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ABSTRACT 

Low energy consumption is a major design constraint for battery operated embedded systems such as wireless 
sensor networks or WSN. Low energy is more important compared to low power for such systems as it will 
increase lifetime of the system. The major component which can reduce energy is to reduce delay. WSN motes 
must power sensors, a processor, and a radio for wireless communication over long periods of time, and are 
therefore particularly sensitive to energy use. Recent techniques for reducing WSN energy consumption, such as 
aggregation, require additional computation to reduce the cost of sending data by minimizing radio data 
transmissions. Larger demands on the processor will require more computational energy, but traditional energy 
reduction approaches, such as multi-core scaling with reduced frequency and voltage may prove heavy handed 
and ineffective for motes. Instead, application-specific instruction set processor (ASIP) can reduce 
computational energy consumption by processing operations common to specific applications more efficiently 
than a general purpose processor. By the nature of their deeply embedded operation, motes support a limited set 
of applications, and thus the conventional general purpose computing paradigm may not be well-suited to mote 
operation. Both simple and complex operations can improve performance and use orders of magnitude less 
energy with ASIPs. This paper examines the design considerations of a ASIP for compressed Bloom filters, a 
data structure for efficiently storing set membership.  

Index Terms—Wireless Sensor Networks, Application Specific Instruction Set Processor (ASIP), Low Energy, 
Delay Minimization.  

 
I. INTRODUCTION 

Battery-powered embedded systems carefully 
manage energy consumption to maximize system 
lifetime. Wireless sensor networks (WSNs), made up of 
many “mote” devices, are often designed to operate for 
months without intervention. Sensor networks are 
typically used to monitor an environment and may be 
deployed in remote or hazardous locations. WSNs can 
consist of thousands of motes, and cover wide areas. As 
a result, mote software and hardware must consider 
energy consumption at every level.  

Motes are simple, pocket-sized computers. Each 
mote contains a small battery that powers a radio for 
wireless networking, a limited amount of memory, and 
a constrained processor. Aggregation, a widely 
researched field for reducing data transmissions by 
combining data on motes, reduces energy use by 
spending additional energy on computation to save a 
greater amount of energy on the power-hungry radio 
[1]. Increasing on-mote processing complexity will 
require additional computational hardware, demanding 
more energy. As sensor networks grow and generate 
larger data sets, these energy costs will continue rising.  

Unlike PCs, embedded systems often execute a 
limited set of applications and have less need for 
general purpose functionality. Some simple operations, 
such as bit manipulations, poorly utilize a general 
purpose processor. Large multiplications and other 
complex operations may require several cycles on a 
general purpose processor. Many embedded 
applications require support for simple and complex 
operations. As a result, the system must use a power-
hungry processor for simple operations or spend many 
cycles using a simple processor for complex operations.  

Application specific instruction set processor 
(ASIP) tailors hardware to the application, efficiently 
executing simple and complex operations. We refer to 
these ASIP constructs as hardware accelerators. If any 
of these hardware accelerators are unused, they can be 
Vdd-gated so that they do not waste energy on unused 
features.  

This paper explores ASIP considerations during the 
design of one such hardware accelerator. The 
accelerator implements several operations for Bloom 
filters, a data structure for efficiently storing set 
membership. These operations include support for 
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inserting items, compression and decompression, and 
querying.  

We propose a scheduler based ASIP design 
methodology which is able to explore a large design 
space. It  is validated for three different popular 
standard processors with significant architectural 
differences. Use of ASIPs reduces execution time and 
energy consumptions significantly. Results show that by 
changing number of registers by just one saves 
execution time by 57.5% whereas energy consumption 
is reduced by 62.9%.  

This paper is organized as follows. Section II 
discusses related approaches to increasing energy-
efficiency and motivates the ASIP paradigm. Section III 
describes the algorithms needed for the Bloom filter 
hardware accelerator. The proposed scheduler based 
ASIP design methodology ASSIST with its exploration 
and validation results are presented in Section IV. 
Section V discusses the architectural blocks needed to 
implement the approach. Finally, we discuss future 
work and conclude the paper. 

II. RELATED WORK 
A well-known paradigm for increasing energy-

efficiency in general purpose computing is to utilize 
parallel processing. For example, in lieu of a single 
power-hungry core, designers can distribute 
computation across several low-power cores [2]. The 
low-power cores operate at a lower frequency, reducing 
voltage and power requirements. Several cores can be 
combined in one processor to meet computational goals. 
Assuming the lowest possible voltage is used, dynamic 
power is roughly proportional to nf3, where n is the 
number of cores and f is the operating frequency; 
potential processing capacity is proportional to nf. 
Ideally, power demands are minimized when many low-
frequency cores are used. However, several factors limit 
the power reduction: 

• Threshold voltage places a lower bound on voltage 
scaling. Subthreshold operation is possible but adds 
significant design challenges [3]. 

