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Abstract

This thesis report presents a project that brings the Erlang model of
concurrency to interpreted scripting languages.

A system that provides Erlang-style concurrency has been designed and
implemented for the Lua programming language. This model of concurrency
brings an alternative to what scripting languages have to offer today for
concurrent and distributed programming. The implementation is based on
the ideas that make Erlang, not only an inspiration, but a reference in the
concurrent programming paradigm. The resulting system will help further
change the view on the way to achieve concurrency.
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Chapter 1

Introduction

One of the problems that the software engineering field has to work out today
is that of efficient concurrent and parallel programming. Even though several
approaches have been suggested, the situation today cannot be considered
satisfactory. And this comes, because most programming languages and
development platforms in general, are embracing solutions that are based on
preemptive multithreading, which in turn requires further solutions to the
race hazards problem.

Nevertheless, there are other models of concurrency that have been suc-
cessfully used by some programming languages. One of these models is the
message passing model, upon which Erlang, a declarative language targeted
for concurrent and distributed programming, is based.

An interesting direction in the field of programming languages today are
interpreted scripting languages. Lua, a dynamic general purpose, embed-
dable and extensible language, is one of the scripting languages that is be-
coming more and more widespread, due to some fresh ideas and a unique
feature set.

This thesis will answer the question of how the actor model can be com-
bined with and how it will benefit interpreted scripting languages. More
specifically, how it will bring the Lua programming language closer to the
goal of concurrent programming. This report will present the design and im-
plementation of a concurrency solution for the Lua programming language.
A system that has been designed by drawing inspiration from concepts and
ideas used in Erlang, and implemented as to be integrated to Lua.

The main architectural design decisions of the system comprise some of
the problems that will be solved during this thesis. The main functionality of
the system includes processes that can execute concurrently and that share
data by communicating with each other, and this functionality is also sup-
ported for distributed processes. The problems that stem from these system
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requirements are such as: how will the processes be implemented as indepen-
dent threads of execution, how will these threads send and receive messages,
what will messages be, and how all these concepts can be applied in a dis-
tributed system. In addition, how will this system be integrated seamlessly
with the target language.

By solving these very problems it will then be possible to ripe some of
the benefits for concurrency oriented programming. At this point questions
about the importance of this system, its usefulness and its future prospects
will be also answered. This evaluation of the system will prove the accom-
plishment of the initial objectives of this thesis.

The next chapters will be organized as follows. Chapter 2 offers back-
ground information that are needed to better understand the main idea and
concepts of the project, the problem that it tries to solve. Chapter 3 provides
the requirements and the specification of the system that was implemented.
Chapter 4 includes details on the architectural and design decisions that had
to be taken and a summary of the implementation work done. Chapter 5
presents the implemented system and discusses the results, possible uses of
the system, along with a theoretical approach to multiprocessing. Chapter 7
concludes the report and suggests directions for future work.
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Chapter 2

Background

A general introduction to the area, the Lua programming language, concur-
rency, multithreading, along with an investigation on previous related work,
will comprise the contents of this chapter.

2.1 Scripting languages

In the recent years, there has been a paradigm shift towards a higher level
programming approach, partially represented by the so called scripting lan-
guages [1], which are on the rise today.

Scripting languages are typically interpreted, while in some cases the
just-in-time compilation or dynamic translation technique is used. Scripting
languages are also characterized by dynamic typing and automatic type con-
versions, which altogether guarantees a better suited environment for rapid
application development and a higher level of programming.

There is a specific type of scripting languages that are particularly inter-
esting. These languages, which are considered multi-paradigm programming

languages, have the following properties:

• They can be used as dynamic general-purpose stand-alone languages

• They can play the role of a “glue” language between applications and
components

• They can be embedded into other applications and extend their func-
tionality (extension languages)

• They can extended with other languages (extensible languages)
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2.2 The Lua programming language

One of the most interesting scripting languages, that has gained more pop-
ularity the last years, is the Lua [2][3][4] programming language.

Lua is a dynamic general-purpose, embeddable and extensible, inter-
preted, scripting language, that is simple, powerful, fast, portable and light-
weight. Lua combines a simple procedural syntax, powerful data description
constructs and extensible semantics. This ability to extend its semantics is
realized with the so called meta-mechanisms: dynamic associative arrays,
reflexive facilities, fallbacks.

Lua’s runtime system is also unique across the board, as it is based on
a register-based Virtual Machine (VM), while source code is not directly
interpreted, but is first compiled into bytecode for the VM. Lua also has
dynamic data typing and includes automatic memory management facilities
with garbage collection.

2.3 Concurrency models

It has become more than evident the last years that concurrency will lead the
future of computing. Today with the first multi-core systems already inside
most of the modern personal computers, it is very important for programming
solutions to take advantage of this computational power.

Concurrent programming can be explicit or implicit. In explicit concur-
rency a set of primitives is provided to the application developer, by the use
of which parallelism can be achieved. In implicit concurrency the developer
does not need to take special action in order to exploit parallelism, as this
is done transparently by some language constructs. Most of the mainstream
programming languages today offer explicit concurrency programming.

In concurrent systems their components need to interact and communi-
cate. Based on how the components communicate, they can be divided in
two different classes: shared memory and message passing. In shared mem-
ory systems communication takes place by memory that is shared between
the communicating components. In message passing systems the components
communicate by exchanging messages.

2.3.1 Shared memory communication

The shared memory communication model is the most commonly used ap-
proach to exploit parallelism, as most programming languages include some
kind of light-weight processes, usually called threads, that share memory
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space. Although this allows the most optimal access to the the data, data
through which the threads communicate, it can bring the system in an un-
desirable state, due to race conditions.

