ v

class Graph g e v⇒ IncidenceGraph g e v where
out edges :: v→ g→ [e]
out degree :: v→ g→ Int

class VertexListGraph g v | g→ v where
vertices :: g→ [v]
num vertices :: g→ Int

The use of contexts within type class declarations is the Haskell
mechanism for concept refinement. Here we have IncidenceGraph
refining the Graph concept.

Associated types are handled in Haskell type classes differently
from C++ or ML. In Haskell, all the associated types of a con-
cept must be made parameters of the type class. Thus, the graph
concepts are parameterized not only on the main graph type, but
also on the vertex and edge types. If we had used an iterator ab-
straction instead of plain lists for the out-edges and vertices, the
graph type classes would also be parameterized on iterator types.
In Haskell 98, type classes are restricted to a single parameter, but
most Haskell implementations support multiple parameters. The
g → e denotes a functional dependency [20,22]. That is, for a given
graph type g there is a unique edge type. Without functional depen-
dencies it would be difficult to construct a legal type in Haskell for
breadth first search.

The BFSVisitor type class, shown below, is parameterized on
the graph, queue, and output type a. The queue and output type
are needed because Haskell is a pure functional language and any
state changes must be passed through explicitly, as is done here, or
implicitly using monads. The visitor concept is also parameterized
on the vertex and edge types because they are associated types of

data AdjacencyList = AdjList (Array Int [Int])
deriving (Read, Show)

data Vertex = V Int deriving (Eq, Ord, Read, Show)
data Edge = E Int Int deriving (Eq, Ord, Read, Show)

adj list :: Int→ [(Int,Int)]→ AdjacencyList
adj list n elist =

AdjList (accumArray (++) [] (0, n− 1)
[ (s, [t]) | (s,t)← elist])

instance Graph AdjacencyList Edge Vertex where
src (E s t) g = V s
tgt (E s t) g = V t

instance IncidenceGraph AdjacencyList Edge Vertex where
out edges (V s) (AdjList adj) = [ E s t | t← (adj!s) ]
out degree (V s) (AdjList adj) = length (adj!s)

instance VertexListGraph AdjacencyList Vertex where
vertices (AdjList adj) = [V v | v← (iota n) ]

where (s,n) = bounds adj
num vertices (AdjList adj) = n+1

where (s,n) = bounds adj

Figure 6: Simple adjacency list implementation.

the graph. The BFSVisitor type class has default implementations
that do nothing.

class (Graph g e v)⇒ BFSVisitor vis q a g e v where
discover vertex :: vis→ v→ g→ q→ a→ (a,q)
examine edge :: vis→ e→ g→ q→ a→ (a,q)
...
discover vertex vis v g q a = (a,q)
examine edge vis e g q a = (a,q)
...

The implementation of the AdjacencyList type is shown in Fig-
ure 6. The AdjacencyList type must be explicitly declared to be an
instance of the Incidence Graph and Vertex List Graph concepts.

The following shows an example use of the breadth first search
function to create a list of vertices in breadth-first order.

n = 7::Int
g = adj list n [(0,1),(1,2),(1,3),(3,4),(0,4),(4,5),(3,6)]
s = vertex 0

data TestVis = Vis
instance BFSVisitor TestVis q [Int]

AdjacencyList Edge Vertex where
discover vertex vis v g q a = ((idx v):a,q)

color = init map (vertices g) White

res = breadth first search g s color Vis ([]::[Int])

Here, the idx function converts a vertex from an AdjacencyList
to an integer. At the call site of a polymorphic function, the Haskell
implementation checks that the context requirements of the func-
tion are satisfied by looking for instance declarations that match
the types of the arguments. A compilation error occurs if a match
cannot be found.

6.2 Evaluation of Haskell Generics
In general, we found Haskell to provide good support for generic

programming. The Haskell type class mechanism, with the exten-
sions for multiple parameters in type classes and functional depen-
dencies, provides a flexible system for expressing complex generic
libraries. The type classes and polymorphic functions provide suc-
cinct mechanisms for abstraction, and invoking a polymorphic func-
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tion is almost as easy as invoking a normal function (the client may
need to make instance declarations).

The modularity provided by type classes is excellent. Name
lookup for function calls within a generic function is restricted to
the namespace of the generic function plus the names introduced
by the constraints. Generic functions and calls to generic functions
are type checked separately, each with respect to the interface of the
generic function. However, type errors (we used the Hugs Novem-
ber 2002 implementation) tend to be difficult to understand. We
believe this is because the Haskell type system is based on type in-
ferencing. When the deduced type of the body of a generic function
does not match the type annotation for the function, the error mes-
sage points to the type annotation. However, the more important
piece of information is which expression within the function body
caused the mismatch.

There are two issues with regards to convenience of expression
when using Haskell. First, the presence of associated types in the
parameter list of a type class is burdensome, especially when type
classes are composed. For example, the BFSVisitor type class has
six parameters. However, only three parameters are needed in prin-
ciple and the other three are associated types. Two of the parame-
ters are associated types of the graph (edge and vertex) and one is
an associated type of the visitor (its output type).

The second convenience issue is that clients of a polymorphic
function must declare their types to be instances of the type classes
used as constraints on the polymorphic function. This adds tex-
tual overhead to calling a generic function compared to a normal
function. On the other hand, instance declarations add a level of
safety by forcing clients to think about whether their types model
the required concepts at a semantic as well as a syntactic level.

7. GRAPH LIBRARY IN EIFFEL
Eiffel supports generics through type parameterization of classes.

Each formal type parameter can be accompanied by a constraint, a
type to which the actual type argument must conform (the term
Eiffel uses for substitutability). Type parameters follow the class
name within square brackets; the arrow → attaches a constraint to
a type parameter. If omitted, the constraint defaults to the ANY
class, the root of the Eiffel class hierarchy. The constraining type
may refer to other type parameters. An example of such constraint
is GRAPH EDGE[V], shown in Figure 7.

7.1 Implementation
Concepts are represented as deferred classes (cf. abstract classes

in C++). To model a given concept, a type must inherit from the class
representing the concept. The requirements in a concept definition
often need to refer to associated types to constrain them. Eiffel does
not have a mechanism to attach types to classes; thus, associated
types are expressed as type parameters of the classes that represent
concepts. The V and E parameters in Figure 8 are examples of
this. Due to the lack of parameterized methods, generic algorithms
are represented as parameterized classes that contain one method
named go.

