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A practical scheme for maintaining an index for a sliding window in optimal time
and space, by use of a suffix tree, is presented. The index supports location of the
longest matching substring in time proportional to the length of the match. The to-
tal time for build and update operations is proportional to the size of the input. The
algorithm, which is simple and straightforward, is presented in detail.

The most prominent lossless data compression scheme, when considering compres-
sion performance, is prediction by partial matching with unbounded context lengths
(PPM*). However, previously presented algorithms are hardly practical, considering
their extensive use of computational resources. We show that our scheme can be ap-
plied to PPM*-style compression, obtaining an algorithm that runs in linear time, and
in space bounded by an arbitrarily chosen window size.

Application to Ziv–Lempel ’77 compression methods is straightforward and the re-
sulting algorithm runs in linear time.

� �������	���������������

String matching is a central task in data compression. In particular, in string substitution
methods—such as the original scheme of Ziv and Lempel [14]—the dominating part of
computation is string matching. Also, statistical data compression, such as the PPM meth-
ods [3, 4, 7], includes the operation of finding contexts, which are defined by strings. In
effect, this is a string matching operation, which, particularly when contexts are long, oc-
cupies a major part of computational resources.

The suffix tree [6, 11] is a highly efficient data structure for string matching. A suffix tree
indexes all substrings of a given string and can be constructed in linear time. Our primary
contribution is to present a scheme that enables practical use of suffix trees for PPM*-style
statistical modeling methods, together with its necessary theoretical justification. Also, ap-
plication to Ziv–Lempel compression is natural.

Some compression schemes [3, 9] require that each character, once read from the input,
resides in primary storage until all of the input has been processed. This is not feasible in
practice. We need a scheme that allows maintaining only a limited part of the input preced-
ing the current position—a sliding window. Fiala and Greene [5] claim to have modified
McCreight’s suffix tree construction algorithm [6] for use with a sliding window, by pre-
senting a method for making deletions at constant amortized cost. However, a careful in-
vestigation reveals that they do not consider the fact that McCreight’s algorithm treats the
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input right-to-left, and therefore does not support expanding the indexed string with char-
acters added to the right. This property of McCreight’s algorithm makes it unfit for sliding
window use if linear time complexity is to be maintained.

Here, we show that Ukkonen’s suffix tree construction algorithm [11] can be extended
to obtain a straightforward on-line sliding window algorithm which runs in linear time. We
utilize the update restriction technique of Fiala and Greene as part of our algorithm.

The most promising statistical compression method appears to be finite context model-
ing with unbounded context length, in the style of the PPM* algorithm presented by Cleary,
Teahan, and Witten [3]. (Some refinements are given by Teahan [10].) However, as pre-
sented in the original paper, this algorithm uses too much computational resources (both
time and space) to be practically useful in most cases. Observing that the context trie em-
ployed in PPM* is essentially a suffix tree, our algorithms can be used to accomplish a prac-
tical variant of PPM*, where space requirements are bounded by a window size, and time
complexity is linear in the size of the input.

In a survey of string searching algorithms for Ziv–Lempel ’77 compression, Bell and
Kulp [1] rule out suffix trees because of the inefficiency of deletions. We assert that our
method eliminates this inefficiency, and that suffix trees should certainly be considered for
implementation of the Ziv–Lempel algorithm.
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We consider strings of characters over a fixed alphabet. The length of a string � is de-
noted  �� .

A trie is a tree data structure for representing strings. Each edge is labeled with a char-
acter, and each stored string corresponds to a unique path beginning at the root. By ����� we
denote the string corresponding to the path from the root to a node � .

A path compressed trie is a trie where only nodes with more than one outgoing edge are
represented. Paths of unary nodes are collapsed to single nodes, which means that edges
must be labeled with strings rather than single characters. By ���������
����� we shall denote the
length of ����� rather than the number of edges on the associated path.