Race conditions in multithreaded systems make the use of synchronization
techniques mandatory. There have been suggested many mechanisms in order
to guarantee that a concurrent system is free from race conditions. The
most common mechanisms used, are based on some form of locking, such as
mutexes, semaphores and monitors.

2.3.2 Message passing communication

In the message passing communication model, there is no shared memory
between the components, and instead the components rely on some kind of
communication mechanism in order to move data across the components’
memory space. Most programming languages have external libraries to sup-
port message passing, while few languages provide support by built-in facil-
ities.

There are different models of message passing based on the characteris-
tics of the communication channels: synchronous message passing and asyn-

chronous message passing. In the synchronous message passing model, block-

ing semantics are used for sending and receiving messages; the send opera-
tion completes only if the data have been sent and the receive operation
completes only if the data have been received. In the asynchronous message
passing model, the receive operation is blocking, but the send operation is
non-blocking, and this makes sending asynchronous with regard to receiving.

2.4 Threads

A thread in computer languages represents a thread of execution, an ex-
ecutable unit of code within a program that executes independently from
other parts of code inside the program. Threads are considered light-weight
processes that are the smallest unit of code that can be scheduled to execute
by the operating system.

2.4.1 Multithreading

Multithreading is to threads what multitasking is to processes, and gives to
threads the ability to run concurrently or in parallel. Most programming
languages provide some kind of threads and multithreading in order to sup-
port concurrent or parallel programming. It is the obvious solution to the
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need for parallelism that can be added easily upon a programming language
and is supported by almost all of the modern operating systems today.

Apart from the usual threads that are distinguished as native or operating

system or kernel-mode threads, there is another type of threads, the inter-

preter or VM or user-mode threads. Interpreter threads are implemented
by most interpreted languages, instead of native threads, primarily because
they are more portable and simple to implement in regards to synchroniza-
tion with the interpreter itself.

2.4.2 Scheduling

There are two main scheduling policies for threads: preemptive multithread-

ing and cooperative multithreading. The preemptive scheduling approach is
the one that is generally preferred and considered superior. In preemptive
multithreading the scheduler decides when each thread gets to run and can
suspend and resume execution of threads at any time. In cooperative multi-
threading the threads themselves relinquish control and thus give the chance
to other threads to run.

2.4.3 Problems

Threads and preemptive multithreading, with their race hazards and syn-
chronization problems, and the various locking-based mechanisms that were
designed to overcome these very problems, is the dominant model today.
Threads and preemption are so popular because of the operating systems
support for this model and the simplicity of adding the necessary language
constructs to take advantage of this capability. Unfortunately, while it seems
that it is straight-forward to add support for this model in any language, this
practice opens a whole world of problems that the developers are called to
face.

Threads discard the most essential properties of sequential computation:

understandability, determinism and predictability. They are a non-determin-

istic model of computation that results in non-trivial multithreaded programs

being incomprehensible to humans [5]. It is becoming more and more evident,
especially with today’s multi-core systems, that multithreaded programs are
difficult to understand, hard to implement correctly in the first place and
virtually impossible to debug.

It is more than clear than a different route will have to be followed in order
to take advantage of the computing power and the parallelism of today’s
systems, and different models of concurrency have to be looked into.
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2.5 Concurrent Programming

A brief description of the main concurrency facilities that are available in
Lua and Erlang will follow.

2.5.1 Concurrency in Lua

Lua supports concurrency through coroutines [6], also called collaborative or
cooperative multithreading. Lua includes a full implementation of asymmetric

coroutines, also called called semi-symmetric coroutines or semi-coroutines.

Coroutines are generalized subroutines that allow multiple entry points,
suspending and resuming of their execution, and persistence of data local to
them. Coroutines represent an independent thread of execution, but because
they need to cooperate and suspend when explicitly requested to, they can
avoid locking, since they are resumed only in specific points inside a program.

2.5.2 Concurrency in Erlang

Erlang [7][8][9] is a declarative programming language for programming con-
current, real-time, distributed fault-tolerant systems. Erlang was designed
with concurrent and distributed programming in mind, and has built-in fa-
cilities to support concurrency oriented programming.

Erlang has as a set of primitives to create light-weight VM threads, which
are also known as microthreads or green threads. These threads, that are
called processes in Erlang, communicate using a share-nothing asynchronous

message passing system. They send and receive messages which are stored
in and consumed from message queues named mailboxes. Any type of Erlang
data structure can be passed as a message.

Distribution is supported transparently; Erlang processes map naturally
onto distributed systems. An Erlang node, which represents an Erlang run-
time system, is a host of Erlang processes. Processes in remote nodes can
communicate with the same primitives that are used for communication be-
tween local processes.

In one of its relatively recent releases, Erlang has also gained support
for “true” Symmetric Multi-Processing (SMP) parallelism, by adding multi-
threading support to the Erlang VM. This was implemented by running more
than one Erlang process schedulers inside the Erlang VM, where each sched-
uler runs on a separate native thread, and thus the application developer
does not have to handle multithreading explicitly.
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2.6 Previous work

There have been some efforts to bring ideas either from Erlang directly or
other solutions that are based on the message passing or actor model. Some
of the most popular scripting languages have made attempts to overcome
the problems of concurrent programming, either through new components or
rewrites of their interpreter. Some of most important of these efforts, those
that resulted in more complete and usable solutions, will be described.

2.6.1 ALua

ALua [10][11][12] is an event-driven environment with mobile code. Alua
implements a communication mechanism that takes advantage of the inter-
preted nature of Lua in order make it possible to exchange messages that are
actually chunks of code. These messages of code can be then executed by
the receiver providing what is called weak code mobility. In ALua the role
of processes play components called agents that run on different hosts and
communicate through a network. ALua agents are implemented as operating
system processes.