The bodies of generic algorithms frequently use associated types
of the algorithm’s parameter types. For example, in the breadth-
first search algorithm, the vertex and edge types of the graph type
must be accessible. Generic algorithms access associated types by
including them as additional type parameters. For example, in Fig-
ure 7 the type parameters V and E represent the associated vertex
and edge types and are used as type arguments in the constraint of
the graph type G. Analogously, the same type parameters appear in
the definitions of the corresponding concepts.

The interface of the breadth-first search algorithm, shown in Fig-
ure 7, is representative of the generic algorithms in the Eiffel graph
library implementation. The graph type G must model the Ver-
tex List Graph and Incidence Graph concepts. The combined set
of requirements of these two concepts is encompassed in the class
VERTEX LIST AND INCIDENCE GRAPH[V, E], shown in Fig-
ure 8.

class BREADTH FIRST SEARCH[V, E→ GRAPH EDGE[V],
G→ VERTEX LIST AND INCIDENCE GRAPH[V, E]]

feature
go(g: G; src: V; color: READWRITE MAP[V, INTEGER];

vis: BFS VISITOR[G, V, E]) is ...

Figure 7: Interface of the breadth-first search algorithm in Eiffel.

deferred class VERTEX LIST GRAPH[V]
feature

vertices: ITERATOR[V] is deferred end
num vertices: INTEGER is deferred end

end

deferred class INCIDENCE GRAPH[V, E]
feature

out edges(v: V) : ITERATOR[E] is deferred end
out degree(v: V) : INTEGER is deferred end

end

deferred class VERTEX LIST AND INCIDENCE GRAPH[V, E]
inherit

VERTEX LIST GRAPH[V]
INCIDENCE GRAPH[V, E]

end

class ADJACENCY LIST
inherit

VERTEX LIST AND INCIDENCE GRAPH
[INTEGER, BASIC EDGE[INTEGER]]

feature {NONE}
data : ARRAYED LIST[LINKED LIST[INTEGER]]
...

Figure 8: Two graph concepts and a class that conforms to these
concepts. V and E stand for the vertex and edge types, respectively.

The graph library implementation in Eiffel deviates from the de-
sign described in Figure 3. The Eiffel implementation uses fewer
type parameters. For example, the classes that implement graph
concepts have no type parameters for vertex and edge iterator types.
In early attempts to rigorously follow the original design, calls to
generic algorithms were overly verbose. The reasons for this, ex-
plicit instantiation and the inability to properly represent associated
types, are discussed in Section 7.2.1. The disadvantage of fewer
type parameters is that the exact types of all arguments or return
values of generic algorithms cannot be expressed. For example, in
Figure 8, the return type of the vertices is ITERATOR[V], not the
exact vertex iterator type. Similarly, the static type of the vis param-
eter in the BREADTH FIRST SEARCH algorithm in Figure 7 is
not the exact type of the visitor object. This loss of type accuracy
has no performance implications in the Eiffel compilation model,
where exact types are not exploited for static dispatching. How-
ever, inexact types can result in situations where either downcast-
ing or relying on covariant changes in type parameters is needed.
Covariant change in formal parameters of methods is a controver-
sial feature of Eiffel that leads to type safety problems. Covariance
in type parameters is not without problems either, as discussed in
Section 7.2.2.
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7.2 Evaluation of Eiffel Generics
Eiffel supports type checking generic classes independent of their

use. This allows type errors to be caught before a generic class is
instantiated. Furthermore, generic classes are compiled separately.
Regardless of the number of instantiations, the compiled code con-
tains one realization of each generic class.

7.2.1 Abstraction and Modularity
Three factors affect Eiffel’s support for abstraction and modular-

ity: instantiation of generic algorithms, language mechanisms for
representing and accessing associated types, and the lack of multi-
ple generic constraints.

Eiffel requires explicit instantiation: the caller of a generic al-
gorithm must pass both actual arguments and type arguments. As-
suming the arguments have the following types:

g: ADJACENCY LIST; src: INTEGER;
color: HASH MAP[INTEGER, INTEGER]; vis: MY BFS VISITOR

the call to the breadth-first search algorithm in Eiffel is:

bfs: BREADTH FIRST SEARCH
[INTEGER, BASIC EDGE[INTEGER], ADJACENCY LIST]

...
create bfs
bfs.go(g, src, color, vis)

Explicit instantiation is tedious when the number of type parame-
ters is large. Furthermore, an explicitly instantiated call to a generic
algorithm carries unnecessary dependencies on implementation de-
tails of the parameters. Section 10.4 covers both of these issues.

Associated types and constraints between them are part of con-
cept requirements but Eiffel classes cannot properly encapsulate
these requirements. Instead, every time a concept is used as a
constraint, all of its associated types and their constraints must
be stated explicitly. This is a common problem for Eiffel, Java
generics, and Generic C#, and is discussed in greater length in Sec-
tion 10.2. Eiffel Anchored types[30, chapter 12] do not provide
a solution because they cannot express arbitrary dependencies be-
tween types.

Another set of problems arises as the combined effect of explicit
instantiation and accessing associated types using type parameters.
First, the problem of verbose calls to generic algorithms is exac-
erbated. When instantiating generic algorithms explicitly inside
other generic components, the type arguments are often themselves
instances of generic classes. As a result, specifying the type ar-
guments explicitly can become a significant programming over-
head. In an earlier implementation that followed the original li-
brary design the graph search algorithm had eight type parameters.
In Dijkstra’s shortest-path algorithm, counting the nested parame-
ters, the internal call to the graph search algorithm required 35 type
arguments. This effect made us alter the library design to reduce
the number of type parameters, as described above in Section 7.1.
Second, the associated types are dependent on the implementation
details of the concrete types. Explicit instantiation spreads this de-
pendency to call sites of generic algorithms. Sections 10.3 and 10.4
demonstrate this using examples and discuss the issue in more de-
tail.

