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Abstract

We present a careful derivation of the Bayesian Inference Criterion (BIC) for model
selection. The BIC is viewed here as an approximation to the Bayes Factor. One of the
main ingredients in the approximation, the use of Laplace’s method for approximating
integrals, is explained well in the literature. Our derivation sheds light on this and
other steps in the derivation, such as the use of a flat prior and the invocation of the
weak law of large numbers, that are not often discussed in detail.

1 Notation

Let us define the notation that we will use:

y : observed data y1, . . . , yn

Mi : candidate model

P (y|Mi) : marginal likelihood of the model Mi given the data

θi : vector of parameters in the model Mi

gi(θi) : the prior density of the parameters θi

f(y|θi) : the density of the data given the parameters θi

L(θi|y) : the likelihood of y given the model Mi

θ̂i : the MLE of θi that maximizes L(θi|y)

2 Bayes Factor

The Bayesian approach to model selection [1] is to maximize the posterior probability of
a model (Mi) given the data {yj}

n
j=1. Applying Bayes theorem to calculate the posterior
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probability of a model given the data, we get

P (Mi|y1, . . . , yn) =
P (y1, . . . , yn|Mi)P (Mi)

P (y1, . . . , yn)
, (1)

where P (y1, . . . , yn|Mi) is called the marginal likelihood of the model Mi.
If all candidate models are equally likely, then maximizing the posterior probability of a

model given the data is the same as maximizing the marginal likelihood

P (y1, . . . , yn|Mi) =

∫

Θi

L(θi|y1, . . . , yn)gi(θi)dθi, (2)

where θi denotes the vector of parameters in the model Mi, L is the likelihood function and
gi(θi) is the p.d.f. of the distribution of parameters θi.

3 Derivation of the BIC

3.1 Laplace’s Method

Let us first remind ourselves of the Laplace’s method for approximating an integral.

∫ b

a

eMf(x) dx ≈

√

2π

M |f ′′(x0)|
eMf(x0) as M → ∞.

For this approximation to hold, the function f should have one global maximum and it
should decay rapidly to zero away from the maximum.

Let us now calculate the Bayes factor B01(y) = P (y|M0)/P (y|M1) that is used to choose
between two models 0 and 1. To do this, we need to calculate

P (y|Mi) =

∫

f(y|θi)gi(θi)dθi =

∫

exp
(

log
(
f(y|θi)gi(θi)

))

dθi.

We can now expand log
(
f(y|θi)gi(θi)

)
about its posterior mode θ̃i where f(y|θi)gi(θi)

attains its maximum and, consequently, log
(
f(y|θi)gi(θi)

)
also attains its maximum. Thus,

we can approximate

Q
︷ ︸︸ ︷

log
(
f(y|θi)gi(θi)

)
≈ log

(
f(y|θ̃i)gi(θ̃i)

)
+ (θi − θ̃i)∇θi

Q|
θ̃i
+

1

2
(θi − θ̃i)

THθi
(θi − θ̃i),

where Hθi
is a |θi||θi| matrix such that Hmn = ∂2Q/∂θm∂θn|θ̃i

. Since Q attains its maximum

at θ̃i, the Hessian matrix Hθi
is negative definite. Let us denote H̃θi

= −Hθi
, and then

approximate P (y|Mi):

P (y|Mi) ≈

∫

exp

{

Q|
θ̃i
+ (θi − θ̃i)∇θi

Q|
θ̃i
−

1

2
(θi − θ̃i)

T H̃θi
(θi − θ̃i)

}

dθi.
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Since Q attains its maximum at θ̃i, we see that ∇θi
Q|

θ̃i
= 0. Hence

P (y|Mi) ≈ exp(Q|
θ̃i
)

∫

exp

{

−
1

2
(θi − θ̃i)

T H̃θi
(θi − θ̃i)

}

dθi

= exp(Q|
θ̃i
)

∫

exp

{

−
1

2
XT H̃θi

X

}

dX.