• Leakage current increases the power consumption of 
each additional core. 

• Interconnect logic for communication between cores 
and shared memory requires additional power and 
may introduce bottlenecks. 

• Software must be parallelized to run on all cores 
simultaneously 

Application Specific Instruction Set Processors 
(ASIP) A typical ASIP design flow includes key steps 
as application analysis, design space exploration, 
instruction set generation, code generation for software 

and hardware synthesis [4]. Design space exploration is 
driven by performance estimations. These estimates are 
generated using a simulator based [5] or scheduler 
based framework [6]. Simulator based technique needs 
a retargetable compiler to generate code for different 
processor configurations to be explored. Simulating the 
generated code is slow. Further, there is a well known 
trade off between retargetability and code quality in 
terms of performance and code size compared to hand 
optimized code. Therefore, in our opinion, simulation 
based approach is not suitable for early design space 
exploration. 

III. BLOOM FILTER ALGORITHMS 
Bloom filters provide a useful case study for an 

exploration of wireless sensor device ASIP. Using 
Bloom filters, many WSN applications can easily 
aggregate information and reduce the size of large data 
sets containing unique identifiers. These factors can 
reduce costly radio transmissions and lower overall 
mote energy usage. However, some Bloom filter 
operations may require several seconds of compute time 
on general purpose hardware, limiting the applicability 
of the approach and incurring high energy usage. By 
implementing hardware support for Bloom filters, WSN 
applications can achieve significant energy reductions 
without sluggish performance. The Bloom filter 
hardware accelerator improves performance and energy 
use by optimizing several algorithms in hardware. The 
accelerator natively supports Bloom filters, multiply and 
shift hashing, and Golomb-Rice coding support for data 
aggregation, near-random hashing, and data 
compression, respectively. The following sections 
describe these algorithms in detail. 

A.  Bloom filters 
Bloom filters efficiently store set membership of 

large items by combining data in a large bit array. Using 
a small number of hash functions, h1 . . . hk, Bloom 
filters reduce storage costs up to 70% [7]. Many 
applications, including spelling checkers and distributed 
web caches currently use Bloom filters. Other work has 
also suggested the use of Bloom filters in hardware [8, 
9, 10].  

Our hardware accelerator implements a specific 
range of Bloom filter configurations: the bit array is 
16KB, up to 16 hash functions are available, and 32-bit 
items are supported. Initially, we set every bit in the 
array to 0, to create an empty Bloom filter. We insert 
items, as illustrated in Figure 1, by hashing the item xi 
with every hash function h1 . . . hk. The results of these 
hash functions h1(xi) . . . hk(xi) are addresses to bits in 
the array, which we set to 1. As we insert more items, 
the number of 1’s in the Bloom filter increases. When 
inserting items, we may find some bits already set to 1 
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due to previous item insertions writing to the same bit 
address.  

Querying to check if an item xi is in the Bloom 
filter is similar to insertion. We hash the item with every 
hash function h1 . . . hk and check each bit’s value at 
addresses h1(xi) . . . hk(xi). If any hash function points to 
a 0 bit, we know with certainty the item is not in the 
Bloom filter. 

 
 

 
 
 
 
 
 
 
 
 

Figure 1: Inserting an item into a Bloom filter 

Table 1: Bloom filter configurations (16KB bit 
array, 32-bit elements). Bits per item applies to full 

Bloom filters 
Conf
igur
ation 

Item 
Capacity 

Bits 
per 

Item 

Hash 
Functions 

(k) 

False 
Positive 

Rate 
1 13500 9.71 7 < 1% 
2 9000 14.56 10 < 0.1% 
3 6500 20.16 14 < 0.01% 

The item is in the Bloom filter with high 
probability if all hash functions point to 1 bits, but we 
cannot know with certainty. These “false positive” 
errors, although rare, occur when other inserted items 
hash to the same bits as the queried item. The false 
positive rate can be pre-configured as required by the 
application, typically from 1% to 0.01%. 

Items cannot be removed from a Bloom filter. 
Hypothetically, an item could be removed by setting 
any of the item’s corresponding array bits to 0. 
However, many inserted items may hash to the same bit, 
and removing one item may inadvertently remove 
several other items. If a Bloom filter becomes full, all 
elements can be cleared by setting all bits in the array to 
0.  