A type parameter constraint must be a single class. Classes that
represent combinations of concepts are the obvious mechanism to
work around the lack of multiple constraints. Thus, instead of the
two classes VERTEX LIST GRAPH and INCIDENCE GRAPH,
the graph type G in Figure 8 is required to derive from the class
VERTEX LIST AND INCIDENCE GRAPH. The requirements
of generic algorithms determine which combinations of concepts
require such classes. Adding a new algorithm that requires a previ-

ously unused combination of concepts necessitates the creation of
a new class for this combination. The change propagates to all sub-
classes of this combination, including concrete graph types. Mul-
tiple generic constraints is an open issue in Eiffel standardization
as a potential future addition to the language [32]. Using multiple
constraints, the requirements for the G parameter could be written
as:

G→ {VERTEX LIST GRAPH[V]; INCIDENCE GRAPH[V, E]}

7.2.2 Static Type Safety
Eiffel has been criticized for type-safety problems [8, 12]. In

particular, type conformance checking is based on the subclass re-
lation, which allows instance variables and parameters of routines
to change covariantly. Under these rules the subclass relation does
not imply substitutability, and additional measures must be taken
to guarantee type-safety. The suggested approaches include a link-
time system validity check[30] that requires a whole-program anal-
ysis, and a ban of so-called polymorphic catcalls[31]. To our
knowledge, no publicly available compiler implements either of
these analyses. Whether the polymorphic catcall check would be
too conservative and rule out useful programs is not clear. A re-
cent proposal [16] suggests requiring programmers to add explicit
handler functions for each potentially type-unsafe program point.
Work on applying this scheme to existing libraries and evaluating
whether it provides a satisfactory solution is under way [16].

Eiffel applies covariance to generic parameters as well, which
makes the type-safety problems a concern. According to the Eif-
fel conformance rules, type B[U] conforms to the type A[T] if the
generic class B derives from A, and if U conforms to T. This either
leads to type safety problems, or if they are avoided with overly
conservative assumptions, to the rejection of useful and reasonable
code. It is not too difficult to fabricate an example of the former
case, leading to a program crash, but in practice we ran into the
latter issue repeatedly. Here is an example that demonstrates the
problem:

deferred class READWRITE MAP[KEY, VALUE]
...

put (k: KEY; val: VALUE) is deferred end
...

end

class WHITEN VERTEX
[V, CM→ READWRITE MAP[V, INTEGER]]

inherit COLORS end
feature

go(v: V; color map : CM) is
do

color map.put(v, WHITE);
end

end

Several graph algorithms attach state information to vertices us-
ing property maps. The state is represented as integer constants
WHITE, BLACK, and GRAY. The example shows a generic al-
gorithm for setting the state of a given vertex to WHITE. The
WHITEN VERTEX algorithm takes two method parameters, the
vertex v and the property map color map, and their types as
type parameters V and CM. The call color map.put(v, WHITE)
in the example fails. The map color map is of some type
CM that inherits from READWRITE MAP[V, INTEGER] and
thus one may expect the signature of the put method to be
put(key: V; val: INTEGER). However, due to possible co-
variance of type parameters, the compiler must assume dif-
ferently. Suppose the generic class MY MAP[A, B] inher-
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its from READWRITE MAP[A, B], YOUR VERTEX inherits
from MY VERTEX, and YOUR INT from INTEGER. Now
MY MAP[YOUR VERTEX, YOUR INT] conforms to the class
READWRITE MAP[MY VERTEX, INTEGER], making the fol-
lowing instantiation seemingly valid:

WHITEN VERTEX[MY VERTEX,
MY MAP[YOUR VERTEX, YOUR INTEGER]]

In this instantiation, the put method has the signature
put(k: YOUR VERTEX; val: YOUR INTEGER), but is called
with arguments of types MY VERTEX and INTEGER. This is
an obvious error; to prevent errors such as this, some compilers,
as an attempt to partially solve the covariance problem, reject the
definition of the go method in the WHITEN VERTEX class, at
the same time disallowing its legitimate uses. Other compilers
accept the definition, making programs vulnerable to uncaught
type errors. In sum, the covariance rule causes code that seems to
be perfectly reasonable to be rejected, or leads to type unsafety.

An immediate fix to this situation is to change the type of the
color map parameter:

go(color map: READWRITE MAP[V, INTEGER];
v: INTEGER)

Now color map is of type READWRITE MAP[V, INTEGER], and
the put signature is guaranteed to be put(k: V; val: INTEGER).
However, along with this change, the exact type of the actual ar-
gument bound to color map is lost. In this particular case, that
would not be critical. However, suppose the algorithm kept the
original map intact and returned a modified copy of the map as a
result. The signature of such a method would be:

go(color map: READWRITE MAP[V, INTEGER];
v: INTEGER) : READWRITE MAP[V, INTEGER]

Regardless of the type of the actual argument bound to color map,
the return value is coerced to READWRITE MAP[V, INTEGER],
losing all capabilities the original type potentially had.

The interface of Johnson’s algorithm illustrates how covariance
can be exploited to decrease the number of type parameters. One
of the parameters of Johnson’s algorithm is a map of maps storing
distances between vertex pairs in a graph. The type constraint for
this argument is:

READ MAP[V, READWRITE MAP[V, DISTANCE]];

A concrete type, such as

MY MAP[INTEGER, MY MAP[INTEGER, REAL]]

where V is bound to INTEGER and DISTANCE to REAL, does
not conform to the above constraint without covariance.

Generic programming does not seem to fundamentally benefit
from covariance on type parameters as a language feature. We
resorted to covariance only to reduce difficulties arising from the
lack of implicit instantiation and support for associated types. Par-
ticularly, we were able to reduce the number of type parameters
in a few situations where it would not have been possible without
covariance. More notably, however, the covariance rules reduced
flexibility. To guarantee type safety, new restrictions must be in-
troduced. These restrictions lead to the compiler rejecting code for
reasons that are not easy for a programmer to discern.