2.6.2 Io

Io [13] is a small, embeddable, prototype-based, pure object-oriented pro-
gramming language. Io features coroutines, actor-based concurrency and fu-

tures. Actor-based concurrency is based on objects being able to send asyn-
chronous messages that end up in another object’s message queue. These
objects which are processing message queues, are the actors, and they use
coroutines and asynchronous I/O for their implementation. In addition, when
a message is sent a transparent future object is returned, which will become
the returned value, when that value is ready.

2.6.3 Stackless

The Stackless Python project [14] is an enhanced version of the Python
interpreter, that targets to bring an easier model of concurrency to the
Python programming language. It tries to take advantage of what multi-
threading has to offer but with minimizing the complexity problems at the
same time. Stackless Python features light-weight interpreter threads, called
microthreads or tasklets, bidirectional communication objects between the
tasklets, called channels, a cooperative and a preemptive tasklet scheduler
and serialization of the tasklets.
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Chapter 3

Method

A formal description of the system’s requirements and specification will fol-
low, and will serve as an introduction to what has been implemented.

3.1 Requirements

The system targets to bring concurrency oriented programming to the Lua
programming language. This includes the ability to:

• Create new processes.

• Send messages to processes and correspondingly receive messages from
processes.

• Use aliases instead of process identifiers for easier access to the processes
themselves.

• Monitor processes and receive notifications when their status changes.

• Link processes together and receive signals when they terminate ab-
normally.

The second part of the system is the distributed programming function-
ality. This should extend some of the aforementioned properties:

• Processes on different network hosts can communicate, again by send-
ing and receiving messages.

• Processes can be created on demand in remote network hosts.
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• Global aliases for the processes that are shared between all network
hosts can be set.

• Processes monitor remote processes and receive notifications when their
status changes.

• Processes link to remote processes and receive signals when the remote
processes terminate abnormally.

• A security mechanism takes care of the authentication of the remote
network systems, before any kind of communication is allowed.

Furthermore, the following non-functional requirements are important:

• The system should follow one of the main principles of Lua, that of
simplicity. In these lines, distribution should transparently work in the
same way as concurrency, regardless of the location of the processes.

• Processes that terminate abnormally should not take the whole system
down. When a process dies nothing else is affected, and the system
continues its operation.

• The processes should be as light-weight as possible, so as to make it
possible to achieve satisfactory scalability.

• The system is intended to be a prototype, but it should serve as the
basis for a more complete system that can be extended easily.

• The system should be reasonably portable and run under most major
platforms today.

• It would be desired for the system, to be based upon the infrastructure
that Lua provides, instead of modifying Lua or adding large subsystems
in Lua, in order to reimplement part of its functionality.

3.2 Specification

As is obvious from the system’s requirements the system can be divided in two
main subsystems, the one implements concurrency and the other distribution.

One of the main elements of the concurrency functionality supported by
the system is the process (Figure 3.1). A process is defined as an interpreter
thread, or else a microthread or a tasklet. The process in this system is
like processes in an operating system; they don’t share any memory, and
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Figure 3.1: System processes and process creation

Figure 3.2: Message exchange between processes

Figure 3.3: A process message queue

therefore they have to communicate with some interprocess communication
mechanism. Processes can be created and destroyed on demand. A simple
scheduler takes care of running the processes using a round-robin scheduling
policy.

Each process has a mailbox associated with it (Figure 3.2). The mailbox
is a message queue and plays the role of a temporary storage for messages
that were sent to the process (Figure 3.3). When a process receives a message
it checks for any messages available in the mailbox, and if the mailbox is not
empty, the older message is removed from the mailbox and processed by the
process.

Each process is identified by a unique process identifier, or else a process
ID or PID. Instead of PIDs, which are difficult to remember, an alias can be
set for the PID. This process name is resolved back to the PID each time it
is used. The role of the central repository of names and PIDs plays a registry

(Figure 3.4). Processes can query the registry or edit the registry, by adding,
deleting or updating entries.

Monitors are a mechanism for error handling (Figure 3.5). A process can
monitor the status of other processes. When a monitored process dies, all
the processes monitoring it are notified via a special message. A process can

17



Figure 3.4: The process name registry

Figure 3.5: Process monitoring

Figure 3.6: Process linking

stop monitoring another process at any point in time.

Links are also a mechanism for error handling (Figure 3.6). Two processes
can be linked together, and when one of them dies, the other one is signalled.
This signal causes the second process to die, too. The two processes can stop
being linked together at any point in time.

Distribution properties are based on a component of the system that is
called the node (Figure 3.7). A node represents a specific runtime of the
system, which may have an arbitrary number of processes running inside it.

Nodes have the ability to communicate with each other. The nodes form a
virtual network that the processes in every node can use in order to exchange
messages with each other (Figure 3.8). In this way processes can exchange
messages transparently with processes residing in remote nodes.

Nodes are identified by their name. In order for nodes to discover one
another, a daemon that acts as a nameserver is used. This daemon is called
the port mapper daemon. Exactly one daemon is running for each network
host. The daemon contains details about the nodes that are running in the
host of its responsibility. This information is vital for nodes to establish
connections between them (Figure 3.9).
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Figure 3.7: A node includes an arbitrary number of processes

Figure 3.8: Distributed nodes form a virtual network

Figure 3.9: Nodes connect after communicating with the port mapper

As processes can be created on the local node, it is also possible to request
the creation of processes in remote nodes. In this case, the PID of the created
process is an object that allows access to the remote process, as if it was a
local process.

