
1

Using the Debugger

Jamie Robinson
Michael Jantz

Dr. Prasad Kulkarni

2

Debugger
● What is it

– a powerful tool that supports examination of
your program during execution.

● Idea behind debugging programs.

– Creates additional symbol tables that permit
tracking program behavior and relating it
back to the source files

● Some common debuggers for UNIX/Linux

– gdb, sdb ,dbx etc.

3

GDB
gdb is a tool for debugging C & C++ code

Some capabilities:
● run a program
● stop it on any line or the start of a function
● examine various types of information like values of

variables, sequence of function calls
● stop execution when a variable changes
● change values of variables (during execution)
● call a function at any point in execution

4

Compilation for gdb

● Code must be compiled with the -g option
– gcc -g -o file1 file1.c file2.c file3.o

● Which files can you debug?
– You can debug file1.c, file 2.c, (not file3.o)

● Optimization is not always compatible
– Due to optimizations which rearrange

portions of the code

5

Valgrind
● A heavyweight tool for dynamically catching hard-to-detect errors in

programs.

– Only checks code that it runs

● Valgrind is a virtual machine and quite a bit slower than normally
execution.

– Translates binaries into an intermediate representation performs some modifications
and recompiles the transformations at runtime as needed.

– Allows it to instrument code with safe guards and profiling tools.

● Valgrind's main tool is a memory checker that detects memory errors
in programs

● Also has a few other useful tools such as cache and branch miss-
prediction profilers, a heap profiler, a multi-thread data race detector,
and more.

http://valgrind.org/info/tools.html

6

Valgrind
● Memory checker (memcheck) helps find:

– Memory leaks

– Usage of uninitialized variables

● Often the cause of non-deterministic behavior in single threaded software.

– Bad frees of heap blocks
● Double frees

● Mismatched frees (frees on addresses without associated mallocs)

– Accesses to unallocated memory
● Accesses to invalid stack and heap addresses

– Freed heap addresses

– Out of bounds heap addresses

– Out of bounds stack addresses

7

Valgrind - Memcheck
● To run valgrind use:

– “valgrind [optional flags] <executable>”

● By default only the memcheck tool is used.
[jrobinson@localhost Development]$ valgrind ./valgrind_test
==2606== Memcheck, a memory error detector
==2606== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==2606== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==2606== Command: ./valgrind_test
==2606==
==2606== Conditional jump or move depends on uninitialised value(s)
==2606== at 0x40056A: main (valgrind_test.c:20)
==2606==
==2606==
==2606== HEAP SUMMARY:
==2606== in use at exit: 1,553 bytes in 202 blocks
==2606== total heap usage: 202 allocs, 0 frees, 1,553 bytes allocated
==2606==
==2606== LEAK SUMMARY:
==2606== definitely lost: 800 bytes in 100 blocks
==2606== indirectly lost: 700 bytes in 100 blocks
==2606== possibly lost: 10 bytes in 1 blocks
==2606== still reachable: 43 bytes in 1 blocks
==2606== suppressed: 0 bytes in 0 blocks
==2606== Rerun with --leak-check=full to see details of leaked memory
==2606==
==2606== For counts of detected and suppressed errors, rerun with: -v
==2606== Use --track-origins=yes to see where uninitialised values come from
==2606== ERROR SUMMARY: 101 errors from 1 contexts (suppressed: 0 from 0)

valgrind_test.c – a bad program that compiles
without warnings (gcc -Wall -g valgrind_test.c)

Valgrind shows all of the problems with this code

8

Valgrind - Memcheck
● Rerun with “--leak-check=full” and “--track-origins=yes”