8. GRAPH LIBRARY IN JAVA GENERICS
Java generics extend the Java programming language with type

parameters for classes, interfaces, and methods [6]. They have been

public interface VertexListGraph<Vertex,
VertexIterator extends Iterator<Vertex>> {

VertexIterator vertices();
int num vertices();
}

public interface IncidenceGraph<Vertex, Edge,
OutEdgeIterator extends Iterator<Edge>> {
OutEdgeIterator out edges(Vertex v);
int out degree(Vertex v);
}

public interface VertexListAndIncidenceGraph<...>
extends VertexListGraph<...>, IncidenceGraph<...> {}

public class adjacency list
implements VertexListAndIncidenceAndEdgeListGraph<

Integer, simple edge<Integer>, Iterator<Integer>,
Integer, Iterator<simple edge<Integer>>, Integer,
Iterator<simple edge<Integer>>> {

...
}

Figure 9: Three interfaces representing graph concepts in Java, and
the adjacency list data structure that models these concepts.

proposed as an official addition to Java, and are planned for ver-
sion 1.5 of that language. For our implementation, we used a pre-
release version (1.3) of the proposed generics for Java. With respect
to generics, the differences between this version and the proposed
generics for Java 1.5 would not a affect our evaluation. Java gener-
ics support parameterized classes and methods. Generic methods
are implicitly instantiated. Type parameters can be constrained us-
ing subtyping, including multiple constraints on one parameter.

8.1 Implementation
In Java generics, we represent concepts with interfaces. A type

declares that it models a concept by inheriting from the correspond-
ing interface. Figure 9 shows the Java representations of three
graph concepts, and an adjacency list graph data structure mod-
eling these concepts. The implements clause makes adjacency list
a model of the Vertex List Graph and Incidence Graph concepts.

Generic algorithms are most straightforwardly expressed as func-
tions. In languages without functions, they can be emulated by
static methods. There are two choices for how to parameterize
the method: either parameterized methods in non-parameterized
classes or non-parameterized methods in parameterized classes. The
first alternative has the advantage of implicit instantiation, while the
second alternative requires the more verbose explicit specification
of type arguments. Following the convention used within the Eiffel
implementation in Section 7, the class name refers to the name of
the algorithm, and the implementation method is named go.

Java does not support type aliases, such as the typedef statement
in C++, so associated types present a challenge. As in the Eif-
fel implementation, associated types are included as type param-
eters to the interface representing the concept. For example, the
IncidenceGraph interface in Figure 9 has three associated types.
The adjacency list graph type demonstrates connecting concrete as-
sociated types to the type parameters of the IncidenceGraph inter-
face: the edge type is adj list edge<Integer>, the vertex type is
Integer, etc.

Figure 10 shows the interface for the breadth-first search algo-
rithm. This algorithm takes six type parameters and four method
parameters. Three of the type parameters are types of method pa-
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public class breadth first search {
public static <
Vertex,
Edge extends GraphEdge<Vertex>,
VertexIterator extends Iterator<Vertex>,
OutEdgeIterator extends Iterator<Edge>,
Visitor extends BFSVisitor,
ColorMap extends ReadWriteMap<Vertex, Integer>>

void go(VertexListAndIncidenceGraph<Vertex,Edge,
VertexIterator,VerticesSizeType,OutEdgeIterator,
DegreeSizeType> g, Vertex s, ColorMap c, Visitor vis);
}
Figure 10: Breadth-first search interface using Java generics

rameters; the other three represent associated types of the method
parameter types and the graph type. A straightforward implemen-
tation would also have a type parameter for the graph type, but
that approach is not feasible due to limitations in the type system
for Java generics. These problems will be explained in detail later.
Type parameters can be constrained to extend a class and optionally
implement a set of interfaces.

Because of implicit instantiation, calling a generic method is
no different from calling a non-generic method. For example, the
breadth-first search algorithm is invoked by:

breadth first search.go(g, src, color map, visitor);

8.2 Evaluation of Java Generics
Interfaces provide a mechanism to represent concepts within the

language. Type parameter constraints can be expressed directly
and are enforced by the compiler. Both arguments to generic al-
gorithms and the bodies of those algorithms are checked separately
against the concept requirements, leading to good separation be-
tween types used in generic algorithms and the implementations of
those algorithms. Overall, Java generics provide enough support
for generic programming to allow a type-safe implementation of
the generic graph library. However, due to two problems related to
subtyping-constrained polymorphism, and several inconveniences,
generic programming in Java is both restricted and cumbersome.

The first problem originates from using inheritance to express
the modelsrelation. The inheritance relation is fixed when a class
is defined. Consequently, existing classes cannot be made to model
new concepts retroactively, unless their definitions can be mod-
ified. Section 10.1 explains how this problem significantly de-
creases modularity. The second problem is related to representing
associated types. Java classes and interfaces can only encapsulate
methods and member variables, not types. Hence, each concept’s
associated types are represented as separate type parameters. Re-
ferring to a concept in a generic algorithm requires repeating all
its type parameters, including those not used in the algorithm. This
results in unnecessarily lengthy code and repetition of the type con-
straints. Sections 10.2 and 10.3 discuss this problem in detail.

Only classes and interfaces can be used as type arguments; built-
in types such as int and double cannot be used. One must instead
use the bulkier Integer and Double classes. This results in both
wordy and inefficient code. For example, int is a common choice
for representing vertices, double for edge weights. Using the wrap-
per classes, the syntax for setting the weight of a graph edge is:

weight map.set(new adj list edge(new Integer(3), new Integer(5)),
new Double(3.4))

If built-in types were allowed as type arguments, the code would
be simpler:

weight map.set(new adj list edge(3, 5), 3.4)

Autoboxing is a planned feature for Java 1.5 which solves some
of these problems [5]. This feature allows automatic conversion
from a primitive type to its wrapper type, and a cast for the reverse
conversion. This allows the shorter syntax above to be used, rather
than requiring explicit creation of Integer and Double objects.

As another example of unnecessarily verbose code, Java syntax
for declaring and initializing a variable requires the type of the vari-
able to be written twice. For example, the code to create an integer
object is:

Integer x = new Integer(3);

In this example, the name of the type is short. However, this is
often not the case in generic programming libraries. Many types
used in the graph library implementation span several lines; see
Section 10.5 for an example. Repetition of such names is not only
tedious, but increases the possibility of errors. The repetition is
unavoidable, as Java does not have a type aliasing facility, such as
typedef in C++.

