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Abstract

The 20th century temperature anomaly record is reproduced using an energy balance model, with a diffusive deep ocean. The model takes
into account all the standard radiative forcings, and in addition the possibility of a non-thermal solar component. The model is parameter-
ized and then optimized to produce the most likely values for the climate parameters and radiative forcings which reproduce the 20th century
global warming. We find that the best fit is obtained with a negligible net feedback. We also show that a non-thermal solar component is
necessarily present, indicating that the total solar contribution to the 20th century global warming, of DTsolar = 0.27 ± 0.07 �C, is much
larger than can be expected from variation in the total solar irradiance alone. However, we also find that the largest contribution to
the 20th century warming comes from anthropogenic sources, with DTman = 0.42 ± 0.11 �C.
� 2011 COSPAR. Published by Elsevier Ltd. All rights reserved.

Keywords: Solar variability impact; Global climate; Climate modeling
1. Introduction

Several open questions still remain inadequately
answered due to the complexity of the Earth’s climate sys-
tem. One of these questions is the possible role of solar vari-
ations in climate change, while another is the value of the
climate sensitivity. As we shall see below, the two questions
are intertwined with each other, when dealing with 20th
century warming, and in particular, when trying to answer
the question of attribution. That is, it is impossible to find
the relative contribution of different components to the
observed warming, without knowing the climate sensitivity
or the relative role of the sun.

Presently, a considerable amount of evidence points to a
clear link between solar activity and climate variations.
These correlations, between solar activity and climate prox-
ies can be seen over a very wide range of time scales. Over
the solar cycle, for example, sea surface and land tempera-
tures vary by typically 0.1 �C (e.g., White et al., 1997; Sha-
viv, 2005). On longer time scales, proxies for solar activity
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and climate appear to correlate as well (e.g., Eddy, 1976;
Neff et al., 2001; Bond et al., 2001; Hodell et al., 2001).

Several possibilities exist to explain the large climatic
variations observed. One possibility is that the climate sys-
tem is simply very sensitive to any changes in the radiative
forcing, including the small variations in the total solar
irradiance. Alternatively, the large non-thermal solar activ-
ity variations could be amplified by a mechanism unrelated
to the solar irradiance. Examples include hyper-sensitivity
of the climate system to UV (Haigh, 1994) and the solar–
wind modulated cosmic ray flux (CRF) (Ney, 1959; Svens-
mark, 1998). An empirical confirmation to the second
possibility (i.e., solar activity amplification) can be found
when we observe the heat flux that enters the oceans every
solar cycle. This rather large heat flux (Shaviv, 2008) sug-
gests that it is the radiative forcing associated with the solar
cycle which is large, and not the climate sensitivity.

When trying to understand the 20th century climate
change, there exists another uncertain radiative forcing,
and that is the total anthropogenic contribution. The main
uncertainly in it is the contribution of the indirect aerosol
effect (e.g., IPCC, 2007). When empirically fitting the
observed warming to solar activity and anthropogenic
contributions, one obtains non-negligible contributions
rved.
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by both (e.g., Soon et al., 1996). However, without know-
ing the sensitivity or the absolute radiative forcing of either
contributions, not much more can be concluded.

For example, if the sensitivity is high, the observed
solar–climate links could arise from just the variations in
the total solar irradiance. The residual left when subtract-
ing the solar component from the 20th century temperature
anomaly, can then be attributed to anthropogenic causes.
The high sensitivity would imply that the net radiative forc-
ing should be low which implies that the indirect aerosol
effect introduces a large net cooling that compensates for
the effect of the greenhouse gases.

On the other hand, if the sensitivity of the climate sys-
tem is low, the solar–climate link should be attributed to
some amplification mechanism. The residual should again
be attributed to anthropogenic causes. The low sensitivity
would imply, however, that the cooling indirect aerosol
effect cannot be large, such that the net anthropogenic forc-
ing is.

Both options can be avoided if the climate system has
large internal variations, which would allow large discrep-
ancies between the radiative forcing and the average cli-
mate. We will not consider this possibility but it should
be kept in mind.

Our goal in the present work is to model the 20th cen-
tury temperature anomalies without any prior biases
towards particular sensitivities nor the net size of the solar
forcing. We do so with an energy balance model which
includes enough free parameters to allow for a wide range
of possibilities. By fitting to the observed land and ocean
temperature anomalies we expect to find a range of climate
and radiative forcing parameters for which the observed
temperature can be explained with as little residual as
possible.

We begin in Section 2 by describing the model we use. In
Section 3, we describe the numerical solution, the optimiza-
tion of the model parameters and the error analysis. In Sec-
tion 4, we describe the results of the optimization
procedure. We then continue with a discussion in Section
5 and a summary in Section 6.

2. The model

We require a climate model if we are to simulate the 20th
century temperature anomaly. However, because our goal is
to study and optimize the multi-dimensional “phase space”

of the climate parameters, we cannot use a full fledged gen-
eral circulation model. First, the computer time required to
run one simulation is huge. This would inhibit the possibil-
ity of running multiple runs and optimize the model param-
eters. Another problem is that many of the GCM (general
circulation model) parameters, such as the global climate
sensitivity, are inherent to the model and cannot be system-
atically controlled. The sole exception is the project named
climatepreidiction.net (e.g., Piani et al., 2005), which used
the good will of the public to run thousands of GCM sim-
ulations, and in which model parameters that indirectly
affect the sensitivity were systematically studied. However,
even in this case, not all possible parameters were studied,
and in particular that of solar amplification in which we
are interested here.

Thus, we follow the same line, for example, as Lindzen
and Giannitsis (1998) and Hegerl et al. (2006), who used an
energy balance model (EBM) to study Earth’s climate sen-
sitivity in response to volcanic eruptions, or over the past
millennium respectively. That is, we use an EBM that is
able to reproduce a temperature anomaly time series given
the parameters which describe the climate and the radiative
forcing. In order to compare and fit the model’s output to
the observed time series, we also need a good optimization
program. Last, after the optimization and fit are carried
out, we will also need to carry out a statistical analysis to
estimate the errors.