as suggested by memcheck.
[jrobinson@localhost Development]$ valgrind --leak-check=full --track-origins=yes ./valgrind_test
==16850== Memcheck, a memory error detector
==16850== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==16850== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==16850== Command: ./valgrind_test
==16850==
==16850== Conditional jump or move depends on uninitialised value(s)
==16850== at 0x40056A: main (valgrind_test.c:20)
==16850== Uninitialised value was created by a stack allocation
==16850== at 0x400536: main (valgrind_test.c:17)
==16850==
==16850==
==16850== HEAP SUMMARY:
==16850== in use at exit: 1,552 bytes in 202 blocks
==16850== total heap usage: 202 allocs, 0 frees, 1,552 bytes allocated
==16850==
==16850== 10 bytes in 1 blocks are possibly lost in loss record 1 of 4
==16850== at 0x4C28C50: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
==16850== by 0x400586: main (valgrind_test.c:37)
==16850==
==16850== 1,500 (800 direct, 700 indirect) bytes in 100 blocks are definitely lost in loss record 4 of 4
==16850== at 0x4C28C50: malloc (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)
==16850== by 0x400549: main (valgrind_test.c:21)
==16850==
==16850== LEAK SUMMARY:
==16850== definitely lost: 800 bytes in 100 blocks
==16850== indirectly lost: 700 bytes in 100 blocks
==16850== possibly lost: 10 bytes in 1 blocks
==16850== still reachable: 42 bytes in 1 blocks
==16850== suppressed: 0 bytes in 0 blocks
==16850== Reachable blocks (those to which a pointer was found) are not shown.
==16850== To see them, rerun with: --leak-check=full --show-leak-kinds=all
==16850==
==16850== For counts of detected and suppressed errors, rerun with: -v
==16850== ERROR SUMMARY: 103 errors from 3 contexts (suppressed: 0 from 0)

9

Valgrind - Memcheck
● Rerun with “--show-leak-kinds=all” appended to the

options to see the still reachable blocks.

● Valgrind is not perfect.
– It will only catch errors that only occur during a program

run.
● If an error inducing code is not reached or specific input

conditions that trigger an error are not met, then Valgrind will not
detect it in that run.

● Importance of thorough unit tests.

– Custom memory allocators can confuse Memcheck.

10

Bugs.c
● A very poor example of C code that has some

interesting properties

● There are many bugs in this program, some of them are
obvious others aren't quite as obvious

● To fully debug this program, requires both GDB and
Valgrind

● To build bugs.c use run “make” on the command line.
This will generate an executable file called “bugs”.

● Run this executable with ./bugs

● It should end with a segmentation fault

11

Valgrind Example
● When we run ./bugs you may notice that Mars has a non-zero amount of

bugs on it. That isn't correct.

The current bug population of Earth is about: 1480000000000000000
The current bug population of Mars is about: 140728482299848
The current bug population of Venus is about: 0

● Lets try to throw Valgrind at the problem to see if something weird is
happening with memory.

● Run Valgrind on the bugs executable:

valgrind ./bugs

12

Valgrind Example c.
Uninitialized Variables

● We see a lot of output but at the top we see a few statements about
uninitialized variables.

==25224== Use of uninitialised value of size 8
==25224== at 0x4E7E0BB: _itoa_word (in /usr/lib64/libc-2.22.so)
==25224== by 0x4E8262F: vfprintf (in /usr/lib64/libc-2.22.so)
==25224== by 0x4E88D48: printf (in /usr/lib64/libc-2.22.so)
==25224== by 0x40089A: main (bugs.c:108)
==25224==
==25224== Conditional jump or move depends on uninitialised value(s)
==25224== at 0x4E7E0C5: _itoa_word (in /usr/lib64/libc-2.22.so)
==25224== by 0x4E8262F: vfprintf (in /usr/lib64/libc-2.22.so)
==25224== by 0x4E88D48: printf (in /usr/lib64/libc-2.22.so)
==25224== by 0x40089A: main (bugs.c:108)
==25224==
==25224== Conditional jump or move depends on uninitialised value(s)
==25224== at 0x4E826AD: vfprintf (in /usr/lib64/libc-2.22.so)
==25224== by 0x4E88D48: printf (in /usr/lib64/libc-2.22.so)
==25224== by 0x40089A: main (bugs.c:108)
...

● It looks like an uninitialized variable is being passed around the printf()
call graph quite a bit since the error originates from the same line.

13

Valgrind Example c.
Uninitialized Variables c.

● On one of the lines near the bottom notice that Valgrind suggests to use
the option --track-origin=yes

● Lets run valgrind again with that and see what we get

$ valgrind --track-origins=yes ./bugs

==26830== Memcheck, a memory error detector
==26830== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==26830== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==26830== Command: ./bugs
==26830==
The current bug population of Earth is about: 1480000000000000000
==26830== Use of uninitialised value of size 8
==26830== at 0x4E7E0BB: _itoa_word (in /usr/lib64/libc-2.22.so)
==26830== by 0x4E8262F: vfprintf (in /usr/lib64/libc-2.22.so)
==26830== by 0x4E88D48: printf (in /usr/lib64/libc-2.22.so)
==26830== by 0x40089A: main (bugs.c:108)
==26830== Uninitialised value was created by a stack allocation
==26830== at 0x4007DE: main (bugs.c:85)

● The uninitialized variable is an allocation by the stack is a function call.
The function is “main” in this example.