The virtual network that nodes form has some additional properties. If
the network is fully connected, where each node is connected bidirectionally
to each other node, it is possible to support global aliases. Nodes can ne-
gotiate and keep a virtual global registry of process names that are resolved
to PID handles (Figure 3.10), while they also keep local copies of the global
registry.
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Figure 3.10: Nodes maintain a virtual global registry

Figure 3.11: Node monitoring

Figure 3.12: Node authentication

Monitors and links are supported transparently for remote processes.
Nodes take care of the necessary communication and coordination in order
to support remote monitors and links. Also supported is the capability for a
process to monitor nodes as a whole, an additional error handling mechanism
(Figure 3.11).

Nodes are required to authenticate before any further communication is
allowed. Thus, a node cannot enter a network of nodes unless it has first
authenticated. A security mechanism transparently takes care of all this
work, each time a node communicates with another node (Figure 3.12).
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Chapter 4

Implementation

An overview of the architectural design of the system that was implemented,
along with more detailed design decisions for each component of the system,
and some details on the implementation, are described in this chapter.

4.1 Architecture

As is already obvious by now, the system is targeted for integration with the
Lua programming language. This left two choices for the implementation
language: Lua and C. The choice of which of the two was to be used in
preference, was in fact partially dependant on the architectural pattern that
would be followed. There were two strategies that could be used in this
regard:

• Modification of the Lua VM in order to create a enhanced version of
Lua, probably with backwards compatibility to the standard distribu-
tion

• Implementation based on the Lua standard component system, in order
to create a system that could be loaded from any standard Lua VM

The first approach should be only preferred in the case where the desired
system and its functionality could not be implemented otherwise. The second
approach is the simple and more correct solution, in order to produce a
component that can be integrated with Lua. The implementation language
in the first case would be almost entirely C, while in the second solution, Lua
could be used for most parts of the system. The second approach has been
followed.
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Figure 4.1: Lua and the implemented modules

Figure 4.2: A system process is a coroutine which in turn is a function

The Lua component system is based on modules (Figure 4.1). Lua mod-
ules are provided by a package library that is responsible for building and
loading of the modules. Lua modules can be written in Lua and C, thus it is
a fully satisfactory solution for the target system. Ideally, the implemented
system is broken in a set of submodules, that some of them can be loaded
stand-alone, and other submodules can be left out if the functionality they
provide is not needed.

4.2 Design

Design decisions on some of the most important aspects of the system will
be analyzed in the following sections.

4.2.1 Processes

The processes in the system are implemented with Lua coroutines. Each
process is actually a Lua coroutine, and a coroutine itself is a Lua function
(Figure 4.2). This means that each process has a set of commands that
comprise its functionality, and these commands are bound together inside a
function.

A special case of usually short-lived processes is also used internally.
These processes are targeted to accomplish different system function. Mostly
distributed functions, that require communication and coordination between
remote nodes, are implemented with these type of processes.
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Figure 4.3: A process suspends and resumes when a message arrives

4.2.2 Scheduler

The scheduling policy used for the processes is still based on cooperative
multithreading. Processes do not get preempted but instead they voluntarily
pass control to another process. This suspending and resuming of processes
is hidden under a higher level mechanism.

A process suspends its execution when waiting for a message to arrive and
its mailbox is empty. On the other hand, a process resumes execution, when
at least one messages has arrived in its mailbox (Figure 4.3). A simple round-
robin type of scheduler is responsible for the role of resuming of suspended
processes.

4.2.3 Messages and data

When processes exchange messages, one can wonder what is the Lua data
type of the messages, or what data values can be included in messages. In
this implementation, messages can be of any data type:

• Booleans

• Numbers

• Strings

• Tables

• Functions

The only exception to what data can be included are memory references.
Furthermore, all of the data that can be sent inside a message, are marshalled
on sent and unmarshalled on receive from the other end (Figure 4.4). This
serialization and deserialization of the data is done transparently.
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Figure 4.4: Data are serialized on sent and deserialized on receive

Figure 4.5: A network dispatcher handles all incoming connections

4.2.4 Interprocess communication

The interprocess communication model of the implemented system is based
on an asynchronous socket handler (Figure 4.5). This results in a model
of asynchronous communication between nodes and between processes, non-
blocking socket calls and periodic polling.

This approach has the advantage of not requiring native threads, because
socket calls return immediately even if no data are available. Lua’s socket
model is heading towards this model of asynchronous non-blocking calls,
partly due to its multithreading model, so this approach integrates better
with Lua.

4.3 Development

The system is divided in two main subsystems, organized as modules (Fig-
ure 4.6). The first of these modules is responsible for concurrency oriented
programming. The second module uses the facilities provided by the concur-
rency module, and extends it by providing support for distributed oriented
programming. As has been already mentioned, both modules are further
comprised by a number of submodules. In addition, the port mapper dae-
mon has been implemented as a stand-alone application.
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Figure 4.6: The architecture of the implemented system

Figure 4.7: The architecture of the concurrency module

4.3.1 Concurrency

The concurrency module’s (Figure 4.7) foremost role is that of handling the
processes that make a concurrent system. Processes can be created and
destroyed at any time. In addition, the module schedules when each of these
processes gets to run. It has the ability to resume processes that went to idle
state, for example when a process is waiting for some condition to change in
order to be able to run.

The module also is responsible for maintaining the process mailboxes, one
for each process. Messages that can be sent by any process, are delivered to
the mailbox of the target process.

There is functionality for keeping a registry for registered names, instead
of process unique identifiers. Aliases in the registry can be added or deleted.

The module also takes care of links between processes, along with mon-
itoring of processes by other processes. It signals linked processes in case
of error, and notifies the monitoring process about errors in the monitored
process.

4.3.2 Distribution

The distribution module (Figure 4.8), which can be optionally loaded if
needed, is based on the core functionality of the concurrency module. The
first task that the distribution component completes is initialization of a
node. Initialization is realized by setting a name for the node and by pub-
lishing the network port that the node is listening along with its name in the
local port mapper.