A suffix tree is a path compressed trie representing all suffixes (and thereby also all other
substrings) of a string  . The tree has at most ! leaves (one for each suffix), and therefore,
since each internal node has at least two outgoing edges, the number of nodes is less than "#! .
In order to ensure that each node takes constant storage space, an edge label is represented
by pointers into the original string. Note that we do not (as is otherwise common) require
that the last character of  is unique. Hence, our suffix trees are not guaranteed to have a
one-to-one correspondence between leaves and suffixes.

We adopt the following convention for representing edge labels: Each node � in the tree
holds the two values �%$'&(����� and ���������)�*�+� , where �,$'&-�*�+� denotes a position in  where the
label of the incoming edge of � is spelled out. Hence, the label of an edge ���).	/,� is the string
of length ���*���0�+��/,�)12���������)�*�+� that begins at position �%$'&(��/,� of  .

By 3	�%4657�8�*�).	9:�<;=/ , where � and / are nodes and 9 is a character, we denote that there is
an edge �*�).	/>� whose label begins with 9 . We call 9 the distinguishing character of ���).	/,� .

In order to express tree locations of strings that do not have a corresponding node in the
suffix tree (due to path compression), we introduce the following concept: For each sub-



string � of  we define �%$(4���� ��� � as a triple ���). � .	9:� , where � is the node of maximum depth
for which ����� is a prefix of � ,

� ;  ���1 7���+�  , and 9 is the � 7����� ����'� th character of � , unless� ;�� in which case 9 can be any character. Less formally, if we traverse the tree from the
root following edges that together spell out � for as long as possible, � is the last node on
that path,

�
is the number of remaining characters of � , and 9 is the distinguishing character

that determines which of the outgoing edges of � spells out the last part of � .

	 � ������� �	�
��
 ��� � ���%� �.�������

We give a slightly altered, and highly condensed, formulation of Ukkonen’s suffix tree con-
struction algorithm as a basis for discussions in subsequent sections. For a more elaborate
description, see Ukkonen’s original paper [11]. Ukkonen’s algorithm has the advantage over
the more well known algorithm of McCreight [6] that it builds the tree incrementally left-
to-right. This is essential for our application.
���� ������������������������ 
At each internal node � of the suffix tree, the algorithm stores a suffix link, pointing to an-
other internal node / , such that ����� ;=9#��/>� (where 9 is the first character of ����� ). This is de-
noted &"!$# ����� ; / . For convenience, we add a special node �,465 and define &"!$# �&% $ $#� �<;'�,465 ,
��(�% �)� �	�&% $ $#� � ;*�%465 , ���*���0�+�&�,465�� ; 1+� , and 3	�%4657���&�,465 .	9 � ;,% $ $#� for any character 9 . We
leave &"!$# �&�%465 � undefined. Furthermore, for a node � that has no outgoing edge with distin-
guishing character 9 , we define 3 �%4657�����).	9 �<;'�,465 .

We denote the individual characters of  (the string to be indexed) by -/. , where �103240
! , i.e.,  �;5-76�898"8/-�: . We define  ;. as the prefix of  of length 2 , and let <=%	�	� �� �.�� denote a
suffix tree indexing the string  �. .
��?> @BA;�� &C9�7D�EFC)��AG�IHJ�LKGAM���NC9O;�
Ukkonen’s algorithm is incremental. In iteration 2 we build <�% �	�-�� P.�� from <�% �	� �� G.RQS6 � , and
thus after ! iterations we have <�% �	� �� T:�� ;U<�% �	� �* � . Hence, iteration 2 adds 2 strings �V-W. to
the tree for all suffixes � of  �.RQX6 . For each �V-Y. precisely one of the following holds:

1. � occurs in only one position in  Z.RQX6 . This implies that �\[#� ; � for some leaf [
of <=%	�	� �� ;.]QS6 � . In order to add �P-W. we need only increment ���������)�^[#� .

2. � occurs in more than one position in  Z.RQS6 , but �P-Y. does not occur in  T.RQS6 . This implies
that a new leaf must be created for �P-7. , and possibly an internal node has to be created
as well, to serve as parent of that leaf.