In this section, we describe the details of the model and
the various inputs that the model requires. In particular, we
describe the parametrization of both the model physics and
the model input. We leave the optimization and statistical
methods to the subsequent sections, and address the model
shortcomings in the discussion afterwards.
2.1. A simple energy balance model

The EBM we use consists of several components and
follows the lines of Lindzen and Giannitsis (1998, hereafter
L&G). First, we have three coupled boxes which represent
the climate system, one for the land-covered regions con-
sisting of 30% of the global area, one for the ocean mixed
layer, and finally we use a third box to represent the deep
ocean. We allow the mixed layer to exchange heat with
the two other boxes.

Unlike the land and mixed layer boxes which are
assumed to be homogeneous and therefore represented
with one temperature, the deep ocean in described with
1D vertical diffusion which serves as a surrogate for all
ocean processes acting to carry heat from the mixed layer
to the deeper layers. The diffusive layer representing the
deep ocean is assumed to have a finite depth. This is done
in order to accommodate the effect of a uniform upwelling
pattern below 400 meters, that acts to inhibit diffusion of
heat to further depths on the multi-decadal time scale.

The second major component of the model is the forcing
function that incorporates all the effective radiative forc-
ings that drive the climate system. The forcing function
and the temperature response from the various boxes are
globally averaged quantities.

Last, we use a single parameter to describe the magni-
tude of the temperature response of the various boxes to
a change in the forcing function. This parameter is the gain
parameter and it is closely related to the climate sensitivity
as we will see later on. Heuristically, the model is described
in Fig. 1. We now proceed to describe it in detail.

Note that there are two main differences between the
analysis of L&G and the analysis carried out here. First,



Fig. 1. A heuristic description of the energy model we solve. The black lines with arrows denote the different forcings, which are either known or described
with the different model parameters. The heavy gray arrows denote interaction between the different components in the systems: land, ocean mixed layer
and ocean deep layer. This interaction is described with differential equations (Eqs. (1)–(5)). Note that the figure depicts an indirect solar/climate
interaction through modulation of the cosmic ray flux, just as an example. It should be stressed that this is just one possibility, and the indirect solar
forcing that we find does not depend on the actual mechanism through which solar activity affects climate.
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L&G study the climate response to volcanic forcing. Here
we study the response to all the main climate drivers over
the 20th century, and therefore have to consider more forc-
ings and their uncertainties. Second, we run the model
more extensively (i.e., thousands of runs instead of a
few), and thus allow all the model parameters to vary sys-
tematically, and carry out an unbiased optimization, as
opposed to varying only the gain parameter.

In particular, we also allow the ocean diffusivity and
land-ocean coupling parameters to change. As a conse-
quence, we can accommodate models with a larger range
of possibilities. For example, we can describe models with
different long term sensitivities, and different “damping”
factors on short time scales. For this reason, L&G obtained
a slow decaying response to volcanic forcing when impos-
ing high climate sensitivities, while we can accommodate
more possibilities, such as a faster response. In this sense,
we can recover both the L&G results and the response
obtained with more common GCMs (e.g., Wigley et al.,
2005), without a prior bias.
2.1.1. Equations and Parameters

The main equations defining our model are those of
energy conservation for the boxes, and heat diffusion for
the deep ocean. Heat conservation, per unit area, for the
land and for the mixed layer are respectively

Cland
@DT landðtÞ

@t
¼ DQðtÞ þ m

Aland
½DT mlðtÞ � DT landðtÞ�

� 1

k
DT landðtÞ; ð1Þ
Cml
@DT mlðtÞ

@t
¼ DQðtÞ þ m

Asea
½DT landðtÞ � DT mlðtÞ�

� 1

k
DT mlðtÞ þ C

@DT deep

@z

����
z¼0

: ð2Þ

Cland and Cml are the heat capacities per unit area of the land
and mixed layer. DQ(t) is the prescribed radiative forcing. m
is the land-ocean coupling coefficient, while k is the climate
sensitivity parameter. The respective A’s are the surface
area fractions of the land and mixed layer. We discuss the
value and meaning of the parameters below.

Heat diffusion in the deep ocean is given by

@DT deep

@t
¼ j

@2DT deep

@z2
; ð3Þ

with the boundary conditions that

DT deepjz¼0 ¼ T ml ð4Þ

and

@DT deep

@z

����
z¼Hdeep

¼ 0: ð5Þ

Here j is the effective vertical diffusivity of the oceans.
Following the model parameters suggested by L&G, the

depth of the deep ocean is taken to be Hdeep = 400 m. We
have also considered other values, up to 1000m, and
obtained virtually indistinguishable results. The depth of
the mixed layer is taken to be Hml = 75 m, which is the glo-
bal average of the maximum annual mixed layer depth
(Shaviv, 2008). Additionally, we take the thermal capacity
per unit area of the land to be 30 times smaller than that of
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the mixed layer. The exact value here is unimportant since
the small land heat capacity implies that the land reaches
thermal equilibrium with its net radiative fluxes in much
less than a year, which is the resolution with which the
model is compared to the data.

As discussed by L&G, some of the model parameters
should be treated as unknowns since they are inadequately
constrained by observations, and we should therefore let
the optimization procedure determine them. The first of
these parameters is the land-sea coupling m. The second
poorly constrained parameter is the coefficient of eddy heat
diffusivity j. Direct measurements constrain its value to be
between 1.0 � 10�6 m2/s and 3 � 10�5 m2/s (Law et al.,
2003), which we use as general constraints to the parameter
which is otherwise left free. This range also includes the dif-
fusivity measured using bomb 14C (Siegenthaler and Joos,
1992).

Although the parameter j is presented here as a coeffi-
cient of eddy diffusivity, its role in the model is to represent
all sorts of mixing and heat transfer processes that carry
heat into the deep ocean. As we shall see below, this param-
eter can be constrained once the ocean heat content data is
included, to be within its experimental limits. Note also
that C is related to the diffusivity j through
C = jCv [ 126 W/(m K), where Cv is the volumetric heat
capacity of water taken as 4.2 � 106 J/m3 K.

