How Many Numbers
 Can a Lambda-Term Contain?

Paweł Parys

University of Warsaw

Goal: characterize all higher-order functions operating on natural numbers

definable in simply-typed λ-calculus
(for any reasonable representation of natural numbers)
Δ

$$
\text { e.g. }[n]=\lambda f . \lambda x . \underbrace{f(f(f \ldots(f)}_{n} x))
$$

Goal: characterize all higher-order functions operating on natural numbers
 definable in simply-typed λ-calculus

Consider the function:

$$
g(f)=n_{1}+f\left(n_{2}+f\left(n_{3}+f\left(\ldots+f\left(n_{k}\right) \ldots\right)\right)\right)
$$

(where $n_{1}, n_{2}, \ldots, n_{k}$ are some constants)
If we want to know precisely the result of g for each f, we need to remember all the numbers $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{k}}$ (arbitrarily many numbers).

Goal: characterize all higher-order functions operating on natural numbers
 definable in simply-typed λ-calculus

Consider the function:

$$
\begin{aligned}
g(f)= & n_{1}+f\left(n_{2}+f\left(n_{3}+f\left(\ldots+f\left(n_{k}\right) \ldots\right)\right)\right) \\
& \left(\text { where } n_{1}, n_{2}, \ldots, n_{k} \text { are some constants }\right)
\end{aligned}
$$

If we want to know precisely the result of g for each f, we need to remember all the numbers $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{k}}$ (arbitrarily many numbers).

But if we allow approximation of the result, up to some error...
... our function is equivalent to:

$$
\begin{aligned}
& \mathrm{g}^{\prime}(\mathrm{f})=\mathrm{n}_{1}+\mathrm{f}(\mathrm{~m}) \quad \text { where } \mathrm{m}=\mathrm{n}_{2}+\mathrm{n}_{3}+\ldots+\mathrm{n}_{\mathrm{k}} \\
& \text { (assuming that all } \mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{k}} \text { are positive) }
\end{aligned}
$$

For example, if $f(x)=2 x$, then $g^{\prime}(f) \leq g(f) \leq g^{\prime}(f) \cdot 2^{\prime}(f)$. In fact, for each fixed f we can give a similar relationship between $g^{\prime}(f)$ and $g(f)$ (not depending on the values used in g and $\left.g '\right)$.

Main result

For each type there exist only finitely many "shapes" of functions of that type, and for each shape we need to remember a vector of natural numbers (constants) of a fixed length.
E.g. for type $(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ one of possible shapes is $g^{\prime}(f)=n_{1}+f(m)$, containing two constants n_{1}, m.

Main result

For each type there exist only finitely many "shapes" of functions of that type, and for each shape we need to remember a vector of natural numbers (constants) of a fixed length.
E.g. for type $(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ one of possible shapes is $g^{\prime}(\mathrm{f})=\mathrm{n}_{1}+\mathrm{f}(\mathrm{m})$, containing two constants $\mathrm{n}_{1}, \mathrm{~m}$.

Another possible shape is $g^{\prime \prime}(f)=\underbrace{f(f(f(\ldots(f(0))}_{n}) . .)$.$) , containing one constant \mathrm{n}$.
Here, the constant is not written explicitly.
Thus, to each function we just assign a shape (from a finite set), and a vector of natural numbers (of a fixed length).

Main result

For each type there exist only finitely many "shapes" of functions of that type, and for each shape we need to remember a vector of natural numbers (constants) of a fixed length.
E.g. for type $(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ one of possible shapes is $g^{\prime}(f)=n_{1}+f(m)$, containing two constants $\mathrm{n}_{1}, \mathrm{~m}$.

Compositionality:

- the shape of application $F(G)$ is determined by shapes of F and G
- the vector for $F(G)$ is obtained by applying a linear function applied to the vectors for F and G ; the linear function depends only on the shapes of F and G

Approximation:

- for terms of type \mathbb{N} the number x in the vector approximates the number y represented by the term: $x \leq H(y)$ and $y \leq H(x)$ (for a fixed function H)

"Counterexample"

Consider the function:

$$
f(x)= \begin{cases}n_{1} & \text { if } x=0 \\ n_{2} & \text { if } x=1 \\ \ldots & \\ n_{k} & \text { if } x \geq k\end{cases}
$$

This function cannot be represented in simply-typed λ-calculus: it may contain arbitrarily many independent numbers.

"Counterexample"

Consider the function:

$$
f(x)= \begin{cases}n_{1} & \text { if } x=0 \\ n_{2} & \text { if } x=1 \\ \ldots & \\ n_{k} & \text { if } x \geq k\end{cases}
$$

This function cannot be represented in simply-typed λ-calculus: it may contain arbitrarily many independent numbers.

Already this function cannot be represented (it cannot be computed while knowing only approximation of x):

$$
f(x)= \begin{cases}n & \text { if } x<k \\ m & \text { if } x \geq k\end{cases}
$$

Thank you!

For each type there exist only finitely many "shapes" of functions of that type, and for each shape we need to remember a vector of natural numbers (constants) of a fixed length.
E.g. for type $(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$ one of possible shapes is $\mathrm{g}^{\prime}(\mathrm{f})=\mathrm{n}_{1}+\mathrm{f}(\mathrm{m})$, containing two constants $\mathrm{n}_{1}, \mathrm{~m}$.

Compositionality:

- the shape of application $F(G)$ is determined by shapes of F and G
- the vector for $F(G)$ is obtained by applying a linear function applied to the vectors for F and G; the linear function depends only on the shapes of F and G

Approximation:

- for terms of type \mathbb{N} the number x in the vector approximates the number y represented by the term: $x \leq H(y)$ and $y \leq H(x)$ (for a fixed function H)

