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a b s t r a c t

The maximum reported height of an upward propagating hydraulic fracture from several thousand
fracturing operations in the Marcellus, Barnett, Woodford, Eagleford and Niobrara shale (USA) isw588 m.
Of the 1170 natural hydraulic fracture pipes imaged with three-dimensional seismic data offshore of West
Africa and mid-Norway it is w1106 m. Based on these empirical data, the probability of a stimulated and
natural hydraulic fracture extending vertically >350 m is w1% and w33% respectively. Constraining the
probability of stimulating unusually tall hydraulic fractures in sedimentary rocks is extremely important as
an evidence base for decisions on the safe vertical separation between the depth of stimulation and rock
strata not intended for penetration.

� 2012 Published by Elsevier Ltd.

1. Introduction

Hydraulic fractures propagate when fluid pressure exceeds the
least principal stress and the tensile strength of the host sediment
(Hubbert and Willis, 1957). They continue to propagate until the
stress-intensity at the fracture tip is lower than the critical stress-
intensity of the rock being fractured (e.g. Savalli and Engelder,
2005). These conditions can occur naturally (e.g. Cosgrove, 1995)
but they can also be stimulated to recover oil and gas (Simonson
et al., 1978), or during injection of water into geothermal bore-
holes (e.g. Legarth et al., 2005; Julian et al., 2010) andunintentionally
as the result of subsurface blowouts (e.g. Tingay et al., 2005).

Hydraulic fractures are commonly described in outcrops at
centimetre to metre scale (e.g. Cosgrove, 1995 e Fig. 1ab). They can
be up to w50 m in height in the Devonian Marcellus shale
(e.g. Engelder and Lash, 2008) and sand filled fractures (injectites)
have been documented to extend hundreds of metres (Hurst et al.,
2011). But three-dimensional (3D) seismic data now show that
natural hydraulic fractures probably cluster, forming pipe-like
features that often extend vertically for even greater distances
than this (see Løseth et al., 2001; Zuhlsdorff and Spieß, 2004;
Cartwright et al., 2007; Davies and Clark, 2010).

Stimulation of hydraulic fractures as a technique for improved
hydrocarbon production from low permeability reservoirs dates

back to the late 1940s (Montgomery and Smith, 2010). Measure-
ments of the microseismicity they cause (e.g. Maxwell et al., 2002)
have shown that they can extend for several hundred metres
upwards and downwards from the wellbore (Fisher andWarpinski,
2011). Multiple stages of hydraulic fracture stimulation on multiple
wells are routine for the recovery of oil and gas from low perme-
ability sedimentary reservoirs in shale gas provinces in the USA
(e.g. King, 2010). Shale gas exploration is starting in many other
countries with sediments from Neogene to Cambrian age being
potential future targets. Therefore constraining the probability of
stimulating unusually tall hydraulic fractures in sedimentary rocks
is critically important, as it will help avoid the unintentional
penetration of shallower rock strata (Fig. 2) that might be impor-
tant aquifers or subsurface geological storage sites.

Mathematicalmethods for estimating hydraulic fracturing height
are simplistic (Fisher and Warpinski, 2011) and it is generally
accepted that we cannot yet accurately predict fracture propagation
behaviour in detail, so to date much of what we know of how
fractures will behave in situ conditions comes from operational
experience (King et al., 2008). Future shale gas targets could be in
a variety of different stress regimes and in rocks with varied
mechanical properties and ages. Therefore at this stage our approach
is to include a wide range of the tallest examples of hydraulic frac-
tures that have different geometries, geological settings and trigger
mechanisms.

Although hydraulic fractures are 3D, here we compile new and
existing data on the extents of only the vertical component of both

* Corresponding author.
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natural and stimulated hydraulic fracture systems hosted in
sediment from Neogene to Devonian in age from eight different
locations (Fig. 3a). We briefly report on key statistics, compare
them and consider which factors control the extent of upward
fracture propagation.

