Interval Temporal Logics and Equivalence Relations

Angelo Montanari¹, Marco Pazzaglia¹, and Pietro Sala²

¹University of Udine Department of Mathematics and Computer Science ²University of Verona Department of Computer Science

> Paris, 4 September 2014 HIGHLIGHTS 2014

Introduction			
HIGHLIC	GHTS		

- The effects/benefits of the addition of one or more equivalence relations to a logic have been already studied in various settings, including (fragments of) first-order logic, linear temporal logic, metric temporal logic, and interval temporal logic.
- There exists a close relationship between interval temporal logics and fragments of first-order logic, that allows the transfer of results and logical tools (e.g., tableau systems) between them.

Introduction (Metric) PNL ~ $AB \sim_1 \sim_2$ Related work CONCLUSIONS 00000 000 00

INTERVAL TEMPORAL LOGICS

 Interval temporal logics: an alternative approach to point-based temporal representation and reasoning.

- Halpern and Shoham's modal logic of intervals (HS)
 - HS features 12 modalilities, one for each possible ordering of a pair of intervals (the so-called Allen's relations);
 - decidability and expressiveness of HS fragments (restrictions to subsets of HS modalities) have been systematically studied in the last decade.
- Decidability and expressiveness depend on two crucial factors: the selected set of modalities and the class of linear orders on which they are interpreted.

Introduction			
IN THIS TA	LK		

▶ We focus our attention on the satisfiability problem for some meaningful fragments of *HS* extended with one or more equivalence relations, interpreted over the class of finite linear orders: the interval logic of temporal neighborhood *AĀ* (aka PNL), its metric extension MPNL, and *AB*.

Introduction			
IN THIS T	TALK		

- ▶ We focus our attention on the satisfiability problem for some meaningful fragments of *HS* extended with one or more equivalence relations, interpreted over the class of finite linear orders: the interval logic of temporal neighborhood *AĀ* (aka PNL), its metric extension MPNL, and *AB*.
- The original contributions can be summarized as follows :
 - decidability (NEXPTIME-completeness) of PNL~ (the extension of PNL with one equivalence relation);
 - decidability (NEXPTIME-completeness) of MPNL~ (the extension of MPNL with one equivalence relation);
 - undecidability of $AB \sim_1 \sim_2$ (the extension of AB with two equivalence relations).

(Metric) PNL \sim		

2. (Metric) PNL \sim

Syntax and Semantics of PNL \sim Previous results Proof structure (Metric) PNL \sim

	(Metric) PNL \sim	$AB \sim_1 \sim_2$	Related work	
00	00000	000	00	

Syntax and Semantics of $PNL\!\sim$

Formulas of PNL, built from Allen's relations *meets* and *met by*, are recursively defined by the following grammar:

 $\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle A \rangle \varphi \mid \langle \bar{A} \rangle \varphi$

Syntax and Semantics of $PNL \sim$

Formulas of PNL, built from Allen's relations *meets* and *met by*, are recursively defined by the following grammar:

Syntax and Semantics of $PNL \sim$

Formulas of PNL, built from Allen's relations *meets* and *met by*, are recursively defined by the following grammar:

Syntax and Semantics of $PNL\!\sim$

Formulas of PNL, built from Allen's relations *meets* and *met by*, are recursively defined by the following grammar:

► PNL~

- ► We extend the language with a special propositional symbol ~ interpreted as an equivalence relation over the points of the domain.
- ► An interval [x, y] satisfies ~ if and only if x and y belong to the same equivalence class.

	(Metric) PNL \sim	$AB \sim_1 \sim_2$ 000	Related work 00	
Previou	S RESULTS			

- The satisfiability problem for PNL over finite linear orders is NEXPTIME-complete.
 - there is a polynomial reduction from the satisfiability problem for the two-variable fragment of first-order logic FO²[<] to the satisfiability problem for PNL, and viceversa;
 - $FO^2[<]$ is *NEXPTIME*-complete.

M. Otto. Two variable first-order logic over ordered domains. Journal of Symbolic Logic, 66(2), 2001.

D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval neighborhood logics: Expressiveness, decidability, and undecidable extensions. Annals of Pure and Applied Logic, 161(3), 2009.

(Metric) PNL \sim		
00000		

Decidibility of $PNL \sim$

Theorem

The satisfiability problem for PNL \sim is decidable (NEXPTIME-complete) on the class of finite linear orders.

(Metric) PNL \sim 00000		

Decidibility of $PNL \sim$

Theorem

The satisfiability problem for PNL \sim is decidable (NEXPTIME-complete) on the class of finite linear orders.

The expressive completeness of PNL with respect to $FO^2[<]$ can be easily extended to $PNL \sim$ and $FO^2[<, \sim]$, and thus:

Corollary

 $\mathrm{FO}^2[<,\sim]$ is decidable (NEXPTIME-complete) on the class of finite linear orders.

	(Metric) PNL \sim 00000		
PROOF S	TRUCTURE		

The proof is a combination of 3 lemmas:

- 1. the first one provides an (exponential) upper bound to the cardinality of each equivalence class in a minimal model;
- 2. the second one provides a sufficient condition under which an equivalence class can be removed from the model;
- 3. the third one, making use of the second lemma, provides an (exponential) upper bound to the maximum number of equivalence classes in a minimal model.

The first and the third lemmas together provide an exponential upper bound to the size of a minimal model (small model theorem).