3. �P-�. occurs already in  T.]QS6 and therefore is already present in <�% �	� �* Z.RQX6 � .
Observe that if (in a specific suffix tree), for a given -$. , case 1 holds for �_67-�. , case 2 for

�a`7-Y. , and case 3 for �ab&-�. , then �c6 is longer than �c` , which in turn is longer than �cb .
For case 1, all work can be avoided if we represent �������0�+�^[#� implicitly for all leaves [ :

We represent the leaves as numbers and let 5 �W(Y#
�Rd,� be the leaf representing the suffix be-
ginning at position d of  . This implies that if [ ; 56�W(Y#
�Rd,� , then after iteration 2 we have
���������)�e[ � ;f2 1gdh��� and �%$'&#�e[#� ; d 1 ���������)���=(�%	�)���	�e[ � � . Hence, neither ���������)�e[ � nor
�%$'&-�^[#� needs to be stored.



Now, the point of greatest depth where the tree may need to be altered in iteration 2
is �,$(4�� �	��� � , where � is the longest suffix of  �.RQS6 that also occurs in some other position
in  ;.RQX6 . We call this the active point. Before the first iteration, the active point is �$% $ $#� .&� .	9 � ,
where 9 is any character.

Other points that need modification can be found from the active point by following suf-
fix links, and possibly some downward edges. Finally, we reach the point that corresponds
to the longest �P- . string for which case 3 above holds, which concludes iteration 2 . We call
this the endpoint. The active point for the next iteration is found simply by moving one
character ( - . ) downward from the endpoint.

We maintain a variable #"% $�� � that holds the position to the right of the string currently
included in the tree. Hence, #"% $�� � ;32 before iteration 2 , and #"% $�� � ;32�� � after.

Two variables 4��(& and �T% $ � are kept so that � 4�� & . �T% $ � .7-������	��
]Q������� � is the insertion point,
the point where new nodes are inserted. At the beginning of each iteration, the insertion
point is set to the active point. The � (��,$��,4�� � function in Figure 1 is used to ensure that
�	4��(&(. �T% $ � .7-������	��
�Q��������'� is a valid point after �T% $ � has been incremented, by moving 4��(& along
downward edges.

Figure 2 shows the complete procedure for one iteration of the construction algorithm.
This takes constant amortized time, provided that the operation to retrieve 3 �%4657�)���).	9 � given
� and 9 takes constant time. (Proof given by Ukkonen [11].) For most realistic alphabet
sizes, this requires that a hash coding representation is used, as suggested by McCreight [6].

� ��� � � � � � � � ��� � ��� ��� � ���! � ��� �#"

In this section, we assume that the string to be indexed is  ; -$
&%�')( 898987-������*��
 , where �e((465
and #"% $�� � are numbers such that at any point in time �e((465 05#"% $���� and #"% $����<1��e((465 0,+
for some maximum length + . For convenience, we assume that #"% $�� � and �e((465 may grow
indefinitely. However, in practice the indices should be represented as integers modulo + ,
and  stored in a circular buffer. This means that, e.g., -$.); -�.&-/. and 56�W(Y# �^2 � ;�56�W(Y# �^29�0+ �
for any 2 .

The algorithm of Figure 2 can be viewed as a method to increment #"% $���� . Below, we
give a method to increment �e((465 without asymptotic increase in time complexity. Thus, we
can maintain a suffix tree as an index for a sliding window of varying size at most + , while
keeping time complexity linear in the number of processed characters. The storage space
requirement is 1 �	+ � .
2 �� 31����� C)��AG�= 
Removing the leftmost character of the indexed string involves removing the longest suffix
of  , i.e.  itself, from the tree. It is clear that <=%	�	� �� � must have a leaf / such that ��/,�<;2 .
Also, it is clear that / ;�56�W(Y# � �e((465�� . It therefore appears at first glance to be a simple task to
locate / and remove it from the tree in the following way:

Delete algorithm: Let / ;�5 �W(Y# � -54S276�� , � ;=�=(�%	�)��� ��/,� and remove the edge ���).	/,� . If � has
at least two remaining children, then we are done.