Since the matrix H̃θi
is symmetric (by virtue of being the negative of the Hessian matrix),

we can diagonalize it as H̃θi
= STΛS. Let us make a substitution X = STU to evaluate the

integral above. The Jacobian matrix Jmn(U) = ∂Xm/∂Un ⇒ J(U) = ST . Thus det J(U) =
1, and

P (y|Mi) ≈ exp(Q|
θ̃i
)

∫

exp

{

−
1

2
UTΛU

}

(det J(U))dU

= exp(Q|
θ̃i
)

∫

exp






−
1

2

|θi|∑

j=1

λjU
2
j






dU

= exp(Q|
θ̃i
)

|θi|∏

j=1

√

2π

λj

= exp(Q|
θ̃i
)
(2π)|θi|/2

∏|θi|
j λ

1/2
j

= f(y|θ̃i)gi(θ̃i)
2π|θi|/2

|H̃θi
|1/2

, (3)

where λj is the j-th eigenvalue of the matrix H̃θi
. Taking log of (3), we get

2 logP (y|Mi) = 2 log f(y|θ̃i) + 2 log gi(θ̃i) + |θi| log(2π) + log |H̃−1
θi

|. (4)

3.2 Flat Prior and the Weak Law of Large Numbers

Since the observed data y is given, f(y|θi) is the likelihood L(θi|y) and L attains its max-
imum at the maximum likelihood estimate θi = θ̂i. If we set gi(θi) = 1, an uninformative,
flat prior, then each element in the matrix, H̃θi

can be expressed as

H̃mn = −
∂2 logL(θi|y)

∂θm∂θn

∣
∣
∣
θi=θ̂i

.
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The matrix H̃θi
is the observed Fisher information matrix. We can further represent every

entry in the observed Fisher information matrix as

H̃mn = −
∂2 log(

∏n
j=1L(θi|yj))

∂θm∂θn

∣
∣
∣
θi=θ̂i

= −
∂2

∑n
j=1 logL(θi|yj)

∂θm∂θn

∣
∣
∣
θi=θ̂i

= −
∂2

(
1
n

∑n
j=1 n logL(θi|yj)

)

∂θm∂θn

∣
∣
∣
θi=θ̂i

.

At this point, we assume that the observed data y1, . . . , yn is IID and that n is large. This
allows us to invoke the weak law of large numbers on the random variableXj = n logL(θi|yj).
We obtain

1

n

n∑

j=1

n logL(θi|yj)
P
−→ E[n logL(θi|yj)]. (5)

Using (5), every element in the observed Fisher information matrix is

H̃mn = −
∂2E[n logL(θi|yj)]

∂θm∂θn

∣
∣
∣
θi=θ̂i

= −n
∂2E[logL(θi|yj)]

∂θm∂θn

∣
∣
∣
θi=θ̂i

= −n
∂2E[logL(θi|y1)]

∂θm∂θn

∣
∣
∣
θi=θ̂i

= nImn,

so
|H̃θi

| = n|θi||Iθi
|, (6)

where Iθi
is the Fisher information matrix for a single data point y1. Plugging the result

from (6) into (4), we obtain

2 logP (y|Mi) = 2 logL(θ̂i|y) + 2 log gi(θ̃i) + |θi| log(2π)− |θi| logn− log |Iθi
|. (7)

For large n, keeping the terms involving n and ignoring the rest, we find

logP (y|Mi) = logL(θ̂i|y)−
|θi|

2
logn. (8)

The right-hand side of (8) is the BIC estimate for a model Mi.

References

[1] J. K. Ghosh, M. Delampady, and T. Samanta, An Introduction to Bayesian Analysis:

Theory and Methods. Springer-Verlag, New York, 2006.

4


	Notation
	Bayes Factor
	Derivation of the BIC
	Laplace's Method
	Flat Prior and the Weak Law of Large Numbers