Generic components and their uses can be compiled separately.
A generic algorithm’s implementation is type-checked once, rather
than for each instantiation. Uses of a generic algorithm are checked
to ensure that the concept requirements are satisfied, independently
from the implementation of the generic algorithm. This allows for
faster compilation, as well as for catching type errors as early as
possible, and is a major advantage relative to C++.

Java generics provide a type-safe generic programming frame-
work. For backwards compatibility, the language is implemented
using type erasure, which forces some type checks to be performed
at run-time, which can have an effect on performance. Moreover,
certain type constraints cannot be expressed with a type-erasure-
based language. These restrictions are known but cannot be re-
solved in Java generics without losing backward compatibility to
the current Java language definition [7]. None of the restrictions of
type erasure were encountered in the graph library implementation.
Alternative, more flexible, approaches for adding generics to Java
have been suggested [10, 36].

One major problem with the current type system for Java gener-
ics is that type arguments cannot be inferred from the constraints of
a generic method. Without proper support for associated types, this
kind of type inference is necessary for associated types to be simu-
lated. This behavior is explicitly stated in the type system specifica-
tion for Java generics [38]. Because of this behavior, the following
code fails to compile:

public class java associated types {
public static <Value, Iter extends Iterator<Value>>
boolean m(Iter iter) {

return (iter.next() == (Value)null);
}

public static void main(String[] args) {
ArrayList<Integer> al = null;
m(al.iterator());
}
}

In the call to m in main, values must be derived for the type pa-
rameters Value and Iter. Iter is found to be Iterator<Integer>,
which is the iterator type for the container al. Because the im-
plicit instantiation mechanism does not examine type constraints,
no value can be found for Value; thus, it is given the default value
Object. Therefore the call to m fails because Iterator<Integer>
is not a subtype of Iterator<Object>. It would likely be possible
to extend the Java type system to use type parameter constraints to
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public class breadth first search {
public static <
G extends VertexListGraph<Vertex, VertexIterator>

& IncidenceGraph<Vertex, Edge, OutEdgeIterator>,
Vertex,
Edge extends GraphEdge<Vertex>,
VertexIterator extends Iterator<Vertex>,
OutEdgeIterator extends Iterator<Edge>,
Visitor extends BFSVisitor<G, Vertex, Edge>,
ColorMap extends ReadWriteMap<Vertex, Integer>>

void go(G g, Vertex s, ColorMap c, Visitor vis);
}

Figure 11: Breadth-first search interface using Java generics (when
improved type system is used)

public interface VertexListGraph<Vertex,VertexIterator>
where VertexIterator: IEnumerable<Vertex> {

VertexIterator vertices();
int num vertices();
}
public interface IncidenceGraph<Vertex, Edge, OutEdgeIterator>

where OutEdgeIterator: IEnumerable<Edge> {
OutEdgeIterator out edges(Vertex v);
int out degree(Vertex v);
}
public interface VertexListAndIncidenceGraph

<Vertex, Edge, VertexIterator, OutEdgeIterator>
: VertexListGraph<Vertex, VertexIterator>,

IncidenceGraph<Vertex, Edge, OutEdgeIterator>
where Edge: GraphEdge<Vertex>,

VertexIterator: IEnumerable<Vertex>,
OutEdgeIterator: IEnumerable<Edge> {}

public class adjacency list
: VertexListAndIncidenceGraph<int, adj list edge<int>,

IEnumerable<int>, IEnumerable<adj list edge<int> > > {
...
}

Figure 12: Generic C# representations of three graph concepts and
a type that models the concepts.

aid in implicit instantiation, which would allow the correct value of
Integer to be found for Value. With this modification, the interface
to breadth-first search in Java could be written as shown in Fig-
ure 11. The current design of implicit instantiation in C# appears
to follow similar rules, and is likely to have the same problem. A
language with proper support for associated types would not need
to be able to derive type parameter values from constraints at all,
however.

In summary, the Java language, extended with generics, provides
solid support for generic programming, but many problems make
writing generic programs tedious and restricted.

9. GRAPH LIBRARY IN GENERIC C#
Generic C# extends the C# programming language with param-

eterized classes, interfaces, and methods [24]. Apart from minor
syntactic differences, generic class and method definitions are sim-
ilar to those in Java generics. Their use for generic programming
is analogous as well: concepts are represented using interfaces,
and a class declares that it models a concept by implementing the
interface representing that concept. Full separate type checking
and compilation are supported. Generics are a planned feature for
the Whidbey release of C# [14], and a prototype implementation,
named Gyro, has already been released [34]. Our implementation
of the graph library used version 20020823 of Gyro.

public class breadth first search {
public static void go<G, Vertex, Edge, VertexIterator,

OutEdgeIterator, ColorMap, Visitor>
(G g, Vertex s, ColorMap c, Visitor vis)

where G: VertexListAndIncidenceGraph<
Vertex, Edge, VertexIterator,
OutEdgeIterator>,

Edge: GraphEdge<Vertex>,
VertexIterator: IEnumerable<Vertex>,
OutEdgeIterator: IEnumerable<Edge>,
ColorMap: ReadWriteMap<Vertex, ColorValue>,
Visitor: BFSVisitor<G, Vertex, Edge>;

}
Figure 13: Breadth-first search interface in Generic C#. The
IEnumerable interface provides the iteration mechanism in C#.

breadth first search.go<
adjacency list, int, adj list edge<int>,
IEnumerable<int>,
IEnumerable<adj list edge<int> >,
my bfs visitor<adjacency list, int, adj list edge<int> > >

(graph, src vertex, color map, visitor);

Figure 14: Call to breadth-first search algorithm in Generic C#.

9.1 Implementation
Figure 12 shows the interfaces representing the Vertex List Graph

and Incidence Graph concepts, and an interface representing the
combined requirements of these two concepts. The combined inter-
face VertexListAndIncidenceGraph is necessary because the Gyro
prototype implementation of Generic C# does not support multi-
ple constraints on one type parameter. Furthermore, a graph data
structure modeling these concepts is shown.

The interface to the breadth-first search algorithm is shown in
Figure 13. The example invocation of this algorithm in Figure 14
illustrates the most significant difference between the current pro-
totypes of Java generics and Generic C#: the Gyro implementation
of Generic C# does not support implicit instantiation.