The false positive rate, item capacity, and energy 
requirements to insert or query an item are determined 
by k, the number of hashes used by the Bloom filter. 
When k is larger, the false positive rate decreases. 
However, smaller values of k result in Bloom filters 
with a larger item capacity and lower energy cost per 
item insertion or query. This trade-off is illustrated in 

Table 1. A detailed analysis of Bloom filter 
configuration is available in [7]. 

Bloom filters merge by bitwise ORing bit arrays, 
assuming both Bloom filters use the same bit array 
lengths and hash functions. This property makes 
aggregating data in a WSN spanning tree a trivial task: 
parents can merge Bloom filters from child motes 
quickly, insert their own items, and transmit the 
aggregate Bloom filter to its own parent. 

The Bloom filter is considered full when half of the 
array’s bits are 1. At this point, further insertions will 
dramatically increase the false positive rate. Bloom 
filter storage is most efficient when full, as the bit array 
is always a constant length. For example, configuration 
1 in Table 1 can store 32-bit elements using less than 10 
bits when full. 

B. Multiply and Shift Hashing 
Multiply and shift hashing, described by 

Dietzfelbinger et al. [11], is simple, yet effective. Each 
hash function h1 . . . hk requires a hash key HashKey1 . . 
.HashKeyk. Hash keys are odd integers randomly chosen 
before the Bloom filter is used. The accelerator 
represents hash keys as 32-bit integers. 

To perform a hash hi of element xj , we calculate 
32

32

( ) mod 2
( )

2
i j

i j b

HashKey x
h x −

×
=      (1) 

where b is the number of bits in the Bloom filter bit 
array address. For the 16KB bit array used by the 
accelerator, b = 17. The modulo and divide are powers 
of two and can be efficiently implemented with a bit 
mask and shift. 

C. Golomb-Rice Coding 
The accelerator implements Golomb-Rice coding, a 

popular compression and decompression method used 
in Apple’s Lossless Audio Codec (ALAC) and Lossless 
JPEG (JPEGLS) [12, 13]. As noted in Section III.A, a 
Bloom filter contains more 0s than 1s until filled. 
Therefore, sparsely filled Bloom filters (under 70% full) 
can reduce Bloom filter size through Golomb-Rice 
coding. The algorithm, a form of run length encoding, is 
simple to implement, and therefore power efficent. 

1) Compression 
First, the number of 1s in the bit array are counted 

to determine the “remainder part” length l. The relation 
between 

1s in the bit array and l is precomputed; only a 
quick lookup is needed to determine the remainder part 
length. 

Item 

Hash 1 Hash 2  Hash k

Bit 
Address 1 

Bit 
Address 2 

Bit 
Address k

Bloom Filter Bit Array 
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Second, the bit array is iterated from start to finish, 
scanning for run lengths of 0s between 1s. For each run 
length of n 0s, the remainder part r and quotient part q 
must be calculated: 

2l

nr =         (2) 

mod 2lq n=       (3) 
After calculating r and q, we write r 0s to the 

compressed bit stream, followed by a 1. q is then 
written directly, using l bits. This process is used to 
write all run lengths in the uncompressed bit stream 
until the end is reached. The second step’s 
implementation does not require any expensive 
divisions or modulos; a counter is kept of the current 0 
run length. If the next bit is a 0, the counter is 
incremented. If the counter reaches 2l, a 0 is written to 
the compressed stream and the counter is reset. If the 
next bit is a 1, a 1 is written to the compressed stream, 
followed by the counter’s value using l bits. Therefore, 
Golomb-Rice compression can be reduced to many 
simple bit operations. 

2) Decompression 
Decompression is the inverse of compression. We 

read in one run length at a time from the compressed bit 
stream, knowing the quotient part ends at the first 1 and 
the quotient follows for the next r. The run length is 
calculated: 

2ln q r= × +         (4) 

Once the run length n is calculated, n 0s are written 
to the uncompressed bit stream, followed by a 1. This 
process continues until the final run length is 
decompressed. Implementation is simpler: when reading 
the quotient part, 2l bits are written to the uncompressed 
bit stream for every 0 in the compressed bit stream. 
When a 1 is read in the compressed bit stream, we 
switch to remainder part mode. In remainder part mode, 
we write 2d 0s to the uncompressed bit stream for every 
1 in the compressed bit stream, where d is the binary 
digit in the remainder. After the last, or 0th digit, is 
reached in the compressed bit stream, a 1 is written to 
the compressed bit stream and we switch back to 
quotient part mode. Therefore, Golomb-Rice 
decompression consists of several simple bit operations. 