Otherwise, let [ be the remaining child of � ; � and [ should be contracted into one node.
Let 8 ;2��(�% �/���	����� . Remove edges ��8 .	��� and ���).&[#� and create an edge ��8 .&[#� . � has now



been removed from the tree and can be marked unused. Finally, if [ is not a leaf, �%$'&-�^[#�
should be updated by subtracting �������0�+�����
12���������)�	8 � from it. �

However, this is not sufficient for a correct �e((465 increment procedure. We must first en-
sure that the variables 4�� & and �T% $ � are kept valid. This is violated if the deleted node � is
equal to 4�� & . Fortunately, it is an easy matter to check whether � ; 4��(& , and if so, let 4�� &
back up by changing it to 8 and increasing �T% $ � by ���������)�*���
12�������0�+��/,� .

Secondly, we must ensure that no other suffix than the whole of  is removed from the
tree. This is violated if  has a suffix � that is also a prefix of  , and if �%$(4���� ��� � is located
on the incoming edge of the removed leaf; in this case � is lost from the tree. A solution to
this problem can be found in the following lemma:

� �M� ��� �
Assume that:

1.  and � are nonempty strings;
2. � is the longest string such that  ;��#� ;2��� for nonempty strings � and � ;
3. if  has a suffix ��� for some nonempty � , then � is a prefix of � .

Then � is the longest suffix of  that also occurs in some other position in  .

Proof: Trivially, by assumptions 1 and 2, � is a suffix of  that also occurs in some other
position in  . Assume that it is not the longest one, and let ��� be a longer suffix that occurs
in some other position in  . This implies that  ; �	�
� ;�
��
�� , for some nonempty
strings � , � , 
 , and � .

Since �� is a suffix of  , it follows from assumption 3 that that � is a prefix of � . Hence,
� ;������ for some string ��� . Now observe that  ;2��� ;2������ . Letting ���,;2�� and ���,;�
��
then yields  ;���� ����; ������ , where  ������� �  , which contradicts assumption 2. �

Let � be the longest suffix that would be lost. (This guarantees that the premises of the
lemma are fulfilled.) If we ensure that � is kept, no suffixes can be lost, since all potentially
lost suffixes are prefixes of  and therefore also of � .

From Lemma 1 we conclude that � is the longest suffix of  that occurs in some other
position in  . Hence, �%$(4����	��� � is the insertion point. Therefore, before we delete / , we call
� (��,$��,4�� � and check whether its returned value is equal to / . If so, instead of deleting / , we
replace it by 56�W(Y#
��#"% $���� 1� �  � .

Finally, we must ensure that edge labels do not become out of date when �^((465 is incre-
mented, i.e. that �%$'&-���G.���� �^((465 for all internal nodes �G. . Since each leaf corresponds to a
suffix of  (and thereby a string contained in  ), traversing the tree to the root to update po-
sition values for each added leaf could take care of this. However, this would yield quadratic
time complexity, so we must restrict the number of updates.

The following scheme originates from Fiala and Greene [5]. We let each leaf contribute
a credit to the tree. When a leaf is added, it issues one credit to its parent. Each internal
node � has a credit counter 39% � ���*��� that is initially zero. If a node receives a credit when the
counter is zero, it sets the counter to one. When a node with its counter set to one receives a
credit, it sets the counter to zero and issues, to its parent, the one of the two received credits
that originates from the most recent leaf.



1 While ���������
	 , do
2 ������������������������ ��! "�#%$�&�'(!)"�*,+ .
3 -��.�0/��21)�����(+435�6/���1 �7�������(+
4 If � is a leaf or �8�����:9;- , then return � ,
5 else �������:�<�������=3>- , �����=�?� .
6 Return �2�@� .

Figure 1: � (��,$��,4�� � function.