For convenience, Table 1 proves a nomenclature and list
of abbreviations used in this paper.

2.1.2. Radiative forcings

The term DQ(t) in the equations above represents the
forcing function that includes all the radiative forcings we
put into the model. These include among other, well mixed
greenhouse gases (GHG’s), stratospheric aerosols, reflec-
tive tropospheric aerosols and aerosol indirect effect
Table 1
Nomenclature and list of abbreviations. Note that the free parameters in
the model are listed separately in Table 2.

AIE Aerosol Indirect Effect
EBM Energy balance model
GCM General circulation model
GHG Greenhouse gas
IPCC Inter governmental panel on climate change
ISE Indirect solar effect
LST Land Surface Temperature
NAO North Atlantic Oscillation
OHC Ocean heat content
PDF Parameter distribution function
PDO Pacific Decadal Oscillation
SOI Southern Oscillation Index
SST Sea Surface Temperature
TSI Total solar irradiance
Aland,ml Surface area of the land/mixed-layer
Cland,ml Total land/mixed-layer heat capacity per unit area
Cv Volumetric heat capacity of water
Hml/Hdeep Depth of the mixed layer/deep ocean (Thermocline)
DTi(t) Temperature anomaly of component i

C Heat diffusion constant in the oceans
k Climate sensitivity
(AIE). These forcings terms are taken from Hansen et al.
(2005).

Among the standard radiative forcing terms, by far, the
least known is that of the Aerosol Indirect Effect (AIE).
This term is negative and describes a cooling effect, but
its size is unconstrained. We therefore describe it with a
parameter to be determined in the fitting, and of which
only the sign is predetermined.

In addition to the standard forcings, we introduce a few
more. The first one describes an indirect solar/climate effect
(ISE), which may exist in addition to changes in the total
solar irradiance (TSI) which we take as well, and which
we assume to be proportional to the AA index. We use this
geomagnetic index because of several reasons. First, it is an
indirect index which can be used to describe the non-
thermal activity of the sun. Second, it has a long enough
record to cover our simulation time span. And last, we
require a proxy which does not have a short time or long
time distortion. For example, it would have been better
for us to use a cosmogenic isotope, such as 10Be, however,
because of the finite precipitation times and diffusion in ice-
cores, the ratio between the 11-year solar cycle and the sec-
ular variations is distorted and therefore cannot be used in
the present analysis. On the other hand, direct measure-
ments of the cosmic ray flux span only half of the period
we simulate.

One should note that the indirect solar effect can be one
of several different mechanisms (or a combination of
them), such as hypersensitivity of the climate system to
UV (Haigh, 1994, Haigh et al., 2010), or climate sensitivity
to the atmospheric ionization, governed by solar induced
cosmic ray modulation (e.g., Svensmark, 1998; Tinsley,
1990). The present model cannot distinguish between them.
It can only address whether such a mechanism, which
depends on the non-thermal component of the solar activ-
ity, exists.

Because of the simplicity of our model, we also implicitly
assume that the indirect mechanism which we are looking
Fig. 2. A comparison between the indirect solar effect (ISE) forcing with
aAA = 1, the total solar irradiance (TSI) forcing (long dashed) and the
Aerosol Indirect Effect (AIE) forcing, assuming aAIE = 1 (dotted).
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for (ISE), is proportional to the AA index. In particular, we
assume that it has the same phase (see Fig. 2).

We also add internal climate forcings – proportional to
the Pacific Decadal Oscillation (PDO) index and the South-
ern Oscillation Index (SOI). In principle, such internal
oscillations should arise from an ideal climate model. How-
ever, even the standard GCMs do not predict them. We
therefore prescribe them “by hand”. This is done because
they improve the fit to the observations, which in turn helps
to better constrain the other model parameters.

In many previous analyses, the SOI and occasionally the
PDO components were removed from the observed SST
through different statistical procedures. We chose an alter-
native, which is to use our own optimization tool, to obtain
the SOI and PDO components in the oceanic and land tem-
perature data. Both procedures effectively remove the SOI
and PDO components from the observed data set and
should produce the same results. Our approach has the dis-
advantage that it conceptually treats the PDO and SOI as if
they are external forcings affecting the climate, clearly this
is not the case. The advantage is that it is much simpler to
implement. In one run, we have also incorporated the
North Atlantic Oscillation (NAO) index, but as explained
in Section 4.3.1, we have decided to have only the SOI/
PDO in the nominal runs.

To sum up, our model accepts the various radiative forc-
ings as knowns, with exception of the new ones (ISE, SOI
and PDO indices) and the Aerosol Indirect Effect (AIE),
which we take as a cooling only effect.

2.1.3. The gain parameter and climate sensitivity

One of the more important parameters we discuss is the
equilibrium climate sensitivity, defined as k � DTequil/DQ.
This sensitivity can also be expressed as k � kBB � gain.
Here kBB � 0.3 �C/(W m�2) is the so called black body sen-
sitivity, which is the sensitivity of a feedback-less Earth.1

The gain parameter refers to the amplification of the equi-
librium temperature response relative to the ideal
sensitivity.

2.2. Observed temperature anomaly records

The time series generated by the model should be com-
pared with real observations of 20th century variations in
the land and ocean temperatures. We use the observed
Land Surface Temperature (LST) and the Sea Surface
Temperature (SST) from the National Climatic Data Cen-
ter (NCDC). The NCDC uses new and improved land and
sea data sets that are taken from Smith and Reynolds
(2005).