9.2 Evaluation of Generic C#
Generic C# avoids some of the inconveniences of Java generics;

particularly, primitive types can be used as arguments to generic
components. A severe drawback of the Gyro implementation of
Generic C# is the lack of implicit instantiation. The need to ex-
plicitly specify all type arguments to generic methods leads to un-
necessary code duplication and a loss of modularity, to be dis-
cussed in Section 10.4. Consequently, the Gyro implementation
of Generic C# allows similar levels of abstraction and type safety
as Java generics, but with substantially less modularity. The pro-
posed standard for C# generics includes implicit instantiation, but
cannot infer type parameter values based on constraints. Thus, the
same problems that occurred with Java generics are also likely with
the proposed C# generics.

The Gyro implementation of Generic C# does not support more
than one constraint on a type parameter. Thus, if a type param-
eter must model more than one concept, combination interfaces
must be created. The VertexListAndIncidenceGraph interface is
an example of such a combination interface. The problems with
this strategy are discussed in the evaluation of Eiffel generics, in
Section 7.2.1. Support for more than one constraining type is in
the current specification of generics for C#, and is planned for the
Whidbey release of .NET [14].
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10. DISCUSSION
The following sections describe five specific problems, each of

which was encountered with more than one of the surveyed lan-
guages. The first problem concerns the type constraint mechanism
and evolving software systems, especially when new algorithms
and concepts are created. The second problem regards limitations
in the use of subtyping to constrain type parameters. Third, we
discuss the repercussions of the way associated types are accessed
in the surveyed languages. Fourth, explicit instantiation combined
with insufficient support for representing associated types can make
generic function calls dependent on the implementation details of
their argument types. Fifth, the lack of a mechanism for type alias-
ing is a source of unnecessary verbosity, especially when generic
components must be explicitly instantiated.

10.1 Establishing the Modeling Relation
Type arguments to a generic algorithm must model the concepts

that constrain the algorithm’s type parameters. The languages un-
der study use several different techniques to establish modeling re-
lationships. Java generics, Generic C#, and Eiffel use subtyping at
the point of class definition. Haskell requires an explicit instance
declaration, independent of data type definition. Modeling relation-
ships in ML are implicitly checked for structural conformance at
generic function call sites. Any structure that meets the signature’s
requirements satisfies the modeling relationship. C++ provides no
language feature for establishing modeling relationships. Type ar-
guments are required only to provide the functionality that is used
within a function template’s body.

The modeling mechanisms used for Java, C#, Eiffel, and Haskell
rely on named conformance. An explicit declaration links a con-
crete type to the concepts it models. Haskell differs from the oth-
ers in that named conformance occurs separate from data struc-
ture definition. Modeling in ML relies on structural conformance.
The names of concepts are irrelevant; only the requirements es-
tablished by a signature matter. The modeling mechanisms in ML
and Haskell worked well for implementing the graph library. ML’s
structural conformance has a small advantage in the area of conve-
nience: the user of a generic function does not have to declare that
his types model the required concepts. Named conformance, on the
other hand, avoids problems with accidental conformance. The
canonical example of accidental conformance [28] is a rectangle
class with move and draw methods, and a cowboy class with move,
draw, and shoot methods. When modeling is based on structural
conformance, a cowboy could be used where a rectangle is ex-
pected, possibly resulting in troublesome runtime errors. How-
ever, in our experience, accidental conformance is not a significant
source of programming errors.

In languages where modeling is established by named confor-
mance at type definition time, types cannot retroactively modelcon-
cepts. Once a type is defined, the set of concepts that it models is
fixed. Without modification to the definition, modeling relation-
ships cannot be altered. This causes problems when libraries with
interesting interdependencies are composed.

Figure 15 shows in C# an example of the retroactive model-
ing problem. In this example, library A defines a graph concept
Vertex List Graph, as well as a graph data structure adjacency list
that models that concept. After this, library B creates an algorithm
which requires only a subset of the Vertex List Graph concept from
library A, and library B defines a concept Vertex Number Graph
corresponding to this subset. The problem is that adjacency list
should be a model of the new concept from library B, but this is not
possible in languages, such as Java, C#, and Eiffel, in which mod-
eling relationships are fixed when a type is defined. Languages

such as Haskell solve this by allowing modeling and refinement
relationships to be established after the related types and concepts
are defined. Languages such as ML and C++ do not encounter this
problem, as they use structural conformance (and not named) to
constrain type parameters.

namespace A {
public interface VertexListGraph<...> where ... {

VertexIterator vertices();
int num vertices();
}
public interface EdgeListGraph<...> where ... {

EdgeIterator edges();
}
public class adjacency list
: VertexListGraph<...>, EdgeListGraph<...>
{ ... }
}
namespace B {

public interface VertexNumberGraph<...> where ... {
int num vertices();
}
class bellman ford {

public static void go<G, ...>(g, ...)
where G : VertexNumberGraph<...>, A.EdgeListGraph<...> { ... }
}
}
namespace C {

A.adjacency list g;
// Problem: A.adjacency list does not inherit from
// VertexNumberGraph
B.bellman ford.go<A.adjacency list, ...>(g, ...);
}

Figure 15: An example showing need for retroactive modeling.

The problem of retroactive subtyping can be addressed by pro-
viding a language mechanism external to the class definition that
establishes a subtyping relation [3, 27]. This is analogous to how
the Haskell instance declaration established a modeling relation.
Aspect oriented programming systems [26], such as AspectJ, al-
low modification of types independently of their original defini-
tions. For example, an existing class can be modified to implement
a newly-created interface using static crosscutting[25]. The Exter-
nal Polymorphismdesign pattern is an attempt to address this in-
tegration problem without changes to existing object-oriented lan-
guages [11]. Also, related problems are encountered with compo-
nent interfaces in component software [9].

10.2 Subtyping is not Modeling or Refinement
In Java generics and Generic C#, concepts are approximated by

interfaces, and similarly in Eiffel by deferred classes. The mod-
eling relation between a type and a concept is approximated by
the subtype relation between a type and an interface. The refine-
ment relation between two concepts is approximated by interface
extension. Constraints based on interfaces and subtyping, however,
cannot correctly express constraints on multiple types.