1 A:�B�2���
2 Repeat
3 ��DCFE(���G�2�IHJ/�K
4 If �MLN �2�@� , then
5 If � 'J"�O�PIQ�R�S8'G! "�* N � ��! "T#J$ , then endpoint found,
6 else
7 Assign U an unused node.
8 �0/��21)�7�VU8+W���0/��21)�7���@���X+7YZ������� .
9 �2�%�0��U�+W�\[]���(�^1_3`������� .

10 Create edges ���@���0��U8+ and ��Ua���(+ .
11 Remove edge �������b���(+ .
12 If � is an internal node, then
13 �^�X�(�V�(+c�<�2�%�6�V�(+7Yd������� .
14 else
15 If �T�b�@�������@���b��� ��!)"�#J$ + N �2�@� , then UM�B���^� ,
16 else endpoint found.
17 If not endpoint found, then
18 ef�B��/�E�[a�I[,���G��1a3g�6/���1 �7��U�+h+ .
19 Create edge �VUi��eJ+ .
20 �,j�[i�VA6+c�?U , A:�?U , �@���=�k�,j�[l�����^�X+ .
21 until endpoint found.
22 �Tj�[l�VA0+m�B���^� .
23 �������:�<�������nYpo , [,���G��1F�q[,���G��1rYso .

Figure 2: One iteration of construction.

1 ��DCFEG���(���IHJ/ , A:�B�I/�E�[i�t1tE(���I+ .
2 UM�u�^EG��/]��1,�VA6+ , remove edge �VUi��A0+ .
3 If A N � , then
4 vw�\[,���G��143>�,�0/��21)�7�������(+7Yd�������0+ .
5 Create edge �������b�%��/�E�[7�Vv�+t+ .
6 x2�2�0EX1�/G�������b��v2+ , �����=�k�,j�[a�������(+ .
7 else
8 If U has only one remaining child, then
9 y;�u�^EG��/]��1,�VU8+ .

10 -:���0/��21)�7�VU8+i35�6/���1 �7��yn+ .
11 If U N ���^� , then
12 �����=�?y , �������:�<�8�����nY>- .
13 Assign e the child of U .
14 If �,��/�����U�+ N o , then
15 x2�2�0EX1�/6��yz�h�^�X�(�Ve%+43;�0/��21)�7�VU8+t+ .
16 Remove edges �Vy��U8+ and ��Ua��eJ+ .
17 Create edge �Vy��e%+ .
18 If e is an internal node, then
19 �^�X�0��eJ+c�u�^�X�0�Ve%+43>- .
20 Make a note that U is unused.
21 1tE(�@�7�k1tE(����Yso .

Figure 3: Deletion.

1 While U`LN ���J�X1 , do
2 A:�<�2E(��/,�^1,�VU8+ .
3 vw�<{}|X~��Xvl�t�2�%�%�VU8+43;�0/��21)�7�VA0+T� .
4 �2�%�0��U�+W�?v=Y��0/��21)�7�VA6+ .
5 �]��/����VU8+W�Boc3g�,��/�����U�+ .
6 If �]��/����VU8+ N o , then return,
7 else, UM��A .

Figure 4: ���%��(#� �-���). � � .

If an internal node scheduled for removal holds one credit, that is issued to its parent
when the node is removed. Each time a credit is passed to a node � , �,$'& ����� is updated. We
define a fresh credit as a credit originating from one of the leaves currently present. Hence,
if a node � has received a fresh credit, then �%$'& ����� ���^((465

The following lemma states that this scheme guarantees valid edge labels. (Fiala and
Greene [5] make an analogous statement.)

� �M� ����>
Each node has issued at least one fresh credit.

Proof: Trivially, all nodes of maximum depth are leaves, and have issued fresh credits, orig-
inating from themselves. Assume that all nodes of depth

�
have issued fresh credits. Let �

be an internal node of depth
� 1�� , then each child / of � has issued a fresh credit. This

has either been passed on to � immediately or to a node between � and / which has later
been removed. Since remaining credits are sent upwards from nodes that are removed, that
credit or an even more recent credit must have propagated to � . Thus, � has received fresh



credits from all its children (at least two), and must therefore have issued at least one fresh
credit.