(Metric) PNL \sim

Metric PNL (MPNL) is obtained from PNL by adding an infinite set of (pre-interpreted) proposition letters $len_1, \ldots, len_k, \ldots$ for length constraints, that allow one to constrain the length of the current interval to be equal to $1, 2, \ldots$

We prove the decidability of finite satisfiability problem for MPNL~ (or, equivalently, $FO^2[<, \sim, +1]$) by reducing it to the (decidable) 0-0 reachability problem for vector addition systems (VAS).

EXPSPACE-hardness immediately follows from the polynomial-time reduction from the emptiness problem for VAS to the finite satisfiability problem for FO²(\sim , <, +1) over data words (two binary relations, that is, the ordering relation < and the equivalence relation \sim , and an arbitrary number of unary relations)

M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data words, ACM Transactions on Computational Logic, 12(4), 2011.

	$AB \sim_1 \sim_2$ 000	

3. $AB \sim_1 \sim_2$

Syntax and Semantics of ABPrevious results Undecidability of $AB \sim_1 \sim_2$

00000 000 00		$AB \sim_1 \sim_2$		
	00000	000	00	

The formulas of the logic of Allen's relations *meets* and *begins*, denoted by *AB*, are recursively defined as follows:

 $\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle A \rangle \varphi \mid \langle B \rangle \varphi$

The formulas of the logic of Allen's relations *meets* and *begins*, denoted by *AB*, are recursively defined as follows:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle A \rangle \varphi \mid \langle B \rangle \varphi$$

The formulas of the logic of Allen's relations *meets* and *begins*, denoted by *AB*, are recursively defined as follows:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle A \rangle \varphi \mid \langle B \rangle \varphi$$

The formulas of the logic of Allen's relations *meets* and *begins*, denoted by *AB*, are recursively defined as follows: $\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle A \rangle \varphi \mid \langle B \rangle \varphi$ $\langle B \rangle \varphi$

AB allows one to constrain the lenght of an interval to be equal to $k \ (k \in \mathbb{N})$ as well as to constrain an interval to contain exactly one point (endpoints excluded) labeled with a given proposition letter *q*. LTL modalities can be easily expressed in *AB*.

		$AB \sim_1 \sim_2$ $\circ \bullet \circ$	
Previou	JS RESULTS		

The satisfiability problem for:

- ► *AB* is *EXPSPACE*-complete on the class of finite linear orders (and on N);
- A. Montanari, G, Puppis, P. Sala, and G. Sciavicco. Decidability of the Interval Temporal Logic *ABB* over the Natural Numbers. Proc. of the 27th STACS, 2010.
 - ► AB~ is decidable (but non-primitive recursive hard) on the class of finite linear orders (and undecidable on N).
- A. Montanari, and P. Sala. Adding an Equivalence Relation to the Interval Logic *ABB*: Complexity and Expressiveness. Proc. of the 28th LICS, 2013.

UNDECIDABILITY OF $AB \sim_1 \sim_2$

We complete the picture by showing that the addition of two (or more) equivalence relations to *AB* makes the logic undecidable.

Theorem

The satisfiability problem for $AB \sim_1 \sim_2$ on the class of finite linear orders is undecidable.

The proof relies on a reduction from the (undecidable) 0-0 reachability problem for counter machines (with two counters) to the satisfiability problem for $AB \sim_1 \sim_2$ on finite linear orders.

M. Otto. Two variable first-order logic over ordered domains. Journal of Symbolic Logic, 66(2), 2001.

NEXPTIME-completeness of $FO^2[\sim]$.

E. Kieronski and M. Otto. Small substructures and decidability issues for first-order logic with two variables. Proc. of the 20th LICS, 2005.

2-NEXPTIME-completeness of $FO^2[\sim_1, \sim_2]$.

E. Kieronski, J. Michaliszyn, I. Pratt-Hartmann, and L. Tendera. Two-Variable First-Order Logic with Equivalence Closure. Proc. of the 27th LICS, 2012.

Introduction		Related work ○●	
Relatei	D WORK - 2		

Undecidability of $FO^2[\sim_1, \sim_2, \sim_3]$.

E. Kieronski and M. Otto. Small substructures and decidability issues for first-order logic with two variables. Proc. of the 20th LICS, 2005.

NEXPTIME-completeness of $FO^2(<, \sim)$ and decidability of $FO^2(<, \sim, +1)$ on data words (both results have been provided for both finite linear orders and \mathbb{N}).

M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data words, ACM Transactions on Computational Logic, 12(4), 2011.

		CONCLUSIONS

RESULTS AND OPEN PROBLEMS

Logic	Complexity (on finite linear orders)	
$PNL (FO^{2}[<])$	NEXPTIME-complete - APAL 2009	
$PNL \sim (FO^{2}[<,\sim])$	NEXPTIME-complete - TIME 2014	
PNL $\sim_1 \sim_2$ (FO ² [$<, \sim_1, \sim_2$])	?	
$MPNL \sim (FO^{2}[<, \sim, +1])$	decidable (VASS-reachability) - TIME 2014	
AB	EXPSPACE-complete - STACS 2010	
$AB \sim$	non-primitive recursive hard - LICS 2013	
$AB \sim_1 \sim_2$	undecidable - ICTCS 2014	

In addition, we would like to complete the picture for the case of \mathbb{N} (we know that PNL is *NEXPTIME*-complete, *AB* is *EXPSPACE*-complete, and *AB* ~ is undecidable over \mathbb{N}).