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USEFUL THEOREMS ON NORMAL SPACES

HENNO BRANDSMA

We will need a few elementary facts about (perfect) normality in the course to
the Nagata-Smirnov metrisation theorem. I will put them here for easy reference
(as they are useful outside of this as well).

The first is a helpful characterisation of normality:

Theorem 1. A space X is normal iff for all closed subset F and all open subsets
O with F ⊂ O, there exist open subset Wn (n in N) such that F ⊂

⋃
nWn and for

all n: cl(Wn) ⊂ O.

Proof. The necessity is obvious: in a normal space we can even find one open set
W with F ⊂W ⊂ cl(W ) ⊂ O. (From considering F and X \O, which are disjoint,
so can be separated by open sets. The W around F is as required.)

For sufficiency: let A and B be two disjoint closed sets of X. Apply the condition
to A and X \B to get Wi (i in N) such that A ⊂

⋃
iWi and (for all i) cl(Wi) ∩B

is empty. Do the same to B and X \ A to get Vi (i in N) such that B ⊂
⋃
iWi

and (for all i) cl(Vi) ∩ A is empty. Define Gi := Wi \ (
⋃
j≤i cl(Vj)) and Hi :=

Vi \ (
⋃
j≤i cl(Wj)). Then Gi and Hi are open subsets of X, for all i. Finally, put

U :=
⋃
iGi and V :=

⋃
iHi. Obviously, A ⊂ U (A has misses all cl(Vj)) and

similarly B ⊂ V . And U and V are open (obvious) and disjoint: If we have Gi and
Hj and i ≤ j, then Hj misses Vi and hence Gi, so that Gi ∩Hj = ∅, and if j ≤ i
then Gi misses Wj and hence Hj so that again Gi ∩Hj = ∅. So all Gi and Hj are
mutually disjoint so that U ∩ V is empty as well. �

This characterisation has some nice uses.

Theorem 2. A Lindelöf regular space X is normal.

Proof. Let F be closed in X, let O be open, with F ⊂ O. For each x in X there
exists, by regularity, an open neighbourhood Ux such that x ∈ Ux\cl(Ux) ⊂ O. Take
a countable subcover of the {Ux} (a closed subset of a Lindelöf space is Lindelöf)
and this is the required countable family from Theorem 1. �

Corollary 1. A second countable regular space is normal (as it is always Lindelöf).
A countable regular space is normal (same reason, note that a countable regular
space need not be second countable).

Theorem 3. An F-sigma subset A of a normal space X is normal.

(F-sigma = a countable union of closed sets; most books only state this for closed
subspaces).

Proof. Let A =
⋃
n Fn. Let F be closed in A and O be open in A, with F ⊂ O.

Let U be open in X with U ∩ A = O (by definition of subspace topology), and
consider the F ∩ Fn. Each F ∩ Fn is closed in Fn, so closed in X (closed in a
closed subset is closed in the large set). So there are Wn, open in X, such that
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F ∩ Fn ⊂ Wn ⊂ cl(Wn) ⊂ U . So letting W ′n = Wn ∩ A, we have that F ⊂
⋃
nW

′
n,

and clA(W ′n) = cl(W ′n) ∩ A = cl(Wn ∩ A) ∩ A ⊂ U ∩ A = O. So the W ′n are as
required, and A is normal. �

Now, recall that a space X is perfectly normal iff it is normal and every open set
is an F-sigma. (So iff X is normal and every closed set is a G-delta; i.e., a countable
intersection of open sets). As an aside, note that the above corollary shows that
every open subset of a perfectly normal space is itself normal, and this implies that
every subspace of X is then normal: let A be a subspace, F and G closed in A
and disjoint. Find F ′ and G′, closed in X, with F ′ ∩ A = F and G′ ∩ A = G. Let
O = X \ (F ′ ∩G′), this is open, hence normal. F ′ ∩O and G′ ∩O are closed there;
separate them, and intersect the open sets so obtained by A. This separates F and
G in A. So such spaces are hereditarily normal.

Maybe the single most important theorem on normal spaces is the Urysohn
lemma: if A and B are closed and disjoint in a normal space X, then there exists
a continuous function f : X → [0, 1] such that f [A] = {0} and f [B] = {1}. Note
that this does not say that A = f−1[{0}], just A ⊂ f−1[{0}]. A subset A such that
there is a continuous function f from X to [0, 1] such that A = f−1[{0}], is called
a zero-set.

Theorem 4. In a normal space X, a set A is a zero-set iff A is a closed G-delta
set.

Proof. {0} is a closed G-delta set in [0, 1]: {0} =
⋂
n[0, 1/n), where [0, 1/n) is

open in [0, 1]. So if A = f−1[{0}], with f continuous, A is closed (as {0} is) and
A =

⋂
n f
−1[[0, 1/n)], so A is a G-delta. Now, let A be a closed G-delta in X. So

X \A =
⋃
n Fn, where the Fn are closed in X (taking complements and applying de

Morgan). Now, as A and Fn are closed and disjoint, find a Urysohn function fn with
fn[A] = {0} and fn[Fn] = {1}. Define f(x) :=

∑
n 1/2nfn(x). Then f is defined

by an absolutely convergent series of continuous functions, hence continuous. And
fn(x) = 0 for x in A, for all n, so that f [A] = {0}. And if x is not in A, then it
is in some Fn0 , so that fn0(x) = 1 and f(x) ≥ 1/2n0 · fn0(x) = 1/2n0 > 0. So,
A = f−1[{0}], and A is a zero-set. �

This trick of using countably many functions and then summing them like this
turns out to be a very useful technique in metrisation theorems. See other postings
for this.