Concepts commonly group constraints concerning multiple types.
For example, the Vertex List Graph concept places constraints on a
graph type, the vertex type of the graph, and a vertex iterator type.
In particular, the Vertex List Graph concept requires that the vertex
iterator type model the Iterator concept.

To express constraints on multiple types, an interface can be pa-
rameterized. For example, in Java generics, one might try the fol-
lowing approach for the definition of the VertexListGraph inter-
face. A constraint is placed on the VertexIterator parameter:
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interface VertexListGraph<
Vertex, VertexIterator extends Iterator<Vertex>> {
VertexIterator vertices();
int num vertices();
}

The problem with this approach is that referring by name to
VertexListGraph is not sufficient to include the associated type
constraint in that concept (in the context of a generic algorithm).
For example, in the following breadth first search function, the
VertexListGraph constraint should express the requirement that the
VertexIterator type must model Iterator:

class breadth first search {
public static <
G extends VertexListGraph<Vertex, VertexIterator>

& IncidenceGraph<Vertex, Edge, OutEdgeIterator>,
Vertex, Edge, VertexIterator, OutEdgeIterator,
Visitor extends BFSVisitor<G, Vertex, Edge>,
ColorMap extends ReadWriteMap<Vertex, Integer>>

void go(G g, Vertex s, ColorMap c, Visitor vis);
}

This code fails to type check; in the reference to VertexListGraph,
the type argument VertexIterator fails to implement the interface
Iterator. Figure 10 shows the corrected version, which adds the
constraint VertexIterator extends Iterator<Vertex>. This repeti-
tion of the constraint means that interfaces fail to provide a way
to organize and group constraints on multiple types. Instead the
constituent constraints of such concepts must be repeated for every
generic algorithm. This reduces the benefits of grouping constraints
into concepts and is extremely verbose.

There is a similar problem with respect to approximating concept
refinement with interface extension. For example, the following
Java generics declaration is not legal because the OutEdgeIter type
must be declared to extend Iterator<Edge> before instantiating
IncidenceGraph:

interface BidirGraph<Vertex, Edge, OutEdgeIter, InEdgeIter>
extends IncidenceGraph<Vertex, Edge, OutEdgeIter> {...}

Here is the corrected version:

interface BidirGraph<Vertex, Edge,
OutEdgeIter extends Iterator<Edge>, InEdgeIter>
extends IncidenceGraph<Vertex, OutEdgeIter> {...}

10.3 Access to Associated Types
Generic functions need a mechanism to access associated types.

For example, in breadth-first search, the type of the second param-
eter (the source of the search) is the vertex type associated with
the graph type. The C++ prototype for breadth first search in Fig-
ure 4 shows how a traits class is used to map from the graph type
to its vertex type. In ML, such a mapping is accomplished by nest-
ing types within structures. The other languages we evaluated do
not provide a direct mechanism for expressing functions over types
which are able to dispatch on their inputs. For instance, an itera-
tor type my iterator might have value type int, and another iterator
type your iterator might have value type double.

Associated types can, however, be accessed in a generic function
if they are added to the type parameter list of the generic func-
tion. The relationship between these extra type parameters, and the
types to which they are associated, is established by parameteriz-
ing the interfaces (Java generics, C#, and Eiffel) or type classes
(Haskell) that are used in the constraints of the generic function.
This approach results in a significant increase in the verbosity of
constraints on generic components. For example, the Java gener-
ics version of breadth first search shown in Figure 10 includes six

type parameters, three of which are associated types of the graph.
In contrast the C++ version of breadth first search has only three
type parameters. The verbosity introduced by this approach com-
pounds the problem of repeated constraints discussed in the previ-
ous section.

10.4 Implicit Instantiation
In languages that do not support implicit instantiation and cannot

properly encapsulate associated types, such as Eiffel and the Gyro
prototype of Generic C#, explicit instantiation results in overly ver-
bose generic algorithm invocations. The call to the breadth-first
search algorithm in Generic C# in Figure 14 demonstrates the prob-
lem: the programmer must specify types that could be deduced
from the argument types. Representing associated types as type
parameters increases the verbosity: in addition to the types of the
arguments passed into a generic algorithm, the programmer must
also specify all associated types. In the breadth-first search algo-
rithm, all but the first and last two type arguments are associated
types of the first type argument (the graph type). The code in Fig-
ure 16 serves as a stark, but not exaggerated, example of the com-
bined effect of explicit instantiation and of representing associated
types with type parameters.

The need to specify associated types also creates unnecessary
implementation dependencies. As explained above, four of the type
arguments in the call to the breadth-first search algorithm in Fig-
ure 14 are associated types of the first type argument. These types
represent internal implementation details of the graph type. At each
call to the algorithm these types must be explicitly specified. Con-
sequently, changes to any implementation details require changes
to user code at the call sites of generic algorithms. Consider the
call to the breadth-first search algorithm in Eiffel that was shown in
Section 7.2.1:

g: ADJACENCY LIST; src: INTEGER;
color: HASH MAP[INTEGER, INTEGER]; vis: MY BFS VISITOR
bfs: BREADTH FIRST SEARCH

[INTEGER, BASIC EDGE[INTEGER], ADJACENCY LIST]
...

create bfs
bfs.go(g, src, color, vis)

The ADJACENCY LIST class in Figure 8 uses INTEGER as the
vertex type and BASIC EDGE[INTEGER] as the edge type. Even
though the breadth-first search algorithm does not take an edge ob-
ject as a parameter, the edge type must still be specified. Con-
sequently, changing the implementation of ADJACENCY LIST to
use a different edge type, such as MY EDGE[INTEGER], requires
the type of bfs to be changed accordingly:

bfs: BREADTH FIRST SEARCH
[INTEGER, MY EDGE[INTEGER], ADJACENCY LIST]

Each call site to any graph algorithm that uses edges, even inter-
nally, and takes an argument of type ADJACENCY LIST must be
updated to reflect the new edge type.