Note that we do not know a priori the absolute offset of
either the land or ocean data. That is, the zero point radi-
ative forcing corresponds to some equilibrium tempera-
1 Actually the black body sensitivity is a common misnomer. It should be
called the gray body sensitivity, having a fixed albedo and emissivity which
are not 0 and 1 respectively.
tures for the land and ocean, but since neither were ever
in a long equilibrium with the radiative forcing, the value
of these zero point temperatures anomalies are unknown,
and are therefore left as a free parameter. Technically, we
define

T new
landðtÞ ¼ T old

landðtÞ þ T 0
land ;

T new
ml ðtÞ ¼ T old

ml ðtÞ þ T 0
ml; ð6Þ

where T 0
land and T 0

ml are the parameters that determine the
necessary shift. Note that the shift need not be the same for
the land and mixed layer boxes. The deep ocean box is cou-
pled to the mixed layer box in such way that the radiative
forcing does not influence it directly, only through the
mixed layer box.

The last free parameters are DT initial
land and DT initial

ml , which
determine the initial temperature anomalies at the land
and mixed layer boxes. Without better assumptions, we
assume that initially the deep ocean anomaly is the same
as the mixed layer.
2.3. Ocean heat content data

In several runs, we also include the annually averaged
ocean heat content data (Levitus et al., 2009) between
1955 and 2003, to check whether it can better constrain
the model parameters.

In these runs, the model calculates each time step the
total heat content in each layer of the ocean and vertically
integrates over. This can then be compared to the observed
value.

As we shall see in Section 4.5, the only parameter that is
better constrained using this procedure is the effective
ocean diffusivity j.
3. Numerical methods

The backbone in our analysis is the computation of a
20th century climate for given climate model parameters
(i.e., a single run, in Section 3.1). The next steps are to carry
out many model integrations and optimize the climate and
forcing parameters such that the model predictions best
agree with observations. The last step is to carry out a sta-
tistical analysis, in order to estimate the predicted errors in
the model parameters.
3.1. Solving for a single run

In essence, our model consists of ordinary differential
equations (Eqs. (1) and (2)), and a parabolic differential
equation (Eq. (3)), which are coupled through the bound-
ary conditions given by Eqs. (4) and (5).

To solve the parabolic equation, we discretize the Lapla-
cian operator and divide the deep ocean into N = 16 layers
of 25 m each, totaling in 400 m of depth. This transforms
the parabolic partial differential problem into N ordinary
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differential equations. Together with the mixed layer and
land boxes, we have N + 2 ODEs.

Note that because we are solving the parabolic equation
explicitly (that is, the spatial derivative is calculated in the
old time step), the time steps must be small enough to sat-
isfy the Courant–Lewy condition, namely that 4jDt/
Dz2 < 1.

The set of ordinary equations are then solved using the
4th order Runge–Kutta with a constant time step. The
time integration starts at 1880 and ends at 2003. The time
step we choose is typically 0.01 yr, which was found to
satisfy the Courant–Lewy condition for any diffusivity
solved for, and conserve energy at the 10�4 level, after a
century.
3.1.1. Applying the radiative forcing

For the standard forcings we use a tabulated form of the
radiative forcings described in Hansen et al. (2005). To this
table we add the ISE which is proportional to the AA
Index (Mayaud, 1972), the SOI (Trenberth, 1984) and the
PDO Index (Zhang et al., 1997; Mantua et al., 1997).
The data is annual such that we obtain 124 data points rep-
resenting yearly averaged forcings from 1880 to 2003. The
data is then interpolated to the 0.01 yr time steps. The ini-
tial tabulation of high resolution data improves the speed
considerably, which is why the system is integrated with a
fixed time step.

As mentioned above, some of the forcings are known
well enough and therefore can be directly used in the
model. The other forcings are treated as unknowns. Thus,
before being used in the model, each unknown forcing
source term is multiplied by a coefficient that represents
the magnitude of that forcing, which is to be determined
in the optimization. We have 4 such parameters, for the
ISE, the PDO index, the SOI, and the AIE. These param-
eters are then optimized together with the climate parame-
ters of the model. These parameters are summarized in
Table 2.
3.1.2. The fit function

After constructing the radiative forcing table and interpo-
lating it, we require a fit function to evaluate the goodness of
the fit between the predicted temperature evolution and the
observed time series. We use the standard v2 test, as follows:
Table 2
Free parameters in the model fit. The following parameters are assumed to be u
the temperature residuals.

Parameter

DTland/ml,i Initial land/mixed layer temperat
DTland/ml,0 land/mixed layer temperature at
j Coefficient of eddy heat diffusivit
m Land–ocean coupling coefficient
gain Coefficient of climate sensitivity
aPDO Coefficient that multiplies the PD
aSOI Coefficient that multiplies the SO
aAIE Coefficient that multiplies the AI
aAA Coefficient that multiplies the AA
v2 ¼
X

i

Osst;i � P ml;i

rsst

� �2

þ
X

i

Olst;i � P land;i

rlst

� �2

; ð7Þ

where the index i runs over the range of years used, between
1880 and 2003. For the weight coefficient, we take the values
of rlst and rsst to be 0.143 and 0.058 �C for the LST and SST
respectively. These coefficients are the standard deviations
obtained from a simple pairwise comparison:

2r2 ¼ hðOiþ1 � OiÞ2i: ð8Þ

This analysis measures the annual variability of the dataset,
which arises from both internal variance (i.e., “climatic
noise”) and measurement errors. Evidently, the LST is al-
most 2.5 times “noisier” than the SST, which arises from
the damping effect of the high heat capacity of oceans.

Note that the observed time-series comes in a form of 124
data points representing years. However, the model resolu-
tion is much higher. Thus, we interpolate the observed time
series to the higher resolution needed for the model.

3.2. Genetic optimization

Once a goodness-of-fit is obtained, the next step is to
optimize the model and radiative forcing parameters to
minimize the goodness-of-fit, i.e., the v2. We use the PIKAIA

package, which is a genetic algorithm (GA) based optimi-
zation package (Charbonneau, 1995).