IV. ASIP DESIGN METHODOLOGY 
A.  ASIP Design Methodology 

Gloria et al [6] defined some main requirements of 
the design of application-specific architectures. 
Important among these are as follows:  

1 Design starts with the application behavior.  

2 Evaluate several architectural options.  
3 Identify hardware functionalities for speed up 

4 Introduce hardware resources for frequently used 
operations only if it can be supported during 
compilation. 

 ASIP fits in between these two and provides 
flexibility at lower cost than general programmable 
processors. According to MK Jain et al [4] design of 
ASIP can be typically divided in five steps which is 
shown in Figure 2:  

a) Application Analysis 
b) Architecture design space Exploration. 
c) Instruction-set generation 
d) Code synthesis 
e) Hardware synthesis 

 

 
 

Figure 2: Flow Diagram of ASIP design Methodology 

1) Application Analysis 
ASIP design starts with analysis of application, 

analysis of test-data and design constraints. An 
application written in any high level language is 
analyzed both statically and dynamically which is then 
stored in some suitable intermediate format, which is 
then used in the subsequent steps.  

2) Architecture Design Space Exploration 
It involves identifying the broad architectural 

features of the ASIP. First of all, the architectural space 
to be explored is defined, keeping in view the parameters 
extracted during application analysis and the input 
constraints. Architecture is defined using some standard 
Architecture Definition Language (ADL).  
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3)  Instruction set generation 
Instruction set is to be generated for that particular 

application and for the architecture selected. This 
instruction set is used during the code synthesis and 
hardware synthesis steps. 

4) Code synthesis 
Compiler generator or retargetable code generator is 

used to synthesize code for the particular application or for a 
set of application. 

5) Hardware synthesis 
In this step the hardware is synthesized using the 

ASIP architecture template and instruction set 
architecture starting from a description in 
VHDL/VERILOG using standard tools. 

B. ASSIST: A Scheduler based ASIP Design 
Methodology 

The overall flow diagram of ASSIST methodology 
is shown in figure 3. The inputs include application 
behavior in C, performance, power and area constraints, 
basic processor configuration, pipeline templates and 
memory access models, power models for various 
components, area and clock period models. The 
application is analyzed with the help of a profiler to 
extract application parameters. Design space 
exploration is an iterative process and it starts with a 
basic configuration (or minimal) that would be 
synthesized. The performance estimator estimates 
performance based on present processor and memory 
configuration, application parameters and input models. 
The configuration selector compares estimates to the 
user specified constraints to generate the next potential 
configuration. This process is iterated until a 
satisfactory configuration is generated which is used by 
a retargetable compiler generator in generating a 
customized compiler and by a VHDL synthesizer to 
generate a synthesizable VHDL code for the customized 
processor. 

 
Figure 3: ASSIST (A Scheduler based ASIP Design 

Methodology) 

C. Integrated On-Chip Storage Exploration 
Technique 

Storage exploration is a part of the design space 
exploration phase of overall methodology. Proposed 
technique for storage space exploration is shown in 
figure 4. Cycle count for application execution on the 
chosen processor and memory configuration is 
estimated. A parameterized model for processor as well 
as memory is considered. Parameters of data cache 
include size, line size, associativity, replacement policy 
and access time. Processor configuration specification 
includes register file and windows organization along 
with pipeline information and functional unit (FU) 
operation capability and latency. 

Register allocation is done on unscheduled code 
using reuse chains. We have defined cost of merging of 
reuse chains considering spills. We have also developed 
systematic way of merging these reuse chains. A 
priority based resource constrained list scheduler is used 
for performance estimation. Global register need 
estimation is done using variable usage analysis. Further, 
we estimate overheads due to limited register windows 
and data cache memory. We have integrated this 
technique to explore register file size, windows and 
cache configurations. 

Overall execution time estimate (ET) for an 
application for the specified memory and processor 
configuration can be expressed as follows. 