14

Valgrind Example c.
Uninitialized Variables c.

● This is a bit challenging since there were several variables in main that
are allocated at the same time in the bug_info struct.

● For this you have to look at the source code to see what is uninitialized.

● A way to fix this without question is to initialize each variable in the
function right after it was declared.

● We were having trouble with the mars print out so lets look at that first.

printf("The current bug population of Mars is about: %zu\n",
 bug_info.num_bugs_on_mars); // 0

● Check to see if there are any initializations done on this variable above
this line. If not add “bug_info.num_bugs_on_mars = 0;” underneath the
Storage struct declaration of “bug_info”

● Valgrind should now no longer report the uninitialized variables.

15

GDB Example 1
● To debug the bugs executable with GDB run GDB from the command

line:

> gdb ./bugs

● Once in GDB type “r” (run) and hit enter.

● This will run your executable until the segmentation fault and then pause
the program.

● These examples assume you are only using GDB and have never seen
or studied the source code before.

16

GDB Example 1 c.
Backtrace

● Type “bt” (backtrace) and press enter to see a stack trace of the
program

● The output should look something like this:
#0 0x00007ffff7a6737c in vfprintf () from /lib64/libc.so.6
#1 0x00007ffff7a6ed49 in printf () from /lib64/libc.so.6
#2 0x0000000000400717 in echo (strs=0x7fffffffdd08) at bugs.c:53
#3 0x0000000000400736 in echo (strs=0x7fffffffdd00) at bugs.c:56
#4 0x0000000000400736 in echo (strs=0x7fffffffdcf8) at bugs.c:56
#5 0x0000000000400736 in echo (strs=0x7fffffffdcf0) at bugs.c:56
#6 0x0000000000400736 in echo (strs=0x7fffffffdce8) at bugs.c:56
#7 0x0000000000400736 in echo (strs=0x7fffffffdce0) at bugs.c:56
#8 0x0000000000400736 in echo (strs=0x7fffffffdcd8) at bugs.c:56
#9 0x0000000000400736 in echo (strs=0x7fffffffdcd0) at bugs.c:56
#10 0x00000000004008ed in main (argc=1, argv=0x7fffffffde08) at bugs.c:124

● The top two functions are heavily used library functions printf() and
vprintf(), so we can assume the segmentation fault was caused by the
author of bugs.c misusing them rather than something inside them.

● Also we can clearly see that echo is a recursive function.

17

GDB Example 1 c.
Stack Navigation

● The #2 stack frame echo with the function echo the looks like it was the
last part of the code from bugs.c before the segmentation fault

● Further it looks like it didn't reach as far (line 53) as the rest of the echo
functions (line 56)

● To view this stack frame we need to navigate to it. That can be
accomplished with “f 2” (frame 2). Another way would be to use the “up”
command twice.

● You should see the following statements on your terminal after performing
the navigation:

(gdb) f 2
#2 0x0000000000400717 in echo (strs=0x7fffffffdd08) at bugs.c:53
53 printf("%s ", *strs);

● There is a problem in this printf() statement. Since we ruled out that
printf() itself was the problem lets check the arguments to printf().

18

GDB Example 1 c.
Printing Types

● Printf() expects a format string as it's first argument of type char*, we can
see that the first argument is “%s “.

● To figure out what the type of a variable is we can use the “ptype”
command like so:

(gdb) ptype "%s "
type = char [4]

● Char [4] is just a fancy way for GDB to say that the size of the array
containing the string at compile time. This is equivalent to a char*. Which
is what we wanted.

19

GDB Example 1 c.
Printing Types

● The second argument to printf() is determined by what is in the format
string. Since %s is the first format specifier then the second argument to
printf() should be of type char*.

(gdb) ptype strs
type = char **
(gdb) ptype *strs
type = char *

● Bugs.c is passing *strs which is of type char* which is what printf()
expects.

● We can also print the type signatures of functions defined in our program:

(gdb) ptype echo
type = void (char **)

● The types passed to printf() as arguments are correct so lets try to print
the value of strs.