1.1. Hydraulic fracturing

There are several types of natural hydraulic fracture: injectites
(e.g. Hurst et al., 2011), igneous dikes (e.g. Polteau et al., 2008), veins
(e.g. Cosgrove,1995), coal cleats (e.g. Laubach et al., 1998), and joints
(e.g. McConaughy and Engelder, 1999). They have been extensively
studied. In the case of joints in the Devonian Marcellus Formation,
USA, it is evenpossible to study how they growon the basis of plume
lines that occur at centimetre to metre scale (Savalli and Engelder,
2005). Marcellus shale fractures are thought to form due to gas
diffusion and expansion within shale through multiple propagation
events. In contrast the tallest examples of hydraulic fractures tend to
cluster, are commonly termed chimneys, pipes or blowout pipes
(herein we use the term ‘pipe’) and can extend vertically for
hundreds of metres (e.g. Cartwright et al., 2007; Huuse et al., 2010).
The origin of pipes is not certain, but they probably form due to
critical pressurisation of aquifers and oil and gas accumulations
(Zuhlsdorff and Spieß, 2004; Cartwright et al., 2007; Davies and
Clark, 2010). Pipe development may be followed by stoping, fluid-
driven erosion and collapse of surrounding strata (Cartwright
et al., 2007). Gases that have come out of solution and expand

Figure 1. (a) Examples of natural hydraulic fractures in shale (b) close-up of a natural
hydraulic fracture filled with shale clasts (both examples from onshore Azerbaijan).

Figure 2. Schematic diagram showing stimulated hydraulic fractures within a shale
gas reservoir, natural hydraulic fractures initiated at a naturally overpressured reser-
voir, the vertical extent of hydraulic fractures reported here and the safe separation
between shale gas reservoir and shallower aquifer. VE e vertical extent.

Figure 3. (a)Map of the globe showing location of the eight datasets. Red fonte datasets
for stimulated hydraulic fractures, blue font e datasets for natural hydraulic fractures
(pipes). (b) Seismic line from offshore Mauritania showing a representative vertical pipe
imaged on 3D seismic reflection data and its vertical extent. (c) Graph of stimulated
hydraulic fractures in theMarcellus, Barnett, Woodford and Eagleford shales (after Fisher
and Warpinski, 2011) and including unpublished data provided by Halliburton for the
Niobrara shale. Insete extract of the graph showing how the vertical extents of fractures
weremeasured. All depths are in true vertical depth (TVD). The black dashed linee depth
of the stimulation of the hydraulic fractures. Coloured spikes e separate hydraulic frac-
tures propagating upwards and downwards from the depth of stimulation.
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during fluid advection may also contribute to their development
(Brown, 1990; Cartwright et al., 2007). They are recognised on
seismic reflection data on the basis of vertically aligned disconti-
nuities in otherwise continuous reflections (Fig. 3b and Cartwright
et al., 2007; Løseth et al., 2011).

Stimulated hydraulic fractures are created to significantly
increase the rate of production of oil and gas from fine-grained, low
permeability sedimentary rocks such as shale. Commonly a vertical
well is deviated so that it is drilled strata-parallel through the shale
reservoir (Fig. 2). The production casing is perforated and hydraulic
fractures stimulated by injecting saline water with chemical
additives. ‘Proppant’ (for example sand) is used to keep the fractures
open (see King, 2010). Hydraulic fracture stimulation from a hori-
zontal borehole is usually carried out in multiple stages with known
volumes and compositions of fluid (e.g. Bell and Brannon, 2011).
Rather than pipes forming, clustering of fractures commonly occurs
along planes, which are theoretically orthogonal to the least
principle stress direction. So there are fundamental differences in
the geometry of these fracture systems compared to those that
cluster to form pipes, the reasons for which are not yet understood.

Hydraulic fractures can be also be stimulated unintentionally
for example as an underground blowout (e.g. Tingay, 2003) and
they can unintentionally be caused by the injection of waste
water at high enough rates to generate pore pressures which
exceed the pressure required for hydraulic fracturing (e.g. Løseth
et al., 2011).

2. Datasets

Hundreds of pipes have recently been identified on 3D seismic
reflection surveys in continental margin settings (Davies and Clark,
2010; Hustoft et al., 2010; Moss and Cartwright, 2010; Løseth et al.,
2011). We compile new data based upon these surveys on the
vertical extents of 1170 pipes (e.g. Fig. 3ab). Pipe heights were
measured by recording their bases and tops in two-way-travel
time and converting these to heights using estimated seismic
velocities for the host successions (Davies and Clark, 2010; Moss
and Cartwright, 2010; Hustoft et al., 2010). Errors are related to
the seismic resolution and the estimation of the velocity of the
sediment and are probably <20%. Because of the limits of vertical
seismic resolution the numbers of hydraulic fractures that have
vertical extents of less than 100 m are probably underestimated.
We have not included in this study the heights of vertically
extensive injectites or igneous intrusions because their likely
modes of formation are quite different to stimulated hydraulic
fractures and pipe structures.

