Branching Time Logics & Flat Counter Systems

Amit Kumar Dhar

LIAFA, Université Paris Diderot, Paris.

Highlights Conference, 2014.

Joint Work With:

Stéphane Demri,

NYU, CNRS, New York. France.

Arnaud Sangnier

LIAFA, Université Paris Diderot, Paris

Verification > Model Checking

Model-Checking {CTL*,CTL,CTLEF}

over Flat Counter Systems

is Equivalent to

Satisfiability of Presburger Arithmetic.

Models > Counter Systems

Counters : $\{c_1, c_2, \dots, c_n\}$ Updates : $\mathbf{u} \in \mathbb{Z}^n$.

Guards : Boolean Combination of arithmetic constraints $2.c_1 + 5.c_2 - c_3 \ \{\leq, \geq, <, >\} \ 5.$

Models > Flat Counter Systems

No intersecting/nested loops in the structure.

Flat

Models > Flat Counter Systems

Can still be used to model some systems e.g. Broadcast Protocols

[Finkel, Leroux - FSTTCS'02, Fribourg, Olsén - LOPSTR'96]

Under-approximation of model-checking of counter systems. [Boigelot - 98, Comon, Jurski - CAV'98, Leroux, Sutre - ATVA'05]

Decidable Model checking for some logics (Presburger CTL*). [Demri et al. - JANCL'10]

Optimal complexity of Model checking for many linear-time logics known (LTL with Past, FO, linear μ -calculus). [Demri, Dhar, sangnier - IJCAR'12, Demri, Dhar, Sangnier - ICALP'13]

Checking safety property on flat systems with octagonal loop is NP-Complete.

[Bozga, Iosif, Konceny - VMCAI'14]

Specification > Syntax

Computation Tree Logic (CTL)

$$\phi := \mathbf{\textit{p}} \mid \mathbf{\textit{g}} \mid \neg \phi \mid \phi \vee \phi \mid \mathbf{\textit{EX}} \phi \mid \mathbf{\textit{AX}} \phi \mid \mathbf{\textit{E}} [\phi \mathbf{\textit{U}} \phi] \mid \mathbf{\textit{A}} [\phi \mathbf{\textit{U}} \phi].$$

Computation Tree Logic* (CTL*)

$$\phi := \mathbf{p} \mid \mathbf{g} \mid \neg \phi \mid \phi \lor \phi \mid \mathbf{X}\phi \mid \phi \mathbf{U}\phi \mid \mathbf{E}\phi.$$

Computation Tree Logic with only EF (CTLEF)

$$\phi := \mathbf{p} \mid \mathbf{g} \mid \neg \phi \mid \phi \lor \phi \mid \mathsf{EF} \phi.$$

* Each contains counter constraints

Problem > Model Checking

MC (L, FCS)

INPUT : A flat counter system s, a specification A in logic L, a configuration $\langle q_0, \mathbf{v}_0 \rangle$.

OUTPUT : Does there exists an execution ρ starting with $\langle \mathbf{q}_0, \mathbf{v}_0 \rangle$ in **s** such that $\rho, 0 \models \mathcal{A}$?

Simpler Models > Path Schemas

Simpler Models > Path Schemas

- Path Schemas an alternating sequence of paths and loops $P = (t_1t_2)(t_3t_4)^+(t_5)(t_6)^\omega$
- A concise way of representing infinite runs = $\langle Path \ schema, \mathbf{m} \rangle$
 - ▶ **m** denotes the number of times loops are taken $\langle P, (2) \rangle$
- At most exponentially many minimal path schemas in flat counter systems [Leroux, Sutre - ATVA'05].

MC(CTL*,FCS) > Reduction

MC(CTL*,FCS) > Encoding Run

$$\delta_3 \cdot \delta_6 \cdot (\mathbf{I}_2)^{146} \cdot \delta_8 \cdot (\mathbf{I}_3)^\omega = \left\{ \begin{array}{l} \mathbf{v_p} = (3,6,2,8,3,0,0,0,0,0,0,0,0) \\ \mathbf{v_t} = (0,0,1,0,1,0,0,0,0,0,0,0,0) \\ \mathbf{v_{it}} = (1,1,146,1,0,0,0,0,0,0,0,0,0) \end{array} \right.$$

 $\phi_{ extbf{\textit{ps}}}$ - Characterizing the properties of path schema

$$\bigvee_{i=1}^{8} ((\mathbf{x}_{t}^{i} = 1 \land \mathbf{x}_{t}^{i+2} = 1) \land (\mathbf{x}_{p}^{i} > 0 \land \mathbf{x}_{p}^{i+2} > 0)) \Rightarrow (\mathbf{x}_{t}^{i+1} = 0)$$

MC(CTL*,FCS) > Encoding Run

$$\delta_3 \cdot \delta_6 \cdot (\mathbf{I}_2)^{146} \cdot \delta_8 \cdot (\mathbf{I}_3)^\omega = \left\{ \begin{array}{l} \mathbf{v_p} = (3,6,2,8,3,0,0,0,0,0,0,0,0) \\ \mathbf{v_t} = (0,0,1,0,1,0,0,0,0,0,0,0,0) \\ \mathbf{v_{it}} = (1,1,146,1,0,0,0,0,0,0,0,0,0) \end{array} \right.$$

 $\phi_{\it run}$ - Characterizing the runs through path schema

$$\forall i > 0.update(\mathbf{v_p}, \mathbf{v_t}, \mathbf{v_{it}})[1 \dots i] \geq 0$$

MC(CTL*,FCS) > Encoding Run

$$\delta_3 \cdot \delta_6 \cdot (\mathbf{I}_2)^{146} \cdot \delta_8 \cdot (\mathbf{I}_3)^{\omega} = \left\{ \begin{array}{l} \mathbf{v_p} = (3,6,2,8,3,0,0,0,0,0,0,0,0) \\ \mathbf{v_t} = (0,0,1,0,1,0,0,0,0,0,0,0,0) \\ \mathbf{v_{it}} = (1,1,146,1,0,0,0,0,0,0,0,0,0) \end{array} \right.$$

 $\phi_{\mathrm{CTL}^{\star}}$ - Encoding the CTL^{\star} formula [Demri et al. - JANCL'10]

$$\phi = \exists \mathsf{x}_{\textit{p}}^1 \cdots \mathsf{x}_{\textit{p}}^{10}, \mathsf{x}_{\textit{t}}^1 \cdots \mathsf{x}_{\textit{t}}^{10}, \mathsf{x}_{\textit{it}}^1 \cdots \mathsf{x}_{\textit{it}}^{10}.(\phi_{\textit{ps}} \land \phi_{\textit{run}} \land \phi_{\mathrm{CTL}^{\star}})$$

MC(CTL*,FCS) > Complexity

- ► Polynomial-time reduction compared to exponential time reduction known from [Demri et al. JANCL'10].
 - ▶ No enumeration of path schemas in formula.
 - Encoding runs using a constant number of fixed size integer vectors.
 - Utilizing the power of quantifiers in an essential way.

$\mathsf{MC}(\mathtt{CTL}_{\mathtt{EF}},\mathsf{FCS}) \ angle \ \mathsf{Reduction}$

Satisfiability of Presburger Arithmetic

Branching-Time > Overview

```
MC(CTL^*,FCS)
            MC(CTL, FCS)
           MC(CTL_{FF},FCS)
Satisfiability of Presburger arithmetic
```

MC(Modal μ -calculus, FCS) ??

That's It > Questions?

Thank You For Your Kind Attention