Interval Temporal Logics and Equivalence Relations

Angelo Montanari ${ }^{1}$, Marco Pazzaglia ${ }^{1}$, and Pietro Sala ${ }^{2}$

${ }^{1}$ University of Udine
Department of Mathematics and Computer Science
${ }^{2}$ University of Verona
Department of Computer Science

Paris, 4 September 2014
HIGHLIGHTS 2014

Highlights

- The effects/benefits of the addition of one or more equivalence relations to a logic have been already studied in various settings, including (fragments of) first-order logic, linear temporal logic, metric temporal logic, and interval temporal logic.
- There exists a close relationship between interval temporal logics and fragments of first-order logic, that allows the transfer of results and logical tools (e.g., tableau systems) between them.

Interval Temporal Logics

- Interval temporal logics: an alternative approach to point-based temporal representation and reasoning.

Truth of formulas is defined over intervals rather than points.

- Halpern and Shoham's modal logic of intervals (HS)
- HS features 12 modalilities, one for each possible ordering of a pair of intervals (the so-called Allen's relations);
- decidability and expressiveness of HS fragments (restrictions to subsets of HS modalities) have been systematically studied in the last decade.
- Decidability and expressiveness depend on two crucial factors: the selected set of modalities and the class of linear orders on which they are interpreted.

In THIS TALK

- We focus our attention on the satisfiability problem for some meaningful fragments of HS extended with one or more equivalence relations, interpreted over the class of finite linear orders: the interval logic of temporal neighborhood $A \bar{A}$ (aka PNL), its metric extension MPNL, and $A B$.

In THIS TALK

- We focus our attention on the satisfiability problem for some meaningful fragments of HS extended with one or more equivalence relations, interpreted over the class of finite linear orders: the interval logic of temporal neighborhood $A \bar{A}$ (aka PNL), its metric extension MPNL, and $A B$.
- The original contributions can be summarized as follows :
- decidability (NEXPTIME-completeness) of PNL~ (the extension of PNL with one equivalence relation);
- decidability (NEXPTIME-completeness) of MPNL~ (the extension of MPNL with one equivalence relation);
- undecidability of $A B \sim_{1} \sim_{2}$ (the extension of $A B$ with two equivalence relations).

2. (Metric) PNL~

Syntax and Semantics of PNL~
Previous results
Proof structure
(Metric) PNL~

Syntax and Semantics of PNL~

Formulas of PNL, built from Allen's relations meets and met by, are recursively defined by the following grammar:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle A\rangle \varphi|\langle\bar{A}\rangle \varphi
$$

SYntax and SEmantics of PNL~

Formulas of PNL, built from Allen's relations meets and met by, are recursively defined by the following grammar:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle A\rangle \varphi|\langle\bar{A}\rangle \varphi
$$

SYntax and SEmantics of PNL~

Formulas of PNL, built from Allen's relations meets and met by, are recursively defined by the following grammar:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle A\rangle \varphi|\langle\bar{A}\rangle \varphi
$$

SYntax and SEmANTICS of PNL~

Formulas of PNL, built from Allen's relations meets and met by, are recursively defined by the following grammar:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle A\rangle \varphi|\langle\bar{A}\rangle \varphi
$$

- PNL~
- We extend the language with a special propositional symbol \sim interpreted as an equivalence relation over the points of the domain.
- An interval $[x, y]$ satisfies \sim if and only if x and y belong to the same equivalence class.

Previous Results

- The satisfiability problem for PNL over finite linear orders is NEXPTIME-complete.
- there is a polynomial reduction from the satisfiability problem for the two-variable fragment of first-order logic $\mathrm{FO}^{2}[<]$ to the satisfiability problem for PNL, and viceversa;
- $\mathrm{FO}^{2}[<]$ is NEXPTIME-complete.
(M. Otto. Two variable first-order logic over ordered domains. Journal of Symbolic Logic, 66(2), 2001.

E
D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval neighborhood logics: Expressiveness, decidability, and undecidable extensions. Annals of Pure and Applied Logic, 161(3), 2009.

Decidibility of PNL~

Theorem

The satisfiability problem for PNL~ is decidable (NEXPTIME-complete) on the class of finite linear orders.

Decidibility of PNL~

Theorem

The satisfiability problem for PNL~ is decidable (NEXPTIME-complete) on the class of finite linear orders.

The expressive completeness of PNL with respect to $\mathrm{FO}^{2}[<]$ can be easily extended to $\mathrm{PNL} \sim$ and $\mathrm{FO}^{2}[<, \sim]$, and thus:

Corollary

$\mathrm{FO}^{2}[<, \sim]$ is decidable (NEXPTIME-complete) on the class of finite linear orders.

Proof structure

The proof is a combination of 3 lemmas:

1. the first one provides an (exponential) upper bound to the cardinality of each equivalence class in a minimal model;
2. the second one provides a sufficient condition under which an equivalence class can be removed from the model;
3. the third one, making use of the second lemma, provides an (exponential) upper bound to the maximum number of equivalence classes in a minimal model.

The first and the third lemmas together provide an exponential upper bound to the size of a minimal model (small model theorem).

(MEtric) PNL~

Metric PNL (MPNL) is obtained from PNL by adding an infinite set of (pre-interpreted) proposition letters $^{2} n_{1}, \ldots$, len $_{k}, \ldots$ for length constraints, that allow one to constrain the length of the current interval to be equal to $1,2, \ldots$

We prove the decidability of finite satisfiability problem for MPNL~ (or, equivalently, $\mathrm{FO}^{2}[<, \sim,+1]$) by reducing it to the (decidable) 0-0 reachability problem for vector addition systems (VAS).