The vertical and horizontal extents of stimulated hydraulic
fractures used to recover hydrocarbons can be estimated using the
energy released by the hydraulic fracturing which is recorded as
microseismicity in a nearby borehole (e.g.Maxwell et al., 2002). Both

tension and shear fractures are detected. We used a compilation of
microseismic events (Fisher and Warpinski, 2011). They presented
measurements of the fracture tops and bottoms for ‘thousands’ of
mapped fracture treatments performed in the Barnett, Woodford,
Marcellus and Eagleford shale gas formations recorded from early
2001 to the end of 2010 (their Figs. 2e6 respectively). A fifth
unpublished dataset from the Niobrara shale (Colorado, USA) was
compiled in the same way and released by Halliburton for publica-
tion here. These operations varied in terms of the depth of fracturing
operations, the execution of the fracturing process and the geolog-
ical setting. It represents the majority of the data released into the
public domain at the time of writing.

Because we did not have access to the primary database
our measurements of fracture height were made by digitising
their published and unpublished graphs (Fisher and Warpinski,
2011 e Fig. 3c). This will have introduced errors but again this
will be mainly with the shorter hydraulic fractures (with vertical
extents < 100 m) therefore the numbers of these are also under-
estimated. Because it is the taller fractures we focus on, this bias
does not change our main conclusions. There are also errors asso-
ciated with the microseismic method, mainly associated with
estimating the velocity of the rock between the hydraulic fracture
and the monitoring well (e.g. Maxwell et al., 2002).

There is significant uncertainty in the depth of the initiation of
fracture systems caused by underground well blowouts, hence we
do not draw on this source of data in this paper. But the depth of the
fracture initiation is well constrained where waste water is being
injected, so herewe use a recently reported example from the Tordis
Field, offshore Norway where the fractures eventually intersected
the seabed (Løseth et al., 2011). This example provides some addi-
tional context for the natural and stimulated datasets described.

3. Results

3.1. Natural hydraulic fractures

Offshore of Mauritania 368 vertical pipes were identified over
an area of 1880 km2 (Davies and Clark, 2010 e Fig. 3ab) and it was
possible to measure the vertical extent of 360 of these. They are
hosted on a passive continentalmargin, probablywithinfine-grained
turbidites and foram-nannofossil hemipelagites of Neogene age
(Henrich et al., 2010). A graph of frequency against vertical extent
shows the most common vertical extent is between w200 m and
w300m. The tallest conduit isw507m (Fig. 4a). The average vertical
extent is 247 m.

Offshore of Namibia, we measured 366 vertical chimneys in
a succession composed of fine-grained claystones of Miocene to
Recent age (Moss and Cartwright, 2010). The average vertical extent
is 360m. Themaximumvertical extent isw1106m (Fig. 4a). Vertical
chimneys also form offshore mid-Norway within the Oligocene to

Figure 4. Q2Graph of frequency against vertical extent for natural hydraulic fractures (pipes) identified on 3D seismic data from (a) offshore Mauritania, (b) Namibe Basin (c) mid-
Norway.
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Recent fine-grained mudstone and siliceous mudstones of the
Brygge, Kai and Naust Formations (Hustoft et al., 2010). 66% of these
terminate at the seabed. Of the 446 pipes the average vertical extent
is 338m. Themaximumvertical extent isw882m (Fig. 4a). Graphs of
hydraulic fracture height against the probability of non-exceedance
of this height for each dataset show the probability of pipes
exceeding a range of vertical extents (Fig. 4b). Based upon these data
the probability of a pipe extending vertically >350 m is w33%
(Fig. 6ab).

3.2. Stimulated hydraulic fractures

Our compilation of data from the USA shales (Fisher and
Warpinski, 2011 e Fig. 3c) shows that generally the Marcellus is
the shallowest reservoir, then the Niobrara, Barnett, Woodford and
Eagleford. The maximum upward propagation of fractures initiated
in these reservoirs isw588 in the Barnett shale but in each case the
vast majority of hydraulic fractures propagate much shorter
distances (Fig. 5ab). The maximum upward propagation recorded to
date in the Marcellus shale is w536 m. The graphs show that the
probability of an upward propagating fracture exceeding a height of
200 m, for example, is highest for those initiated in the Marcellus
then the Barnett,Woodford, Niobrara and Eagleford shale reservoirs.
Based upon these data the probability that an upward propagating

hydraulic fracture extends vertically >350 m is w1% (Fig. 6ab), but
the probability is probably lower than this because we cannot
capture all of the shorter fractures. We cannot accurately estimate
the average vertical extent for the same reason.