20

GDB Example 1 c.
Printing Values

● To print the value of strs, we can use the “p” (print) command like so:

(gdb) p strs
$3 = (char **) 0x7fffffffdd08

● Since strs is a pointer, we can dereference it with any of the normal c
symbols (*, ->, [n]) and do pointer arithmetic on it.

(gdb) p *strs
$6 = 0x148a04289b940000 <error: Cannot access memory at address 0x148a04289b940000>

● There's the bug! Lets try to see what is around it in case we have an off
by one error of some kind:

(gdb) p *(strs – 1) // Print one pointer back. We could have also used “p strs[1]”.
$7 = 0x400a44 "butterfly"
(gdb) p *(strs + 1) // Print one pointer forward. We could have also used “p strs[1]”.
$8 = 0x0

● So one pointer forward gives a NULL pointer and one back gives the
string “butterfly”. It looks like this element in the array is corrupted?
Maybe. To find out we must go deeper.

21

GDB Example 1 c.
Source Code

● When looking at the stack trace, we determined that echo was recursive.
Lets look at its definition.

● To print the source code of a location you can use the “l” (list) command.

(gdb) l echo // List source code in the 10 lines surrounding the definition of echo
46 // broken but malformed arrays of non-null terminated arrays will break inside
47 // this)
48 //
49 // An example of a NULL terminated array of strings is:
50 // char** strs = { "Hello", "World!", NULL };
51 void echo(char** strs) {
52 if (*strs != NULL) {
53 printf("%s ", *strs);
54 fflush(stdout);
55
(gdb) // Pressing enter again prints the next 10 lines. Generally, pressing enter without a command runs the last command
56 echo(strs + 1); // Recurse on the next element in the string array
57 }
58 }
59
60 // Print a **NULL terminated** array of strings to standard out and then print the
61 // array backwards (This is broken).
62 void echoohce(char** strs) {
63 char** iter;
64 char** stop_beginning = strs - 1; // HINT: What could this possibly used for?
65

22

GDB Example 1 c.
Source Code c.

● Ignoring the comment above the echo function these are the important
bits:

51 void echo(char** strs) {
52 if (*strs != NULL) {
53 printf("%s ", *strs);
54 fflush(stdout);
56 echo(strs + 1); // Recurse on the next element in the string array
57 }
58 }

● The echo function will not execute if the dereferenced string is a pointer
to NULL. It prints the string and then recurses on the next element in the
strs array.

● With this we can see that the echo function approached its current
position from the lower end of the array.

● We still don't know what exactly we are printing, but the previous stack
frame's *strs was “butterflies” which gives us something to look for where
the program broke.

23

GDB Example 1 GDB c.
● Looking back at the backtrace on slide 16 we can see that the first echo

was called from main which is stack frame #10

● Lets go to main:

(gdb) f 10
#10 0x00000000004008ed in main (argc=1, argv=0x7fffffffde08) at bugs.c:124
124 echo(bug_info.sentence);

● We see that echo is being called on “bug_info.sentence”. Lets look at it.

(gdb) ptype bug_info // print the type info which prints the Storage structure
type = struct Storage {
 intptr_t num_bugs_on_mars;
 const char *scary_bug;
 char *sentence[6];
 const char *colorful_bug;
 intptr_t num_bugs_on_earth;
 intptr_t num_bugs_on_venus;
 char *useless_bug;
}
(gdb) p bug_info // print the values stored in bug info including the sentence field
$10 = {num_bugs_on_mars = 0, scary_bug = 0x400a57 "~~~~~~~~ SPIDER!!! ~~~~~~~~", sentence = {0x602010 "The",
0x602030 "most", 0x602050 "useless", 0x602070 "bug", 0x602090 "is", 0x6020b0 "a"}, colorful_bug = 0x400a44
"butterfly", num_bugs_on_earth = 1480000000000000000, num_bugs_on_venus = 0, useless_bug = 0x400a4e
"mosquito"}

24

GDB Exampe 1 c.
● The echo function was expecting a NULL terminated array and sentence

is not NULL terminated.

● Echo kept printing past the end of the array and printed “colorful_bug”
(“butterfly”) then tried to dereference and print “num_bugs_on_earth”
which was storing an integer, not a valid pointer.