EXPSPACE-hardness immediately follows from the polynomial-time reduction from the emptiness problem for VAS to the finite satisfiability problem for $\mathrm{FO}^{2}(\sim,<,+1)$ over data words (two binary relations, that is, the ordering relation $<$ and the equivalence relation \sim, and an arbitrary number of unary relations)

围
M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin.

Two-variable logic on data words, ACM Transactions on Computational Logic, 12(4), 2011.
3. $A B \sim_{1} \sim_{2}$

Syntax and Semantics of $A B$
Previous results
Undecidability of $A B \sim_{1} \sim_{2}$

Syntax and SEmantics of $A B$

The formulas of the logic of Allen's relations meets and begins, denoted by $A B$, are recursively defined as follows:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle A\rangle \varphi|\langle B\rangle \varphi
$$

Syntax and SEmantics of $A B$

The formulas of the logic of Allen's relations meets and begins, denoted by $A B$, are recursively defined as follows:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle A\rangle \varphi|\langle B\rangle \varphi
$$

Syntax and SEmantics of $A B$

The formulas of the logic of Allen's relations meets and begins, denoted by $A B$, are recursively defined as follows:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle A\rangle \varphi|\langle B\rangle \varphi
$$

Syntax and SEmantics of $A B$

The formulas of the logic of Allen's relations meets and begins, denoted by $A B$, are recursively defined as follows:

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|\langle A\rangle \varphi|\langle B\rangle \varphi
$$

$A B$ allows one to constrain the lenght of an interval to be equal to $k(k \in \mathbb{N})$ as well as to constrain an interval to contain exactly one point (endpoints excluded) labeled with a given proposition letter q. LTL modalities can be easily expressed in $A B$.

Previous Results

The satisfiability problem for:

- $A B$ is EXPSPACE-complete on the class of finite linear orders (and on \mathbb{N});

嘈
A. Montanari, G, Puppis, P. Sala, and G. Sciavicco. Decidability of the Interval Temporal Logic $A B \bar{B}$ over the Natural Numbers. Proc. of the 27th STACS, 2010.

- $A B \sim$ is decidable (but non-primitive recursive hard) on the class of finite linear orders (and undecidable on \mathbb{N}).
A. Montanari, and P. Sala. Adding an Equivalence Relation to the Interval Logic $A B \bar{B}$: Complexity and Expressiveness. Proc. of the 28th LICS, 2013.

Undecidability of $A B \sim_{1} \sim_{2}$

We complete the picture by showing that the addition of two (or more) equivalence relations to $A B$ makes the logic undecidable.

Theorem

The satisfiability problem for $A B \sim_{1} \sim_{2}$ on the class of finite linear orders is undecidable.

The proof relies on a reduction from the (undecidable) 0-0 reachability problem for counter machines (with two counters) to the satisfiability problem for $A B \sim_{1} \sim_{2}$ on finite linear orders.

RELATED WORK－ 1

NEXPTIME－completeness of $\mathrm{FO}^{2}[<]$ ．

國 M．Otto．Two variable first－order logic over ordered domains．Journal of Symbolic Logic，66（2）， 2001.

NEXPTIME－completeness of $\mathrm{FO}^{2}[\sim]$ ．
速
E．Kieronski and M．Otto．Small substructures and decidability issues for first－order logic with two variables．Proc．of the 20th LICS， 2005.

2－NEXPTIME－completeness of $\mathrm{FO}^{2}\left[\sim_{1}, \sim_{2}\right]$ ．
目
E．Kieronski，J．Michaliszyn，I．Pratt－Hartmann，and L．Tendera．Two－Variable First－Order Logic with Equivalence Closure．Proc．of the 27th LICS， 2012.

Related work - 2

Undecidability of $\mathrm{FO}^{2}\left[\sim_{1}, \sim_{2}, \sim_{3}\right]$.
围
E. Kieronski and M. Otto. Small substructures and decidability issues for first-order logic with two variables. Proc. of the 20th LICS, 2005.

NEXPTIME-completeness of $\mathrm{FO}^{2}(<, \sim)$ and decidability of $\mathrm{FO}^{2}(<, \sim,+1)$ on data words (both results have been provided for both finite linear orders and \mathbb{N}).

速
M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data words, ACM Transactions on Computational Logic, 12(4), 2011.

RESULTS AND OPEN PROBLEMS

Logic	Complexity (on finite linear orders)
PNL $\left(\mathrm{FO}^{2}[<]\right)$	NEXPTIME-complete - APAL 2009
$\mathrm{PNL} \sim\left(\mathrm{FO}^{2}[<, \sim]\right)$	NEXPTIME-complete - TIME 2014
$\mathrm{PNL} \sim_{1} \sim_{2}\left(\mathrm{FO}^{2}\left[<, \sim_{1}, \sim_{2}\right]\right)$	$?$
$\mathrm{MPNL} \sim\left(\mathrm{FO}^{2}[<, \sim,+1]\right)$	decidable (VASS-reachability) - TIME 2014
$A B$	EXPSPACE-complete - STACS 2010
$A B \sim$	non-primitive recursive hard - LICS 2013
$A B \sim_{1} \sim_{2}$	undecidable - ICTCS 2014

In addition, we would like to complete the picture for the case of \mathbb{N} (we know that PNL is NEXPTIME-complete, $A B$ is EXPSPACE-complete, and $A B \sim$ is undecidable over \mathbb{N}).