The distribution module is responsible for establishing connections with
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Figure 4.8: The architecture of the distribution module

remote nodes and closing these connections when this is necessary. Both
when initializing connections and for every communication that takes place
between nodes, an authentication scheme is applied. Any messages that are
sent to remote processes are handled by the distribution module, in order to
transparently forward them to the destination node.

The distribution module is able to implement monitoring and linking of
remote processes. This is accomplished by the exchange of special control
messages with the nodes that the monitored or linked processes reside in.

The distribution module has the ability to maintain a fully connected
network of nodes. This has been used in order to implement a global registry
for process aliases between all the nodes that are part of this virtual network.

4.3.3 Port mapper daemon

The port mapper daemon’s functionality is rather simple. It features a simple
database, that stores pairs of node names and network ports. The daemon
listens on a standard port for connections from the nodes running on the
local host. Thus, nodes can register or unregister their name and listening
port, while remote nodes can find out the listening port of a specific node
they want to connect to.
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Chapter 5

Analysis

A presentation of the system, by the use of examples, will provide an overview
of what the system can do in comparison with Erlang. This will play the
role of an evaluation of the implementation in regards with the original re-
quirements. Also, a discussion of the results, the possible uses of the system
along with an brief investigation on multiprocessing will follow.

5.1 Evaluation

A number of simple examples will present some of the most essential proper-
ties of the implemented system, from process creation and message passing
to distributed programming and error handling.

This presentation will cover only a part of the system’s functionality, even
though the major properties will be described. Nonetheless, an extensive and
complete set of test cases has been written in order to test the full extend of
the functionality that the system provides.

5.1.1 Creating processes

The basic function for creating processes is spawn(). The spawn() function
takes at least one argument, the Lua function that will be the command
set of the new process. Any additional arguments are passed directly to the
process.

The following program demonstrates how processes can be created, by
first defining the code that the process will execute, and then spawning the
process itself. The program spawns a process that will print a string to the
standard output as many times as it has been specified when creating the
process (Figure 5.1).
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Figure 5.1: A process is created, executes and terminates

require ’concurrent’

function hello_world(times)

for i = 1, times do print(’hello world’) end

print(’done’)

end

concurrent.spawn(hello_world, 3)

concurrent.loop()

The output of the program when executed is:

hello world

hello world

hello world

done

First the implemented system is loaded:

require ’concurrent’

The function that the process will execute is defined next:

function hello_world(times)

for i = 1, times do print(’hello world’) end

print(’done’)

end

The process is created:

concurrent.spawn(hello_world, 3)

And last the infinite loop, in order for the system to run, is called:

concurrent.loop()

28



Figure 5.2: Two processes exchange messages

5.1.2 Exchanging messages

This second program makes use of message exchange between two processes.
Specifically, the send() and receive() functions are used to send and receive
messages. Also, the self() function is used to get the PID of the process
that is calling the function. This program implements a process that sends
messages and receives replies from another process (Figure 5.2).

require ’concurrent’

function pong()

while true do

local msg = concurrent.receive()

if msg.body == ’finished’ then

break

elseif msg.body == ’ping’ then

print(’pong received ping’)

concurrent.send(msg.from, { body = ’pong’ })

end

end

print(’pong finished’)

end

function ping(n, pid)

for i = 1, n do

concurrent.send(pid, {

from = concurrent.self(),

body = ’ping’

})

local msg = concurrent.receive()

if msg.body == ’pong’ then

print(’ping received pong’)

end

end

concurrent.send(pid, {
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from = concurrent.self(),

body = ’finished’

})

print(’ping finished’)

end

pid = concurrent.spawn(pong)

concurrent.spawn(ping, 3, pid)

concurrent.loop()

This is the output of the program:

pong received ping

ping received pong

pong received ping

ping received pong

pong received ping

ping received pong

pong finished

ping finished

The pong process is first created, and then, when the ping process is
created, it is supplied with the PID of pong.

pid = concurrent.spawn(pong)

concurrent.spawn(ping, 3, pid)

The first message is sent by ping:

concurrent.send(pid, {

from = concurrent.self(),

body = ’ping’

})

The pong process waits for a message to become available in its mailbox,
and saves it in a variable when it comes:

local msg = concurrent.receive()

The pong process replies back with a message:

concurrent.send(msg.from, { body = ’pong’ })

The pong process may complete its operation, after the ping process has
already finished and sent a notification message to pong.
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Figure 5.3: Two processes with registered names exchange messages

5.1.3 Registering process names

Instead of using PIDs as a destination when sending messages, a process can
send messages by some process name. The register() function can be used
to add a record in the process names registry. The previous example could
be rewritten in order to take advantage of this feature (Figure 5.3).

require ’concurrent’

function pong()

while true do

local msg = concurrent.receive()

if msg.body == ’finished’ then

break

elseif msg.body == ’ping’ then

print(’pong received ping’)

concurrent.send(msg.from, { body = ’pong’ })

end

end

print(’pong finished’)

end

function ping(n)

for i = 1, n do

concurrent.send(’pong’, {

from = concurrent.self(),

body = ’ping’

})

local msg = concurrent.receive()

if msg.body == ’pong’ then

print(’ping received pong’)

end

end
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concurrent.send(’pong’, {

from = concurrent.self(),

body = ’finished’

})

print(’ping finished’)

end

pid = concurrent.spawn(pong)

concurrent.register(’pong’, pid)

concurrent.spawn(ping, 3)

concurrent.loop()

The output is the same as the previous example, and the only changes
from the previous example is the destination that the ping process now sends
the messages to:

concurrent.send(’pong’, {

from = concurrent.self(),

body = ’ping’

})

And:

concurrent.send(’pong’, {

from = concurrent.self(),

body = ’finished’

})

Also, the pong process now registers its PID:

concurrent.register(’pong’, pid)

Therefore, there is no reason to supply the PID of the pong process to
the ping process.