● Note the value of num_bugs_on_earth. Lets look back at the problematic
echo frame again:

(gdb) p bug_info.num_bugs_on_earth
$11 = 1480000000000000000
(gdb) f 2
#2 0x0000000000400717 in echo (strs=0x7fffffffdd08) at bugs.c:53
53 printf("%s ", *strs);
(gdb) p *strs
$12 = 0x148a04289b940000 <error: Cannot access memory at address 0x148a04289b940000>
(gdb) p (intptr_t) *strs // Read *strs as an intptr_t rather than a string
$13 = 1480000000000000000

25

GDB Example 1 c.
● This is a buffer overflow error.

● If echo changed the pointers on each of the elements it reached we
would have unintentionally lost the “butterfly” string and changed the
“num_bugs_on_earth” variable and stopped at “num_bugs_on_venus”
(with it's value of 0 or NULL).

● There would have not been a segmentation fault and it could be more
difficult to track down the problem.

● Lets kill this nasty bug.

● Change the length of the sentence array in the Storage structure to 7 and
add add bug_info.sentence[6] = NULL; to line 104.

26

GDB Example 2
● Note: Example 2 assumes you have fixed the first problem.

● There is another segmentation fault but lets first look at the line:

` 0 ` ` p ` ` ` a is bug colorful most The ~~~~~~~~ SPIDER!!! ~~~~~~~~� � �

● The first part will be gibberish, and worse, may be different between
program runs.

● Also, if we look at the expected output in the file bugs_desired.txt we see
that the “~~~~~~~~ SPIDER!!! ~~~~~~~~” string is not present.

● Lets find and fix the gibberish first and the spider string can be left as an
exercise for the reader to debug.

27

GDB Example 2 c.
Breakpoints

● We will have to find the location in the code where this bug is without the
segmentation fault

● Restart GDB after fixing the problem in Example 1 and rebuilding bugs.c.

● Set a breakpoint at main with “b main” (break main):

(gdb) b main
Breakpoint 1 at 0x4007ed: file bugs.c, line 89.

● We can list all of the active breakpoints with “info breakpoints”

(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x00000000004007ed in main at bugs.c:89

● Now run the program with the “r” command as we did in example 1.

● The program is now stopped at the beginning of main.

28

GDB Example 2 c.
Watchpoints

● Now we need to think of a strategy to discover the bug. It looks like the
sentence structure is being read backwards from the back to the front. It
would be nice if we could set a breakpoint where it does the printing to
narrow the search for the error.

● Lets set a watchpoint that triggers on a memory read “rwatch” on the first
element of the sentence array in bug_info:

(gdb) rwatch bug_info.sentence[0]
Hardware read watchpoint 2: bug_info.sentence[0]

● There are other watchpoint types as well: “watch” (value change) and
“awatch” (read or write)

● We are ready to start our search.

29

GDB Example 2 c.
Continue

● Now we can continue the program's execution with “c” (continue). This
tells the program to run until the next breakpoint, watchpoint, or signal.

(gdb) c
Continuing.
The current bug population of Earth is about: 1480000000000000000
The current bug population of Mars is about: 1
The current bug population of Venus is about: 0
The total bug population of the solar system is: 1480000000000000000
Hardware read watchpoint 2: bug_info.sentence[0]

Value = 0x602010 "The"
0x00000000004006f9 in echo (strs=0x7fffffffdcc0) at bugs.c:52
52 if (*strs != NULL) {

● It looks like the watchpoint triggered at echo which prints the sentence
array.

● We didn’t see the odd printout that we saw before so lets keep searching.

30

GDB Example 2 c.
Continue c.

● If we keep using this watchpoint we will be pressing enter quite a bit
repeating the continue command until we see the line print.

● Lets employ a search pattern to speed up our locating the problematic
code. If we place a number after the “c” as in “c 2” then it will stop on the
2nd breakpoint or watchpoint to be triggered.

● Our search pattern will be to double this number each time we don't see
the problematic line. Then if we think we have missed the line printing the
gibberish then employ a binary search between the continuation points to
close in on the problem.

(gdb) c 2
Will ignore next crossing of breakpoint 2. Continuing.
The most useless bug is a mosquito
Hardware read watchpoint 2: bug_info.sentence[0]

Value = 0x602010 "The"
0x00000000004006f9 in echo (strs=0x7fffffffdcc0) at bugs.c:52
52 if (*strs != NULL) {

31

GDB Example 2 c.
Continue c.

● It didn't print again so lets double it to 4.