GA is a class of search techniques inspired from the bio-
logical process of evolution by means of natural selection.
The main advantage of numerical optimization using GA is
the robustness in problems having a multi-dimension
search space. That is, GA is usually very effective at finding
global minima. Their main disadvantage is a slower speed,
since more points in the multi-dimensional phase space
should be sampled (e.g., 104 integrations here), than in
other techniques, such as the steepest gradient method.
However, the noisy nature of the observations implies that
the fitness function has many local minima, and there is no
option but to sacrifice speed for robustness.

3.3. The bootstrap error analysis

Critical to our analysis is the error estimation. However,
it is extremely difficult to assess all the errors coming into
nknown (but within the following ranges), for which the model minimizes

Range

ure (in 1880) �2� to +2�
0 radiative forcing �2� to +2�
y 1.0–30.0 �10�6 m2/s

0.05–20 W/m �C
0.1–4.0

O �4 to +4
I �4 to +4
E 0.01–4

index �4 to +8



Fig. 3. Upper panel: the temperature anomaly of the land (solid line-
model prediction for optimal parameters, dashed-observed LST). Lower
panel: the residual (the difference between the observed and predicted
anomalies).
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the model and its integration, as some of the errors arise
from measurement while some from intrinsic climate noise.

In order to avoid this problem altogether, we use the
bootstrap method to carry out a reliable error estimation
(e.g., Press et al., 1986). This method is often used when
there is insufficient information about the underlying statis-
tical processes or the nature of the measurement errors.

In the bootstrap method, the same analysis is carried out
many times over but with a degraded data set. Each anal-
ysis is carried out with a data set that randomly disregards
1/e � 37% of the original data points, by taking other
points instead. Statistically, it can be shown that the distri-
bution of the set of optimization parameters obtained
under the different bootstrap realizations follows the prob-
ability distribution function for the parameters as should
be obtained for the best fit.

The average and variance for the obtained distribution
can then be calculated, though one cannot be assured that
the distribution should follow the normal distribution.

The method also addresses another issue. Although the
GA is generally a robust method to find global minima, we
cannot be assured that the minimum found is indeed the
global one. By “degrading” the data, we are forcing the
algorithm to sample a larger phase space. If there are sev-
eral local minima, then the algorithm will sample them and
provide a wider range of parameters. In this sense, we
obtain a conservative error estimate.
Fig. 4. Upper panel: the temperature anomaly record of the mixed-layer
(solid line-model prediction, dashed line-observed SST). Lower panel: the
residual.

Fig. 5. Upper panel: the global temperature anomaly record (solid-model,
dashed-observed). Lower panel: the residual.
4. Results

We now proceed with the analysis of the results. We
begin with the model’s ability to reproduce the 20th cen-
tury temperature anomaly record. We will then present
the optimal values for the various parameters of the model
and their error estimation. This will allow us to ascertain
the size of the different contributions towards the observed
20th century global warming. Last, we will discuss the cor-
relation in the parameter uncertainties, compare to previ-
ous analyses, and the effect of different assumption on the
results.

4.1. 20th century reconstructed

Figs. 3 and 4 represent the best fit for the land temper-
ature anomaly and the mixed layer anomaly respectively.
Fig. 5 is the model’s best fit to the global temperature
record, which consists of 30% of the land and 70% of the
mixed layer. Fig. 6 depicts the 3-year running average of
the observed and model fit global temperature. Evidently,
the residual for the mixed layer is smaller than it is for
the land. The reason for this is that the LST data set is
much noisier (presumably because of higher climatic fluctu-
ations). However, because the relative size of the fluctua-
tions was taken into consideration when preforming the
fit (see Eq. (7)), the size of the error relative to the fluctua-
tions is similar in both cases.



Fig. 6. The same as the previous figure, except that the observations and
results are averaged with a 3-year moving average.
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The total effective number of degrees of freedom for the
fit is 2 � 124 � 11 = 237, where 2 � 124 is the number of
annual data points (for the ocean and land data), while
11 is the number of model parameters. The v2 obtained
per effective degree of freedom is 2.42. The large size
implies that besides the annual fluctuations (due to mea-
surement noise and year to year climate variability), there
is also multi-year variability which is not accounted for
by the model, of about [0.1 �C (with the maximum annual
residual being 0.2 �C).

It is hard to compare EBM results to the results of GCM
fits, because the latter include random climate noise (like
the real system does), which implies that the residuals from
a perfect GCM would be a factor of

ffiffiffi
2
p

larger than the
residuals of a perfect EBM fit. Nevertheless, fits by GCMs
(e.g., Stott et al., 2000) typically produce multi-year resid-
uals of [0.2 �C (and maximum annual residuals of up to
0.4 �C). In other words the present EBM can be considered
successful.
4.2. Main climate drivers

Fig. 7 summarizes the PDFs for the main parameters in
the model, as obtained with the bootstrap method. From
the PDFs we can learn that some of the climate and radia-
tive forcing parameters are better determined, while others
cannot be significantly constrained.

For example, the AIE is poorly constrained. This is
because there is the well known degeneracy between the
positive contribution of the GHGs and the negative AIE,
both of which monotonically increase in absolute value
over the 20th century. As a consequence, there is a degen-
eracy that the optimization algorithm cannot resolve.

On the other hand, because there is no degeneracy
between the ISE forcing and other contributions, this
term is much better constrained. Similarly, because the
climate sensitivity (i.e., the gain) affects different forcings
which are non-degenerate with other forcings (such as
the stratospheric aerosols), changing the sensitivity
causes changes which cannot be compensated for with
other parameters. The result is that the sensitivity can
too be significantly constrained.

Perhaps the most interesting question we can attempt to
answer with the present analysis is the relative role of anthro-
pogenic and total solar forcings over the 20th century. Fig. 8
depicts the optimal forcings of the two categories.

The anthropogenic contributions consist of primarily the
GHG’s and aerosols while the solar contributions are those
of the irradiance (for which the standard value of the forc-
ing is assumed) and the ISE. The stratospheric aerosols are
also important but they fall into neither category.