Consequently, nodes of all depths have issued fresh credits. �

Figure 3 shows the final algorithm for advancing �e((465 , and Figure 4 shows the routine
���,��(#� �-���). � � for passing credits upwards in the tree, where the parameter � is a node to
which a credit is issued and

�
is the starting position of a recently added suffix that starts

with ����� . The algorithm to advance #"% $���� is as in Figure 2, with the following additions to
supply credits from inserted leaves:

After line 10: � �%��(#� �#� 4�� &(.\#"% $���� 1=�������0�+����� � , 39%	� � ������� � .
After line 19: � �%��(#� �#�*�8. #"% $����
12���������)����� � .

We can now state the following:
� O���AM���M�

The presented algorithm correctly maintains a sliding window in time linear in
the size of the input.

The proof follows from Lemma 1 and 2 together with the previous discussions. The details
are omitted. If the alphabet size is not regarded as a constant this bound requires that hash
coding is used, i.e., it concerns randomized time.

� ��� � ����� ����� � � � ��� ��� � ���

The most effective results in data compression have been achieved by statistical modeling
in combination with arithmetic coding. Specifically, prediction by partial matching (PPM) is
the scheme that has generated the most notable results during the last decade. The original
PPM algorithm was given by Cleary and Witten [4]. Moffat’s variant PPMC [7] offers a
significant improvement.

The most prominent PPM variant with respect to compression performance is a variant
named PPM*, given by Cleary, Teahan, and Witten [3]. However, as originally presented,
this is hardly practical due to very large demands in computational resources. We show
that PPM*-style methods can be implemented in linear time and in space bounded by an
arbitrarily chosen constant, using the techniques of the previous sections.
� �� � ��� �=��� � ��� @
The idea of PPM is to regard the last few characters of the input stream as a context, and
maintain statistical information about each context in order to predict the upcoming char-
acter. The number of characters used as a context is referred to as the order.

For each context, a table of character counts is maintained. When a character 9 appears
in context 	 , the count for 9 in 	 is used to encode the character: the higher the count,
the larger the code space allocated to it. The encoding is most effectively performed with
arithmetic coding [8, 13]. When a character appears in a context for the first time, its count in
that context is zero, and the character can not be encoded. Therefore each context also keeps
an escape count, used to encode a new event in that context. When a new event occurs, the
algorithm “falls back” to the context of nearest smaller order. A � 1+� � -order context, where



all characters are assumed to be equally likely, is maintained for characters that have never
occured in the input stream. New contexts are added as they occur in the input stream.

How and when to update escape counts is an intricate problem. Witten and Bell [12]
consider several heuristics.
� ?> � �����
Previous to PPM*, the maximum order has usually been set to some small number. This is
primarily to keep the number of states from growing too large, but also a decrease in com-
pression performance can be observed when the order is allowed to grow large (to more than
about six). This is because large-order contexts make the algorithm less stable; the chance
of the current context not having seen the upcoming character is larger. However, the per-
formance of PPM* demonstrates that with a careful strategy of choosing contexts, allowing
the order to grow without bounds can yield a significant improvement.

In PPM* all substrings that have occured in the input stream are stored in a trie and each
node in the trie is a context. A context list is maintained, holding all the contexts that match
the last part of the input stream. Among these, the context to use for encoding is chosen.
(Using the strategy of earlier PPM variants, the context to use would be the one of highest
order, i.e. the node with greatest depth, but Cleary, Teahan, and Witten argue that this is not
the best strategy for PPM*.) The tree is updated by traversing the context list, adding nodes
where necessary. Escaping is also performed along the context list.
� ?� �  �?�MK ���cD���� � � ���
Cleary, Teahan, and Witten observe that collapsing paths of unary nodes into single nodes,
i.e. path compression, can save substantial space. We make some further observations that
lead us to the conclusion that the suffix tree operations described in previous sections are
suitable to maintain the data structure for a PPM* model.

1. A context trie is equivalent to a suffix tree. A path-compressed context trie is a suffix tree
indexing the processed part of the input, according to the definition in Section 2.