5.1.4 Distributed message passing

Processes that are part of a different node can still communicate with the
same message passing primitives. The only difference is that the destination
process has to be referenced not only by its PID or process name, but also
by the node that it is running on. If the two processes, ping and pong were
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Figure 5.4: Two process on different nodes exchange messages

running on different nodes, and each of these nodes were in different network
hosts, the previous example could be broken in two separate programs, one
for each distributed process (Figure 5.4).

The code for the pong process:

require ’concurrent’

function pong()

while true do

local msg = concurrent.receive()

if msg.body == ’finished’ then

break

elseif msg.body == ’ping’ then

print(’pong received ping’)

concurrent.send(msg.from, { body = ’pong’ })

end

end

print(’pong finished’)

end

concurrent.init(’pong@gaia’)

pid = concurrent.spawn(pong)

concurrent.register(’pong’, pid)

concurrent.loop()

concurrent.shutdown()

And the code for the ping process:

require ’concurrent’

function ping(n)
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for i = 1, n do

concurrent.send({ ’pong’, ’pong@gaia’ }, {

from = { concurrent.self(), concurrent.node() },

body = ’ping’

})

local msg = concurrent.receive()

if msg.body == ’pong’ then

print(’ping received pong’)

end

end

concurrent.send({ ’pong’, ’pong@gaia’ }, {

from = { concurrent.self(), concurrent.node() },

body = ’finished’

})

print(’ping finished’)

end

concurrent.spawn(ping, 3)

concurrent.init(’ping@selene’)

concurrent.loop()

concurrent.shutdown()

The output for the pong process:

pong received ping

pong received ping

pong received ping

pong finished

And the output for the ping process:

ping received pong

ping received pong

ping received pong

ping finished

What has changed in this example is that now the runtime system is
running in distributed or networked mode. Also, the port mapper daemon,
one for each network host, has to be running.

The code that initializes the node that pong is running on:
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concurrent.init(’pong@gaia’)

And the initialization for the ping node:

concurrent.init(’ping@selene’)

During initialization of the nodes a port is registered in the port mapper
daemon. The nodes have to unregister this port when they stop running.
This is done with the following command:

concurrent.shutdown()

Apart from the initialization and finalization of the nodes, the only other
change is that processes are denoted both by their PID or process name and
the name of the node they are running on. So when the ping process sends
a message to the pong process it does it like this:

concurrent.send({ ’pong’, ’pong@gaia’ }, {

from = { concurrent.self(), concurrent.node() },

body = ’ping’

})

And later on again:

concurrent.send({ ’pong’, ’pong@gaia’ }, {

from = { concurrent.self(), concurrent.node() },

body = ’finished’

})

Something new in the above code is also the node() function which re-
turns the name of the node that the executing process is running on.

5.1.5 Handling error

Another interesting property of the system is how to handle errors in pro-
cesses. Here comes the notion of linked processes, where two processes are
bound together, and when one of them dies, the other is taken down, too.
The link() function provides this functionality (Figure 5.5).

require ’concurrent’

function ping(n, pid)

concurrent.link(pid)
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Figure 5.5: One of the two linked processes exits

for i = 1, n do

concurrent.send(pid, {

from = concurrent.self(),

body = ’ping’

})

local msg = concurrent.receive()

if msg.body == ’pong’ then

print(’ping received pong’)

end

end

print(’ping finished’)

concurrent.exit(’finished’)

end

function pong()

while true do

local msg = concurrent.receive()

if msg.body == ’ping’ then

print(’pong received ping’)

concurrent.send(msg.from, { body = ’pong’ })

end

end

print(’pong finished’)

end
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pid = concurrent.spawn(pong)

concurrent.spawn(ping, 3, pid)

concurrent.loop()

The output of this example is:

pong received ping

ping received pong

pong received ping

ping received pong

pong received ping

ping received pong

ping finished

The pong process doesn’t ever reach its last line, because when the ping

process dies, pong dies immediately with it.
The new code in this example is the linking of the two processes:

concurrent.link(pid)

Along with the use of the exit() function, in order to cause an abnormal
exit of the ping process:

concurrent.exit(’finished’)

There is also the capability to trap the exit signal, and instead of dying,
a special message is received by the linked process:

require ’concurrent’

concurrent.setoption(’trapexit’, true)

function pong()

while true do

local msg = concurrent.receive()

if msg.signal == ’EXIT’ then

break

elseif msg.body == ’ping’ then

print(’pong received ping’)

concurrent.send(msg.from, { body = ’pong’ })

end

37



end

print(’pong finished’)

end

function ping(n, pid)

concurrent.link(pid)

for i = 1, n do

concurrent.send(pid, {

from = concurrent.self(),

body = ’ping’

})

local msg = concurrent.receive()

if msg.body == ’pong’ then

print(’ping received pong’)

end

end

print(’ping finished’)

concurrent.exit(’finished’)

end

pid = concurrent.spawn(pong)

concurrent.spawn(ping, 3, pid)

concurrent.loop()

The output of this example is:

pong received ping

ping received pong

pong received ping

ping received pong

pong received ping

ping received pong

ping finished

pong finished

The setoption() function changes the behaviour of process linking,
specifically the trapexit option:

concurrent.setoption(’trapexit’, true)

While the pong process checks for an exit message with:
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if msg.signal == ’EXIT’ then

break

5.2 Discussion

The presentation of the system provides a satisfactory overview of the result-
ing system, which will be evaluated here. A discussion on possible uses and
some further ideas will also follow.

5.2.1 Results

Several important properties of the system have been showcased through
examples. It is obvious that the desired functionality that the requirements
defined has been achieved. All of the goals that have been originally set,
have been finally met.