To obtain the net effect of each type of contribution, we
take the optimized total solar forcings and total anthropo-
genic forcings (see Fig. 8) and run them through the model
again, this time separately. The result, which is depicted in
Fig. 9, is the separate contribution of each component to
the global temperature increase through the entire 20th
century. The PDF of the average temperature increase over
the 20th century caused by each of contribution types is
given in Fig. 10.

Quantitatively, the total solar forcing and temperature
contributions to the 20th century that we obtain are

DF solar ¼ 0:8� 0:4 W m�2; ð9Þ
DT solar ¼ 0:27� 0:07 �C:

The corresponding anthropogenic contributions are:

DF man ¼ 2:0� 0:3 W m�2; ð10Þ

DT man ¼ 0:42� 0:11 �C

Last, we obtain that the optimal gain (i.e., relative to a
feedback-less Earth) is:

gain ¼ 0:85� 0:3; ð11Þ
which yields a climate sensitivity of

k ¼ 0:25� 0:09 �C=ðW m�2Þ: ð12Þ
4.3. Role of internal oscillations

Another interesting aspect is the role that the PDO and
SOI play in the global climate. They were added to the
model in order to increase the fitness, under the notion that
they may explain some of the variability in the temperature
record. Indeed, we find in our analysis that the introduc-
tion of the two signals produces a better fitness to our
model.

Without the signals inserted, the v2 per degree of freedom
obtained was 2.85, while it decreased to 2.42 with the signals
included, i.e., a reduction of 15% in the residual annual var-
iance. Fig. 11 depicts these signals after the model deter-
mined their best estimated magnitudes. Apparently, the
signals contribute a non-negligible radiative forcing, but
their net long term contribution is small, as can be seen in
Fig. 9.



Fig. 7. Various model parameter distribution functions (PDFs). The PDF vertical-axis is the number of cases per bin normalized to have
R

PDF ¼ 1. And
indirect solar effect factor of unity implies that 30 AA index units correspond to 1 W m�2. For comparison, the 11-year averaged AA index increased by 15
units during the 20th century. Similarly, an AIE factor of unity implies that the nominal forcing of Hansen et al. (2005) should be taken without a
multiplying factor. The SOI and PDO factors are the ratio between the respective indices and the forcing in W m�2.

Fig. 8. The optimal anthropogenic contribution (solid line) and the
optimal solar contribution (dashed line) over the 20th century. The
anthropogenic contribution is primarily composed of GHGs and aerosols.
The solar contribution includes changes in the total solar irradiance and
the indirect solar effect (ISE).

Fig. 9. The optimal 20th century temperature increase due to anthropo-
genic (solid line), solar (short dashed, TSI + ISE), statrospheric (dotted),
and SOI + PDO (longdashed) forcings, as given in Figs. 8 and 11. The
temperature anomalies are obtained by integrating the optimal solution
until 1900, then keeping all the forcings fixed at their 1900 value except for
the respective forcings being studied.
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The best fit for the SOI is with a negative SOI/forcing
factor. That is, el Ñino events (with a negative SOI) cause
global warming as expected. We also see that there is a
smaller global forcing associated with the PDO variations.

Quantitatively, the optimal fits and bootstrap analysis
give the following radiative contributions from the PDO
and SOI signals:

DF PDOðtÞ ¼ ð0:17� 0:17 W m�2Þ � PDOindexðtÞ; ð13Þ
DF SOIðtÞ ¼ ð�0:56� 0:13 W m�2Þ � SOIindexðtÞ:
4.3.1. The NAO
We can try and improve the fit by adding additional

“internal oscillations”. The next oscillation expected in rel-
ative importance after the SOI and PDO, is the North
Atlantic Oscillation (NAO, Hurrel, 1995). We therefore
carry out a run which includes an additional forcing, D
FNAO(t) = aNAO � NAOindex(t), and therefore an addi-
tional free parameter.



Fig. 10. PDF for the global warming in the 20th century from solar
forcing (solid) and anthrophogenic forcings (dashed). The PDF vertical-
axis is the number of cases per bin normalized to have

R
PDF ¼ 1.

Fig. 11. Optimal effective radiative forcings of the pacific and southern
oscillations (PDO and SOI) as obtained by the model.
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Fig. 12 summarizes the PDFs obtained with the NAO
included. Unlike the effects of adding the SOI and PDO,
which caused a notable reduction in the v2 per degree of
freedom, the NAO does not introduce a better fit. The v2

per d.o.f. is reduced by less than 1%.
Most of the different parameter estimates do not change

much. For example, we now find:

gain ¼ 0:95� 0:3; ð14Þ
DF solar ¼ 0:75� 0:35 W m�2:

The exception is the different value for the PDO, probably
because it has some correlation with the NAO. The values
we find for the radiative forcing of the internal oscillation
are now:

DF PDOðtÞ ¼ ð0:28� 0:15 W m�2Þ � PDOindexðtÞ; ð15Þ
DF SOIðtÞ ¼ ð�0:54� 0:11 W m�2Þ � SOIindexðtÞ;
DF NAOðtÞ ¼ ð�0:22� 0:05 W m�2Þ �NAOindexðtÞ:
In addition, the ocean–land coupling becomes undeter-
mined once the NAO is included, as it obtains a very wide
PDF. In any case, because there is virtually no improve-
ment in the v2, we do not include the NAO in the addi-
tional analyses.
4.4. Correlation between climate parameters

Because the parameter phase space is more than one
dimensional, one can study higher order probability distri-
bution functions, containing two parameters or more. In
Figs. 13 and 14, we plot the distribution of the bootstrap
results as projected onto various 2-parameter planes in
the high-dimensional parameter space. This allows us to
see correlations in the model results.