10.5 Type Aliases
Type aliasing is a mechanism to provide an alternative name for

a type (cf. the typedef keyword in C++). The parameterization of
components introduces long type names, especially when parame-
terized components are composed. For example, in Generic C# the
type of the visitor object used in the Dijkstra algorithm is:

dijkstra visitor<G,
mutable queue<Vertex,

indirect cmp<Vertex, Distance, DistanceMap,
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DistanceCompare> >,
WeightMap, PredecessorMap, DistanceMap,
DistanceCombine, DistanceCompare, Vertex, Edge, Distance>

As in this example, type arguments are often instantiations of other
parameterized components. Such types can be overlong, resulting
in cluttered and unreadable code. Further, the long type name may
appear many times. This six-line-long type must appear three times
within the implementation of Dijkstra’s algorithm. With type alias-
ing, a short name could be given to this type and thus reduce clutter
in the code. Also, repeating the same type increases the probabil-
ity of errors: changes to one copy of a type must be consistently
applied to other copies. In addition to avoiding repetition of long
type names, type aliases are useful for abstracting the actual types
without losing static type accuracy.

Figure 16 shows the allocation of a visitor object and the call to
the graph search algorithm that appears inside the Dijkstra imple-
mentation. Without type aliases, what should be a few lines of code
is instead 27 lines. There is no mechanism for type aliases in Java,
C#, or Eiffel.

Type aliasing is a simple but crucial feature for managing long
type expressions commonly encountered in generic programming.

dijkstra visitor<G,
mutable queue<Vertex,

indirect cmp<Vertex, Distance, DistanceMap,
DistanceCompare> >,

WeightMap, PredecessorMap, DistanceMap,
DistanceCombine, DistanceCompare, Vertex, Edge,
Distance> bfs vis = new dijkstra visitor<G,

mutable queue<Vertex,
indirect cmp<Vertex, Distance, DistanceMap,

DistanceCompare> >,
WeightMap, PredecessorMap, DistanceMap,
DistanceCombine, DistanceCompare, Vertex, Edge,
Distance>();

graph search.go<
G, Vertex, Edge, VertexIterator, OutEdgeIterator,
hash map<Vertex, ColorValue>,
mutable queue<Vertex,

indirect cmp<Vertex, Distance, DistanceMap,
DistanceCompare> >,

dijkstra visitor<G,
mutable queue<Vertex,

indirect cmp<Vertex, Distance, DistanceMap,
DistanceCompare> >,

WeightMap, PredecessorMap, DistanceMap,
DistanceCombine, DistanceCompare, Vertex, Edge,
Distance> >

(g, s, color, Q, bfs vis);

Figure 16: Lack of type aliases leads to unnecessarily lengthy code.

11. CONCLUSION: BEYOND List<T>
Mainstream object-oriented programming languages have begun

to include support for generics. Java and C# generics have been ac-
cepted and are expected in future releases of those languages. Eiffel
has supported generics from its inception. Generics have primarily
been added to these languages to support type-safe polymorphic
containers. Object-oriented programming techniques remain the
primary mechanism for building abstractions in these languages;
generics fill a small and specific need. The other languages we
studied (C++, ML, and Haskell) support a broader, more powerful
version of generic programming.

11.1 The C++ Experience
The C++ template system demonstrates that a flexible generics fa-

cility requires a different design than one intended merely for poly-
morphic containers. Although the other object-oriented languages
studied here use subtyping to constrain generics, C++ rejected this
approach because it lacks expressiveness and flexibility [46, §15.4].
Subtype-based constraints are adequate for polymorphic containers
(which typically place few constraints on their parameters) but can-
not convey the more complex constraints needed for generic pro-
gramming. C++ also provides implicit function template instantia-
tion, which enables convenient use of generic algorithms. Eiffel
does not support implicit instantiation of generics, but it is planned
as an addition to C# and Java.

C++ support for generic programming has limitations. The lan-
guage does not support explicit expression of concepts. Documen-
tation generally describes concept constraints without enforcing
them. Argument dependent lookup obscures which operations a
generic function may call. Finally, function templates are not type
checked independent of their use. In spite of these flaws, commer-
cial generic programs and libraries are successfully written in this
language.

11.2 The ML and Haskell Experience
With respect to generics, ML and Haskell provide an informative

contrast to the object-oriented languages. Both ML and Haskell
provide polymorphic functions and data types, which together are
sufficient to implement polymorphic data structures. Both lan-
guages also provide more powerful mechanisms: type classes in
Haskell and functors in ML. The discussions of Java generics, Gene-
ric C#, and Eiffel suggest that Haskell and ML avoid some diffi-
culties with implementing generic libraries that the object-oriented
languages share. ML structures and signatures support associated
types, component modularity, and static type safety. Haskell im-
proves on ML generic programming support with implicit instanti-
ation of generic functions. Both languages have disadvantages. ML
lacks functions with constrained genericity aside from functions
nested within functors. Haskell, though quite expressive, requires
an awkward mechanism to express associated types. In general,
these two languages provide fine substrates upon which to build
generic libraries.

11.3 An Appeal to Language Designers
At the time of this writing, language support for generics con-

tinues to evolve. Updates to the C++ standard are currently under
way. Generics have been promised for the next Java and C# stan-
dards. Eiffel is currently undergoing ECMA standardization. These
languages have the opportunity to address their shortcomings with
respect to support for generic programming. By doing so, they
can augment the benefits that generics currently offer. Conscious
consideration of support for flexible generics and expressive con-
straints can improve the ability of these languages to express mod-
ular and reusable program components.
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Multiple Dispatch and Retroactive Abstraction for Java.
Technical Report OSU-CISRC-5/01-TR08, Ohio State
University, 2002.

[4] R. Bellman. On a routing problem. Quarterly of Applied
Mathematics, 16(1):87–90, 1958.

[5] G. Bracha and J. Bloch. JSR 201: Extending the Java
Programming Language with Enumerations, Autoboxing,
Enhanced for loops and Static Import, December 2002.
http://www.jcp.org/en/jsr/detail?id=201.

[6] G. Bracha, N. Cohen, C. Kemper, S. Marx, et al. JSR 14:
Add Generic Types to the Java Programming Language,
April 2001. http://www.jcp.org/en/jsr/detail?id=014.

[7] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler.
Making the future safe for the past: Adding genericity to the
Java programming language. In Proceedings of the ACM
Conference on Object-Oriented Programming Languages,
Systems, and Applications (OOPSLA), 1998.

[8] K. B. Bruce. Typing in object-oriented languages: Achieving
expressibility and safety. Technical report, Williams College,
1996.
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