2. Context list. The context list of the PPM* scheme corresponds to a chain of nodes in the
suffix tree connected by suffix links. Using suffix links, it is not necessary to maintain a
separate context list.

3. Storing the counts. The characters that have non-zero counts in a context are exactly the
ones for which the the corresponding node in the trie has children. Hence, if 3 �%4657�)���).	9 � ;2/ ,
the count for character 9 in context � can be stored in / . There is no need for additional tables
of counts for the contexts.

Cleary, Teahan, and Witten state that path compression complicates node storage, since
different contexts may belong to the same node. However, if two strings (contexts) belong
to the same node, this implies that one is the prefix of the other, and that there are no branches
between them. Hence, they have always appeared in the input stream with one as the prefix
of the other. Therefore, it appears that the only reasonable strategy is to let them have the
same count, i.e., only one count needs to be stored.

We conclude that PPM modeling with unbounded context length for an input of size ! can
be done in time 	 ��! ��
 ��!)� � , where 
 �*!8� is the time used for updating frequency counts



and choosing states among the nodes. Thus, we are in a position where asymptotic time
complexity depends solely on the count updating strategy. Furthermore, restraining update
and state choice to a constant number of operations per visited node (amortized) appears to
be a reasonable limitation.
�  2 �P��� �G���SK�� �����GA��
Using a suffix tree that is allowed to grow without bounds, until it covers the whole input, is
still not a practical method. For large files, primary storage can not even hold the complete
file, let alone a suffix tree for that file.

Clearly, it is necessary to bound the size of the data structure. We do that by letting the
suffix tree index only the last + characters of the input, using the sliding window techniques
of Section 4. In this way, contexts corresponding to strings occuring in the latest + char-
acters are always maintained, while older contexts are “forgotten.” Note, however, that we
do not lose all earlier information when deleting old contexts, since the counts of remaining
contexts are influenced by earlier parts of the input.

Preliminary experiments indicate that this scheme, already with a simplistic strategy for
updating and choosing states (choosing the active point as current state and updating nodes
only when used), yield highly competitive results—e.g. an improvement over PPMC in most
cases.

� � ���	��
 ���� ��� 
 �������	�
�(�������

Methods based on the original algorithm of Ziv and Lempel [14] operate by storing the latest
part (typically several thousand characters) of the input seen so far, and for each iteration
finding the longest match for the upcoming part of the input. It then emits the position in the
buffer of that matching string, together with its length. If no match is found, the character
is transferred explicitly.

The main part of Ziv–Lempel compression consists of searching for the longest match-
ing string. This can be done in asymptotically optimal time by maintaining a suffix tree to
index the buffer. For each iteration, the longest match can be located by traversing the tree
from the root, following edges corresponding to characters from the input stream.

Rodeh and Pratt [9] show that it is possible to implement a linear-time Ziv–Lempel al-
gorithm utilizing a suffix tree. However, since they do not allow deletions from the suffix
tree, their algorithm requires � ��!)� space to process an input of length ! . This implies that
large inputs must be split into blocks, which decreases compression performance.

Our sliding window technique yields a natural implementation of Ziv–Lempel compres-
sion, which operates in linear time.

� 
 � � �#�0� ����� �

We conclude that, using our algorithm, PPM modeling with unbounded context length for an
input of size ! can be done in time 	 ��!+� 
 ��!)� � , where 
 �*!8� is the time used for updating
frequency counts and choosing states among the nodes. Thus, asymptotic time complexity
depends solely on the count updating strategy. Space requirements can be bounded by a



constant, which is chosen depending on the application and available resources. Preliminary
experiments indicate that this yields highly competitive results.

Furthermore, with our sliding window technique we obtain a natural implementation of
Ziv–Lempel compression which runs in linear time.

It has been noted, e.g. by Bell and Witten [2], that there is a strong connection between
string substituting compression methods and symbolwise (statistical) methods. Our asser-
tion that the exact same data structure is useful in both these families of algorithms serves
as a further illustration of this.
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