3.3. Unintentionally stimulated hydraulic fractures

At the Tordis Field, offshore Norway, waste water produced due
to oil production was injected at w900 m below the surface. This
caused hydraulic fractures to propagate approximately 900 m to
the seabed. Pressure profiles from the injectionwell showa stepped
fracturing of the overburden (Løseth et al., 2011). The injection
lasted for approximately 5.5 months, while the leakage to seafloor
may have occurred for between 16 and 77 days (Løseth et al., 2011).

4. Interpretation and discussion

4.1. Vertical extent

Offshore mid-Norway there are controls on the locations of the
bases of the pipes as many emanate from overpressured strata and
66% terminate at the present-day seabed (Hustoft et al., 2010) and
these controls cause the peak in the frequency versus depth plot
between 300 and 350 m (Fig. 4a). Both of these factors have an

Figure 6. (a) Graph of frequency against fracture height for all stimulated and natural hydraulic fractures. (b) Graph of probability of non-exceedance against fracture height for
stimulated and natural hydraulic fractures.

Figure 5. Graphs of frequency against hydraulic fracture height for (a) upward and (b) downward propagating fractures in the Marcellus, Barnett, Woodford, Eagleford and Niobrara
shales. Graphs of probability of exceedance against height of (c) upward propagating fractures and (d) downward propagating fractures.
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influence on the shape of the probability of exceedance versus
height curves (Fig. 4b). In contrast only 12 of the 360 pipes from
offshore Mauritania terminate at a palaeo-seabed and a small
number of pipes in the Namibe Basin do this. Despite the limita-
tions of the datasets it is clear most of the natural hydraulic
fractures reported here are 200e400 m in height and that very few
natural fracture systems reported to date propagate beyond
a height of 700 m. The tallest is 1106 m, which is comparable to the
tallest injectites documented (Hurst et al., 2011). Lastly hydraulic
fractures that cluster to form pipe structures generally propagate
upwards further than stimulated hydraulic fractures (Fig. 6ab).

The vast majority of stimulated hydraulic fractures have a very
limited vertical extent of <100 m (Figs. 3c and 5a) and the tallest is
w588 m. These taller hydraulic fractures probably form by inter-
secting existing faults which has been recognised because the
clustering and the magnitude of microseismic events changes
(Warpinski and Mayerhofer, 2008).

4.2. Controls on vertical extent

Stimulated hydraulic fractures probably form by a number of
small fracture propagation events rather than a single one. The
stimulation of the hydraulic fractures in shale gas reservoirs nor-
mally takes place over time periods of only 1e2 h for a single
fracturing stage. When this period has been increased, for
example in the Barnett Shale, where pumping for an 11.7 h period
took place with a total volume of c. 5565 m3, the maximum
height of hydraulic fractures was only w266 m (Maxwell et al.,
2002). During pumping periods of up to 11.3 h into the Barnett
Shale the relationship between height and pumping time and
volume was shown not to be strong (Shelley et al., 2011) and frac-
tures stopped propagating vertically after only 1e3 h. Therefore
there is little relationship between pumping time and fracture
height when measured over these timescales. In the shale gas
provinces local geology such as variations in lithology, provide
natural barriers to propagation because of higher confining stress
or high permeability which allows the fluid to bleed off (Fisher
and Warpinski, 2011). For example in the Barnett shale the Viola
and Ellenberger limestones located below the Barnett shale can
limit the downward propagation of hydraulic fractures (King et al.,
2008).

We propose that natural hydraulic fractures that cluster to
form pipe structures have greater vertical extents for a number of
reasons. There is much more fluid and much longer timescales
available for multiple stages of fracture propagation. A volume of
w6 � 109 m3 is reported for an aquifer in the North Sea (UK)
(Heward et al., 2003). Although the flux of only some of the fluid
from an aquifer would cause pressure to drop to hydrostatic levels
and therefore only some of this fluid would have a role in pipe
development, there are orders of magnitude higher volumes of
fluid available than used in fracture stages in shale gas wells. Gas
that comes out of solution during ascent of fluid in natural
hydraulic fractures could also have a contributory role in propa-
gation (Cartwright et al., 2007). The pipes recorded here are hosted
within fine-grained, relatively homogenous successions on conti-
nental margins where there are fewer mechanical boundaries
and generally low permeability strata that do not allow fluid to
bleed off and therefore pressure to drop. Lastly there are significant
geometrical differences between natural and stimulated hydraulic
fractures and we do not know what influence this has on height.
Despite these differences there are similar trends in the datasets.
The vast majority of both natural and stimulated hydraulic fractures
included in this study are <500 m in vertical extent (Fig. 6a). This is
again because of variations in-situ stress, weak interfaces, material
property contrasts and high permeability layers in sedimentary