Process creation and the message passing primitives are straight-forward
and flexible, similar to what Erlang provides. One difference on the interface
is that instead of the matching of messages during receive that is used Erlang,
tables with named fields are preferred in order to mark parts of the messages.
This approach is closer to what scripting languages such as Lua support.

Distributed programming is supported transparently and in the same way
as concurrent programming. Processes can communicate regardless of their
location. The functions provided for this purpose have the same syntax,
and every necessary action to be taken by the system in order to support
distribution is done transparently. Several mechanisms for error handling are
also available for the application programmer.

And last but not least, the final system is strongly integrated to Lua. It
can be loaded and become ready to be used from any Lua program. Modu-
larization and good portability also help in the direction of developing cross-
platform distributed applications.

5.2.2 Uses

The resulting system could be used as the base for development of diverse
applications. But some of the more obvious uses could be:

• A higher level mechanism instead of the lower level coroutines

Coroutines are the concurrency mechanism provided by Lua. They
are based on cooperative multithreading and so the developer has to
manually transfer control to each coroutine, replacing the role of a
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scheduler. Instead, with the implemented system all this is hidden
under processes that just send messages to each other and based on
this communication, scheduling is automatically taken care of. Also,
the developer does not have to program based on what global data the
processes have to share, but focuses on the functionality of each process
and whenever any data are needed by another process, they are just
simply passed to it.

• A development platform for distributed systems and general purpose
networked systems

While one can do socket programming in Lua, in many cases when
developing distributed systems, the message passing mechanism is sim-
pler but still adequate as an alternative. The message passing system
is built upon the socket interface and can be considered a higher level
mechanism.

• A prototype-based programming solution in the context of distributed
programming

Prototype-based programming is becoming more and more widespread,
and interpreted languages, due to their dynamic nature, can fit this role
well. The ability to exchange message that contain code, can provide
an environment for experimenting on prototype-based programming in
distributed systems.

• An infrastructure for the development of applications with code mobil-
ity characteristics

The system can also be used to create applications that support weak
code mobility. As mentioned before, code can be easily transferred
across the network. In addition, it would be also possible to extend
the system in order to support strong code mobility, where whole pro-
cesses could be transferred. This would include use of more advanced
serialization and deserialization routines.

• An infrastructure for the development of agent-oriented programming
solutions

It would be also possible to support mobile agents, either with weak
code mobility and by programming the restoring of the agent’s state
explicitly, or better yet, by first extending the system to support strong
code mobility.
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Figure 5.6: Lua VMs running on different native threads

5.2.3 Multiprocessing

Another aspect of the system that has not been investigated at all, is that
while it brings a model for concurrency to the Lua programming language,
it doesn’t address parallelism. This aspect will be discussed here from a
theoretical viewpoint.

One of Lua’s distinguished properties is that it is targeted to be embedded
into other applications. This embedding is done in the form of a reentrant
interpreter, the Lua VM, that is represented by an opaque structure, the Lua

state.
Having all these in mind, a way to implement SMP support, would be by

having multiple interpreters embedded inside an application. Each of these
interpreters would run in its own separate native thread. The interpreters
would then communicate by using the message passing system that has been
implemented and each interpreter would be represented by a node (Figure
5.6).

Of course, one might ask that interpreters could communicate by sharing
data through the application that embeds them. While that is true, and it
would have its advantages as a solution, as has been explained in previous
chapters, this approach opens a whole world of complexity and this makes
it extremely error-prone. Instead, the aforementioned solution is suggested
as a viable alternative, that could make it possible to do multiprocessing
programming simpler.
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Chapter 6

Conclusions

General concluding remarks and an insight into future work and hints for
further analysis will complete this report.

6.1 Conclusion

This thesis began with questions related to the message passing concurrency
and the benefits of this model in modern scripting languages. The answers
to these questions, required solutions to some of the architectural design
problems, problems which have been solved during this thesis.

The implemented system required some kind of processes or indepen-
dent threads of execution, something that has been addressed by the use of
coroutines and cooperative multithreading. Messages are stored in message
queues, and thus when messages are sent or received, they are appended or
removed from this queues. Messages can be of any data type that Lua sup-
ports, and this is accomplished by serialization and deserialization of data.
Distribution is realized transparently by the use of nodes that communicate
through a virtual network that they form, and interprocess communication
is implemented by the use of asynchronous non-blocking sockets. Finally,
the implementation is based on Lua modules in order for it to be strongly
integrated with Lua.

A presentation of the aforementioned design decisions of the system, by
the use of examples, provided an inner look on the capabilities of the system.
Some of the benefits and possible uses of such an architecture have been
also suggested, but maybe most importantly, a theoretical approach to the
problem of multiprocessing has been included. This approach is based on the
notion of multiple runtimes running on different native threads, but instead
of communicating by sharing data, the race conditions problem is solved by
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the utilization of the message passing system.

6.2 Future work

The implementation that has been presented in this report is first of all a
prototype. This does not mean that it cannot be used in production but that
mainly it is a proof of concept. One of the things that has been left undone
and should be subject of more work in the future are optimizations and stress
testing. Some of the areas that would first benefit from optimizations would
be the process scheduler and the message mailbox subsystem.

From there on it would be also very important for different uses of this
system to be investigated. Some of the possible uses of the system have
already been suggested, and it is through extensive testing that the system
would mature even more and the extend of its capabilities would become
more evident. This more thorough analysis and evaluation of the system will
be possible after it has been used as a component for other projects.

Another aspect of the system that can prove very important in the future
is multiprocessing support. Although the system can already be used in
order to achieve SMP inside an application, with an approach that has been
described previously, what would be more interesting for the future would
be to generalize this concept. This means that somehow programs should
benefit from SMP support available by the hardware without requiring from
the programmer to do anything explicitly. There are two approaches that
will be suggested here.