(gdb) c 4
Will ignore next 3 crossings of breakpoint 2. Continuing.
The most colorful bug is a butterfly
Hardware read watchpoint 2: bug_info.sentence[0]

Value = 0x602010 "The"
0x00007ffff7a6737c in vfprintf () from /lib64/libc.so.6

● Still haven't found it so double it again to 8.

(gdb) c 8
Will ignore next 7 crossings of breakpoint 2. Continuing.
 ` 0 ` ` p ` ` `� � � Hardware read watchpoint 2: bug_info.sentence[0]

Value = 0x602010 "The"
0x00000000004007bd in echoohce (strs=0x7fffffffdcc0) at bugs.c:78
78 for (; *iter != NULL; --iter)

● We finally found the problem. It looks like we are in the echoohce. Also
the rest of the backwards sentence structure hasn't printed out meaning
we are very close to the code printing the gibberish.

32

GDB Example 2 c.
Delete

● Lets check to see where echoohce is in the stack trace:

(gdb) bt
#0 0x00000000004007bd in echoohce (strs=0x7fffffffdcc0) at bugs.c:78
#1 0x000000000040093b in main (argc=1, argv=0x7fffffffde08) at bugs.c:136

● For me, it looks like it is on line 136 of bugs.c. Use what ever line number
you have in the highlighted region. Lets set a breakpoint there with “b
bugs.c:136”:

(gdb) b bugs.c:136
Breakpoint 3 at 0x40092b: file bugs.c, line 136.

● Now lets remove the watchpoint and the initial breakpoint at main with the
“d #” (delete Num) command:

(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x00000000004007ed in main at bugs.c:89
breakpoint already hit 1 time
2 read watchpoint keep y bug_info.sentence[0]
breakpoint already hit 15 times
3 breakpoint keep y 0x000000000040092b in main at bugs.c:136
(gdb) d 2
(gdb) d 1

33

GDB Example 2 c.
Next

● Rerun the program with “r”.

● It should break on the line you specified the breakpoint at.

(gdb) r
...
The most useless bug is a mosquito
The most colorful bug is a butterfly

Breakpoint 3, main (argc=1, argv=0x7fffffffde08) at bugs.c:136
136 echoohce(bug_info.sentence);

● Lets use “n” (next) to move onto the next instruction in the main function
to double check that this is in fact the location of the error.

(gdb) n
 ` 0 ` ` p ` ` ` a is bug colorful most The ~~~~~~~~ SPIDER!!! ~~~~~~~~ � � �
139 free(bug_info.sentence[0]);

● We can see that GDB has completely executed echoohce and is back at
the next instruction in the main function, and is also responsible for the
spider string appearing.

34

GDB Example 2 c.
Step

● Now that we are sure the violating function is echoohce, lets look inside it.

● Restart the program again with the “r” command. We can use the “s”
(step) command to step inside of a function:

(gdb) r
...
The most useless bug is a mosquito
The most colorful bug is a butterfly

Breakpoint 3, main (argc=1, argv=0x7fffffffde08) at bugs.c:136
136 echoohce(bug_info.sentence);
(gdb) s
echoohce (strs=0x7fffffffdcc0) at bugs.c:64
64 char** stop_beginning = strs - 1; // HINT: What could this possibly used for?

35

GDB Example 2 c.
Call

● Now use the “n” (next) command to go forward one instruction:

(gdb) n
67 for (iter = strs; *iter != NULL; ++iter)

● Press enter two more times.

(gdb)
68 printf("%s ", iter);
(gdb)
67 for (iter = strs; *iter != NULL; ++iter)

● Notice the call to printf didn't print anything. Printf is buffered and won't
actually print until the buffer is full or a newline is reached in the output.

● Lets flush the buffer. We can call any function in our program from GDB
with the “call” command. So lets use “call fflush(stdout)”

(gdb) call fflush(stdout)
` $1 = 0

36

GDB Example 2 c.
● Lets check the arguments to printf like we did in Example 1.

● Remember that printf wants a char* to place into the %s format token.

(gdb) ptype iter
type = char **
(gdb) p iter
$2 = (char **) 0x7fffffffdcc0
(gdb) p *iter
$3 = 0x602010 "The"

● The problem is that iter is not dereferenced. If we dereference it we get
the correct string.

● If we fix the problem and rerun the program we can see that the line is
now almost correct:

The most colorful bug is a a is bug colorful most The ~~~~~~~~ SPIDER!!! ~~~~~~~~

	Productivity Tools: Debugger
	Debugger
	GDB
	Compilation for gdb
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