For example, we see that if the climate has a higher sen-
sitivity than our best estimate, the model would prefer a
smaller solar contribution and a larger anthropogenic con-
tribution. But our choice of a specific sensitivity will not
change the best estimate for the size of the indirect aerosol
effect, which as mentioned before, is not really constrained
by the model.
4.5. Effects of the ocean heat content data

An important data set is that of the ocean heat content
(OHC). In principle, it provides an independent constraint
on the model, and we should consider it as well. The prob-
lem, however, is that the OHC suffers from significant sys-
tematic uncertainties. This can be seen by comparing the
OHC derived by different groups. For example, Ishii et al.
(2006) and Levitus et al. (2005) found that the OHC
increased by about 5–6 � 1022 J between 1975 and 2000,
On the other hand, Levitus et al. (2009) and Domingues
et al. (2008) found an increase of 13–14 � 1022 J over the
same period. Clearly, with such large discrepancies it is
impossible to trust any conclusions based on the OHC data.

Nevertheless, we ran a version of our model which
includes the comparison to the ocean heat content as a fur-
ther constraint. In this model, we add to the fit function
(Eq. (7)) a sum over the 49 OHC data points, which are
normalized by the pairwise calculated standard deviation
(Eq. (8)). We carry out this analysis to provide us with a
flavor of what to expect once the OHC data will be reliable.

Fig. 15 shows the obtained PDF for the model diffusiv-
ity, which is j = 2.3 ± 0.6 � 10�5 m2/s. With the OHC,
both the SOI and the ocean diffusivity are better con-
strained. Nevertheless, one should note that the effective
vertical diffusivity that the model finds is not necessarily
the vertical eddy diffusivity, as it may include other mixing
processes. However, the fact that the best fit value is within
the observed range suggests that other such processes may
at most be as important as the eddy diffusivity itself.

Other model parameters, such as the ISE and the gain
are somewhat modified from the analysis which does not
consider the OHC. Specifically, the best estimates of both



Fig. 12. Various model parameter distribution functions (PDFs) obtained with the NAO included (i.e., the same as Fig. 7, except for the included NAO
radiative forcing term).

Fig. 13. Various correlations between selected pairs of parameters.
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the ISE and gain decrease. For example, the gain becomes
0.75 ± 0.25. Although it is clear that the OHC can be useful
in better constraining the climate parameters (in particular,
those directly related to the oceans), we do not adopt these
results because of the inherently large systematic errors
that the OHC introduces.
4.6. Comparison with previous analyses

To understand why our results differ from previous
analyses, we shall consider more cases which correspond
to different assumptions that were either explicitly or
implicitly assumed in previous models.



Fig. 14. Correlations between the gain parameter and other selected
parameters.
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4.6.1. Effects of constraining the Aerosol Indirect Effect –

AIE

In Section 4.4, we showed that a specific choice of sensi-
tivity will not change the best estimate for the size of the
indirect aerosol effect, because it is not constrained by the
model. But, would a specific choice for the AIE change
the climate sensitivity? In order to properly answer this
question, we first consider only the TSI variations as a solar
forcing (i.e., while neglecting a possible ISE) and introduce
upper boundaries to the AIE (since it is negative, upper
boundaries are lower boundaries for the absolute cooling
effect). These are set at �0.5 W m�2 and �1.0 W m�2 in
the two cases we consider.

The results of this analysis is shown in Fig. 16. As can be
seen, the gain increases to 1.19 for the �0.5 W m�2 case
Fig. 15. PDFs obtained for the model which includes comparison to the meas
bin normalized to have

R
PDF ¼ 1. The ocean diffusivity is better constrained
and to 1.45 for the �1.0 W m�2 case. In terms of climate
sensitivity, these gains translate to DT2� of 1.5 �C and
1.8 �C respectively. A possible explanation for this result
is that by increasing the cooling effect (AIE), the model
compensates for the larger cooling by enhancing the warm-
ing effect of GHG’s and other warming forcings, in order
to reach the best fit solution to observations. It does so
by increasing the climate sensitivity parameter (gain). This
is consistent with the results obtained by Andronova and
Schlesinger (2001), who, using an EBM, find high climate
sensitivities when assuming large aerosol forcing (AIE).
The median sensitivity obtained by their model is 5.9 �C
for CO2 doubling. If they add the solar forcing (TSI varia-
tions only), they obtain a median of 3.2 �C. Interestingly
enough, they also find with very high probability, that
the median climate sensitivity is 1.4 �C for the case when
solar forcing (TSI) is introduced but without the AIE.
The reason that large sensitivities are ruled out when the
solar forcing is introduced is because a large sensitivity will
give rise to 11-year temperature variations larger than
those seen in the temperature data. This is confirmed with
the next analysis when decadally averaging the data.

4.6.2. Using decadally averaged data

When using decadally averaged temperature data, the
model produces higher sensitivity values. This can be seen
in Fig. 16, where decadally averaged data gives a mean gain
of 1.4, i.e., a sensitivity of 1.8 �C. This value is very close to
the gain obtained when we place an upper limit of
�1.0 W m�2 on the aerosol effect. A possible explanation
could be that such averaging of the data erases information
about the TSI variations and thus, higher sensitivities are
permissible as the fit function is insensitive to the mismatches
ured ocean heat content. The PDF vertical-axis is the number of cases per
as is the SOI.



Fig. 16. From left to right – PDF for the gain parameter when assuming
an indirect solar effect (solid), a maximal value of �0.5 W m�2 for the
indirect aerosol effect (long dashed), a decadally averaged temperature
data (dashed dotted), a maximal value of �1.0 W m�2 for the indirect
aerosol effect (short dashed) and the combined effect of a maximal value of
�1.0 W m�2 for the indirect aerosol effect and a decadally averaged
temperature data (dotted). Note that the vertical-axis is the probability
distribution function (i.e., the number of cases per bin normalized to haveR

PDF ¼ 1).
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over the 11-year solar cycle. This can explain the results of
Forest et al. (2002) who decadally averaged the data, and
found a sensitivity of 2.5 �C.

When decadally averaging the data and placing an upper
limit of �1.0 W m�2 to the AIE, we obtain an even higher
sensitivity, of 2.75 �C. These results are summarized in
Fig. 16.
5. Discussion

The climate model employed in this analysis is relatively
simple. It is an EBM which includes several “boxes” and a
diffusive ocean. Nevertheless, it is rich enough to describe
many of the basic aspects of the climate, and parameterize
them. This allows for an extensive parameter study, some-
thing which is nearly impossible with a full global circulation
model.