The first approach is similar to what is done in Erlang, where multiple
process schedulers are running on different native threads, and communicate
by sharing data. In this case the application programmer will not have to
worry about race conditions, because they will be taken care just once inside
the interpreter utility.

The second approach is based on the idea of multiple VMs. This con-
cept is similar to the multiple interpreters inside an application approach
discussed before, but in this case a Lua interpreter utility is the applica-
tion that will interpret any Lua code and parallelize process execution by
distributing processes to the interpreters.
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Appendix A

User’s manual

All of the functionality of the implemented system becomes available by
loading the “concurrent” module. The following functions are exported by
the module.

Processes

spawn(body, ...)

Creates a process which will execute the body function. Any extra arguments
can be passed to the executing function. The PID of the new process is
returned. In case of error nil and an error message are returned.

spawn(node, body, ...)

Creates a process in a remote node which is a string in the format ’node-

name@hostname’ and the new process will execute the body function. The
PID of the new process is returned. In case of error nil and an error message
are returned.

self()

Returns the PID of the calling process.

isprocessalive(process)

Checks if the process, which can be specified by PID or by its registered
string name, is alive. Returns true if the process is alive, and false other-
wise.
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exit(reason)

Exits abnormally the calling process with the specified reason string as a
cause of exit.

Messages

receive([timeout])

Receives the next message in the mailbox of the calling process. If the mail-
box is empty it waits indefinitely for a message to arrive, unless a timeout

number in milliseconds is specified. A message of any type, that depends on
what was sent, is returned.

send(process, message)

Sends to the destination process a message which can be one of: boolean,
number, string, table, function. Returns true if the message was send suc-
cessfully, and false if not.

Scheduling

sleep(time)

Suspends implicitly the calling process for the specified time, the number of
milliseconds.

loop([timeout])

Calls the system’s infinite loop which executes the process scheduler until all
the processes have terminated, or unless the specified timeout, the number
of milliseconds, has expired.

interrupt()

Interrupts the infinite loop of the process scheduler.

step([timeout])

Executes one step of the process scheduler unless the specified timeout, the
number of milliseconds, has expired.
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tick()

Forwards the system’s clock by one tick.

Options

setoption(key, value)

Sets the key string option to the specified value, the type of which depends
on the option.

getoption(key)

Returns the value of the key string option.

Node

init(node)

Makes the runtime system a distributed node. The first argument is the name
string of the node, which can be either in ’nodename’ or ’nodename@host-
name’ format.

If the ’shortnames’ option is set to true, then short names are used
instead of fully qualified domain names. If the ’connectall’ option is set
to false, then a fully connected virtual network between the nodes will not
be maintained.

shutdown()

Makes the runtime system stop being a distributed node.

node()

Returns the name of the node the calling process is running on.

nodes()

Returns a table with the nodes that the node the calling process is running
on is connected to.

isalive(node)

Returns true if the specified node is alive, and false otherwise.
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monitornode(node)

The calling process starts monitoring the specified node, which is a string of
the format ’nodename@hostname’.

demonitornode(node)

The calling process stops monitoring the specified node, which is a string of
the format ’nodename@hostname’.

Security

setcookie(secret)

Sets the pre-shared secret key, a string, also known as the magic cookie,
that will be used for node authentication.

getcookie()

Returns the pre-shared secret key, also known as the magic cookie, that is
being used for node authentication.

Registering

register(name, pid)

Registers the name string for the given process pid.

unregister(name)

Unregisters the process with the name string.

whereis(name)

Returns the PID of the process with the registered name string.

registered()

Returns a table with all the registered process names.
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Linking

link(process)

The calling process gets linked with the specified process, which can be
either a PID, a registered name, or a remote process. A remote process is a
table with two elements, the remote process PID or registered name and the
node’s name in the format ’nodename@hostname’.

The ’trapexit’ option can be set to true, if exit signals between linked
processes are to be trapped.

unlink(process)

The calling process gets unlinked with the specified process, which can be
either a PID, a registered name, or a remote process. A remote process is a
table with two elements, the remote process PID or registered name and the
node’s name in the format ’nodename@hostname’.

spawnlink(body, ...)

Creates a process which will execute the body function and the calling func-
tion also gets linked to the new process. Any extra arguments can be passed
to the executing function. The PID of the new process is returned. In case
of error nil and an error message are returned.

The ’trapexit’ option can be set to true, if exit signals between linked
processes are to be trapped.

spawnlink(node, body, ...)

Creates a process in a remote node which is a string in the format ’node-

name@hostname’, the new process will execute the body function, and also
the calling process gets linked to the newly created process. The PID of
the new process is returned. In case of error nil and an error message are
returned.

The ’trapexit’ option can set to true, if exit signals between linked
processes are to be trapped.
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Monitoring

monitor(process)

The calling process starts monitoring the specified process, which can be
either a PID, a registered name, or a remote process. A remote process is a
table with two elements, the remote process PID or registered name and the
node’s name in the format ’nodename@hostname’.

demonitor(process)

The calling process stops monitoring the specified process, which can be
either a PID, a registered name, or a remote process. A remote process is a
table with two elements, the remote process PID or registered name and the
node’s name in the format ’nodename@hostname’.

spawnmonitor(body, ...)

Creates a process which will execute the body function and the calling func-
tion also starts monitoring the new process. Any extra arguments can be
passed to the executing function. The PID of the new process is returned.
In case of error nil and an error message are returned.

spawnmonitor(node, body, ...)

Creates a process in a remote node which is a string in the format ’node-

name@hostname’, the new process will execute the body function, and also
the calling process starts monitoring the newly created process. The PID of
the new process is returned. In case of error nil and an error message are
returned.
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