successions, particularly heterogeneous ones, provide natural
barriers to fracture propagation.

At the Tordis field the average rate of injection of water was
7000 m3 a day for 5.5 months (total volume w 1,115,000 m3).
Fractures grew from w900 m depth to the surface through Ceno-
zoic (Tertiary) rather than Palaeozoic strata. But this volume of fluid
is overw123 times greater than typically used for fracture stages in
the shale gas reservoirs and over a time period hundreds of times
longer.

Løseth et al. (2011) reported that pressure profiles from the
injection well show a stepwise fracturing of the overburden and
that fractures actually propagated for 900 m reaching the surface
(the seabed). The complexity of fracture propagation, role of
bed boundaries and pre-existing natural fractures was also
demonstrated at centimetre to metre scale through the mine-back
experiments carried out in the USA where stimulated fractures
were exposed by excavating them (e.g. Cipolla et al., 2008). Prop-
agation continues once the stress at the new boundary exceeds the
least principal stress and the tensile strength of the host sediment
and the stress-intensity at the fracture tip is lower than the critical
stress-intensity of the rock being fractured. Therefore to develop
the vertically most extensive fracture systems there needs to be
long, probably multiple episodes of injection of high pressure fluid
(probably >> 1 day). There would be several steps in the propa-
gation of the fracture system, breaking through permeable beds
and mechanical boundaries. Mechanically homogeneous succes-
sions with low permeability will result in vertically more extensive
fractures than heterogeneous formations with variable perme-
ability and confining stress.

4.3. Implications and further work

Further research should include additional datasets, particularly
from new settings that have not undergone fracturing treatments
to further increase confidence that exceptional propagation heights
have been captured. Additional data may allow for a better
understanding of several potential relationships between the
height of fractures and variables such as the type of stress regime
(i.e. conducive for shear failure or tensile failure), rock type, volume
of pumped fluid and pumping time.

There are some geological scenarios where there could be
connectivity of permeable reservoirs through a significant thick-
ness of overburden. For example sand injectites can cut through
w1000 m of shale (e.g. Hurst et al., 2011) and this could, given long
enough pumping time cause critical pressurisation of shallower
strata and therefore shallower fractures. These and other geological
scenarios should be considered and modelled.

Lastly, stimulated hydraulic fractures have been proposed as
amechanism formethane contamination of aquifers located 1e2 km
above the level of the fracture initiation in the Marcellus shale
(Osborn et al., 2011). Because the maximum upward propagation
recorded to date in the Marcellus shale is w536 m this link is
extremely unlikely (Davies, 2011; Saba and Orzechowski, 2011;
Schon, 2011). Other mechanisms for contamination such as the
leakage of biogenic or thermogenic gas from porous and permeable
strata behindwell casing andnaturalmigration ofmethane aremore
likely.

5. Conclusions

Natural hydraulic fracture pipes have the potential to propagate
upwards further than stimulated ones. The maximum upward
propagation recorded for a stimulated hydraulic fracture to date is
w588 m in the Barnett shale in the USA. Based upon the data
presented here the probability that a stimulated hydraulic fracture
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extends vertically beyond 350m isw1%. Very few natural hydraulic
fractures pipes or simulated hydraulic fractures propagate past
500 m because layered sedimentary rocks provide natural barriers
to growth.

Microseismic measurement of fracture propagation is an
essential monitoring tool which allows us to provide an evidence
base for the setting of theminimumvertical separation between the
shale gas reservoir and shallower aquifers. This is a comprehensive
compilation of data, but of course should be added to with new
fracture height data from other regions, as the different geological
conditions may result in unusually short or tall fractures. Building
upon this dataset and deriving probabilities from it will help inform
industry and academic geoscientists and engineers, regulators, non
government organisations and publics on safe separation distances
and help ensure environmentally safe shale gas operations.
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