With the model, we have shown that the observed land
and ocean anomalies can to a large extent be described as a
response to the theoretical radiative forcings. Statistically,
the fit improves considerably if we include a solar forcing
driver (ISE) other than the variations in the total solar irra-
diance (TSI). In fact, we can rule out the no-nonthermal
component assumption at the 2% level.

The fit further improves by introducing the PDO and
SOI signals. These describe internal oscillations of the cli-
mate, but they introduce an interesting radiative forcing
feedback, of which the several year average can be as large
as 0.5 W m�2.

With all the additional radiative forcings, the residual left
after fitting the observed parameters is typically [0.1� C.
This is twice the expected value from the year to year
variability, implying that there are more internal climate
variations which are unaccounted for, but they could simply
be internal fluctuations. On the other hand, the residual we
obtain is typically half of the residual obtained in GCMs.
One reason is the fact that GCMs have less calibration free-
dom than the energy balance model that we use. For exam-
ple, the climate sensitivity or ocean diffusivity are inherent
characteristics of a given GCMs and cannot be readily
changed. Moreover, GCMs typically have a higher sensitiv-
ity than we find, therefore they tend to have exaggerated
responses to different radiative forcing variations, in partic-
ular, to volcanic eruptions (e.g., see Lindzen and Giannitsis,
1998). In fact, the optimal climate sensitivity we find is
somewhat lower than can be expected for a black body
Earth. For comparison, the canonical IPCC sensitivity
range is about 1.3 to 4 times the black body value. The third
reason is that GCMs have internal variability which EBMs
lack. This internal variability increases the residual.

The total 20th century solar forcing that we find is
0.8 ± 0.4 W m�2. This is much higher than the estimated
contribution of the TSI variations alone (of 0.1–
0.2 W m�2). Thus, we conclude like Shaviv (2008), that an
additional solar activity amplification mechanism should
exist.

It is interesting to note that the constraint we derive on
the climate sensitivity is not primarily due to the correla-
tion between solar activity and temperature. This is
because the response to the solar activity depends on both
the unknown sensitivity and unknown solar amplification.
Thus, the sensitivity is derived from the overall fit between
the model and observations, and in particular, the response
to volcanic eruptions which is a unique and relatively
known radiative forcing. Grossly speaking, the correlation
between the solar activity and climate therefore leads to the
constraints on the ISE.

Because the secular changes in different solar activity
related parameters is typically between 50% and 100% of
the solar cycle related variations (e.g., in the sunspot num-
ber, the amplitude of the CRF variations, or the changes in
the AA index), we should expect the long term solar-activ-
ity related change in the radiative forcing to be between
half and the full variation over the solar cycle. This is con-
sistent with our observations and the fact that Shaviv
(2008) found that the solar-cycle related variations in the
radiative forcing is 1.3 ± 0.4 W m�2.

As to a future solar contribution towards climate
change, it is impossible to predict the solar activity beyond
one solar cycle (Yeates et al., 2008). Nevertheless, because
over the last several decades the sun has been as active as it
can be, we can expect a similar or a decreased activity. This
can therefore result in a cooling of up to a few 0.1 �C if the
activity will indeed decline.

5.1. Caveats

Just like any analysis, it is important to understand the
limitations of our results and conclusions.
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First, the model presented here is limited since it is not
designed to represent in detail the relevant physics but
rather, through parametrization, to demonstrate the phys-
ical significance of the feedback processes involved. In
essence, it allows us to form a relatively simple qualitative
and quantitative picture of the phenomena associated with
climate change. As a consequence, it is not able to capture
complex behavior which may have systematic effects on the
system as a whole, and we cannot rule out corrections to
our fitted parameters, such as the model gain.

For example, there is no geographic resolution other
than the land/ocean identification. Complex phenomena
such as that of ocean currents, tropical upwelling and polar
down flows are altogether missing since they cannot be
described through 1D diffusion, but they can affect the nat-
ure of the heat flow into the oceanic heat reservoir.

Another limitation of our analysis has to do with the
fact that over the 20th century, several of the forcings have
a monotonic or almost monotonic behavior. In our analy-
sis, this produces hard to resolve degeneracies. The primary
example is well known in climate studies. While the GHGs
have monotonically increased over the 20th century, the
indirect aerosols have monotonically decreased (becoming
more negative). As a consequence, any uncertainty in the
absolute normalization of the indirect aerosol effect can
be counteracted with a different overall climate sensitivity.
The almost monotonic increase in the average solar activity
would have made it fall into the same trap, however,
because solar activity includes solar cycle oscillations, its
degeneracy with the GHGs and AIE is removed.

We should also point out that the analysis implicitly
assumes that the radiative budget response to changes in
the temperature are the same on any time scale between a
year and a century. This implies that the analysis neglects
the effects of feedbacks which operate on longer scales,
such as the ice-albedo feedback.

Last, we should emphasize that the present analysis can-
not be used to point to any particular mechanism for an
indirect solar effect, but rather that such an effect should
be present. This is because there is a large degeneracy
between the TSI and the ISE. Namely, we cannot distin-
guish between hypersensitivity to the TSI (or some compo-
nent of it), and an indirect effect, such as sensitivity to
cosmic ray flux variations.
6. Summary

To summarize, the following are the main conclusions of
our work.

	 The sun has a much more significant role on Earth’s cli-
mate than is commonly thought. Its estimated 20th cen-
tury forcing on the climate is 0.8 ± 0.4 W m�2.
	 Earth’s climate sensitivity is very close to that of a

“black body”. Thus, the various feedbacks cancel each
other out.
	 Nominally, we can account for 40% of the 20th century
global warming by the sun alone while 60% should be
attributed to anthropogenic activity.

Furthermore, we show in the present work that a simple
energy balance model can shed significant light on the
understanding and quantification of the climate system,
and in particular, that such models can improve our under-
standing of the solar–climate link.
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