

How Many Numbers
Can a Lambda-Term Contain?

Paweł Parys

University of Warsaw

Goal: characterize all higher-order functions
 operating on natural numbers
 definable in simply-typed λ-calculus
 (for any reasonable representation of natural numbers)

n

e.g. [n] = λf.λx. f (f (f … (f x)...))

Goal: characterize all higher-order functions
 operating on natural numbers
 definable in simply-typed λ-calculus

g(f) = n1+f(n2+f(n3+f(...+f(nk)...)))
Consider the function:

If we want to know precisely the result of g for each f, we need to
remember all the numbers n1, n2, ..., nk (arbitrarily many numbers).

(where n1, n2, ..., nk are some constants)

Goal: characterize all higher-order functions
 operating on natural numbers
 definable in simply-typed λ-calculus

g(f) = n1+f(n2+f(n3+f(...+f(nk)...)))
Consider the function:

If we want to know precisely the result of g for each f, we need to
remember all the numbers n1, n2, ..., nk (arbitrarily many numbers).

(where n1, n2, ..., nk are some constants)

But if we allow approximation of the result, up to some error...

… our function is equivalent to:

g'(f) = n1+f(m) where m = n2+n3+...+nk
(assuming that all n1, n2, ..., nk are positive)

For example, if f(x)=2x, then g'(f)≤g(f)≤g'(f).2g'(f).
In fact, for each fixed f we can give a similar relationship between
g'(f) and g(f) (not depending on the values used in g and g').

Main result

For each type there exist only finitely many “shapes” of functions
of that type, and for each shape we need to remember a vector of
natural numbers (constants) of a fixed length.

E.g. for type (ℕ→ℕ)→ℕ one of possible shapes is g'(f) = n1+f(m),
containing two constants n1, m.

Main result

For each type there exist only finitely many “shapes” of functions
of that type, and for each shape we need to remember a vector of
natural numbers (constants) of a fixed length.

E.g. for type (ℕ→ℕ)→ℕ one of possible shapes is g'(f) = n1+f(m),
containing two constants n1, m.

Another possible shape is g''(f)=f(f(f(...(f(0))...))), containing one constant n.

n
Here, the constant is not written explicitly.
Thus, to each function we just assign a shape (from a finite set), and a vector of
natural numbers (of a fixed length).

Main result

For each type there exist only finitely many “shapes” of functions
of that type, and for each shape we need to remember a vector of
natural numbers (constants) of a fixed length.

E.g. for type (ℕ→ℕ)→ℕ one of possible shapes is g'(f) = n1+f(m),
containing two constants n1, m.

Compositionality:
● the shape of application F(G) is determined by shapes of F and G
● the vector for F(G) is obtained by applying a linear function applied
 to the vectors for F and G; the linear function depends only on the
 shapes of F and G

Approximation:
● for terms of type ℕ the number x in the vector approximates the
 number y represented by the term: x≤H(y) and y≤H(x)
 (for a fixed function H)

“Counterexample”

Consider the function:

 f(x) =

This function cannot be represented in simply-typed λ-calculus:
it may contain arbitrarily many independent numbers.

n1 if x=0
n2 if x=1
…
nk if x≥k

“Counterexample”

Consider the function:

 f(x) =

This function cannot be represented in simply-typed λ-calculus:
it may contain arbitrarily many independent numbers.

n1 if x=0
n2 if x=1
…
nk if x≥k

Already this function cannot be represented (it cannot be
computed while knowing only approximation of x):

 f(x) =
n if x<k
m if x≥k

Thank you!

For each type there exist only finitely many “shapes” of functions
of that type, and for each shape we need to remember a vector of
natural numbers (constants) of a fixed length.

E.g. for type (ℕ→ℕ)→ℕ one of possible shapes is g'(f) = n1+f(m),
containing two constants n1, m.

Compositionality:
● the shape of application F(G) is determined by shapes of F and G
● the vector for F(G) is obtained by applying a linear function applied
 to the vectors for F and G; the linear function depends only on the
 shapes of F and G

Approximation:
● for terms of type ℕ the number x in the vector approximates the
 number y represented by the term: x≤H(y) and y≤H(x)
 (for a fixed function H)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