ET = etR+ohW +ohC          (5) 
Where 
etR : Execution time when register file contains R 
registers. 
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ohW : Additional schedule overhead due to limited 
windows. 
ohC : Additional schedule overhead due to cache misses. 
etR can be further expressed by the following equation. 

etR = bet +ohdep +spillR * tR       (6) 
Where 
bet : Base execution time considering constraints of 
resources 
other than storage. 
ohdep : The overhead due to additional dependencies 
inserted during register allocation. 
spillR : The number of register spills. 
tR : The delay associated with each register spill. 
Computation of etR is described in the next Section. ohW 
can be 
further expressed by the following equation. 

ohW = spillw * tW           (7) 
Where 
spillw : Number of window spills and 
tW : Delay associated with each register window spill. 
ohC can be further expressed by the following equation. 

ohC = missC  * tC          (8) 
Where 
missC : Number of cache misses and 
tC : The cache miss penalty. 

tW is computed by knowing register window size 
and the latency of ‘store’ instruction. tC is computed 
using block size and the delays associated in each data 
transfer. Storage configuration selector selects suitable 
processor and memory configuration to meet the desired 
performance by knowing all the execution time 
estimates. 

 
Figure 4: Integrated On-Chip Storage Exploration 

Technique 

D. Exploration Results 
1) Trade-off between Number of Register 
Windows and Window Size 
We are interested in trade-off between the number 

of registers and window sizes. For each total number of 
registers, window size would be different for different 
number of windows. While generating results (figure 5), 
we assumed that register file will be distributed in 
windows of equal sizes. We also assume that within a 
context, number of registers available for register 
allocation is equal to window size. Depending on the 
performance requirement, suitable register file size can 
be chosen and for the chosen register file size, number 
of windows and hence the window size (number of 
registers in a window) can be decided. On one end, 
when the number of windows is small, the time 
overhead due to context switches dominates the cycle 
count. At the other extreme, when the number of 
windows is large for the same total number of registers, 
the individual window size becomes small and the 
overhead due to load and stores dominates the cycle 
count. 

 
Figure 5: Trade-off between number of windows and 

their sizes 

2) Trade-off between  Register File Size and on-
chip Data Cache 
Execution time estimates for various benchmark 

applications for different register file sizes and different 
data cache sizes were generated. We have not 
considered the impact of cache size variation on 
memory latency, but it can be considered by choosing 
appropriate values of a1 and a2. Consider the results 
produced for matrixmult program for different register 
file size and memory configurations (figure 6). Some 
interesting trade-offs can be observed. Based on the 
generated execution time estimates and the input 
performance constraint, suitable configurations can be 
suggested.  
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Figure 6: Results for matrix-mult 

3) Execution Time Validation 
Performance estimations with varying on-chip 

storage configurations for selected benchmarks 
applications were done. Three processors namely ARM 
(ARM7TDMI a RISC) [14], Trimedia (TM-1000 a 
VLIW) [15] and LEON (a processor with register 
windows) [16] were chosen for experimentation and 
validation. TM-1000’s five-issue-slot instruction length 
enables up to five operations to be scheduled in parallel 
into a single VLIW instruction. To know correctness of 
our techniques, we chose to validate our result against 
the numbers produced by standard tool sets. Validation 
shows that our estimates are within 10% compared to 
the actual performance numbers produced by standard 
tool sets. The actual figures were 9.6%, 3.3% and 9.7% 
for ARM7TDMI, TM- 1000 and LEON respectively. 
Further, this technique was nearly 77 times faster 
compared to the simulator based technique. Results 
generated were also validated against VHDL level 
simulation for collision detection application. The 
execution time estimates produced by our estimator 
(443278 cycles) are within 10.33% compared to the 
estimates produced by tsim (494375 cycles) and within 
5.26% compared to the estimates produced by VHDL 
simulation 

V. ASIP ARCHITECTURE 
This paper leverages the mote architecture 

described by Hempstead, et al. [17] which provides a 
framework for custom hardware accelerators. The 
architecture proposes a lightweight event processor for 
managing power and offloading tasks to hardware 
accelerators. High-level events and tasks are decoded 
on the event processor and deployed to accelerators via 
memory mapped operations. A simple processor 
executes any operations not explicitly handled by 
accelerators. We anticipate implementing hardware 
accelerators as synthesized standard cells (e.g. ASIC 
flow) or through a shared on-chip programmable FPGA 
substrate. 

We designed the Bloom filter hardware accelerator 
to work within the processor architecture of [17] and 
support a 16-bit bus. The accelerator consists of several 
modules, illustrated in Figure 7. In the following 
sections, we will examine each major module in the 
Bloom filter accelerator and discuss design decisions 
for reducing energy and delay. 

A. Instruction Decoder 
The Instruction Decoder is the command center for 

the Bloom filter accelerator. In contrast to general 
purpose processors, the accelerator’s instruction 
decoder is simple because it only handles a small set of 
32 Bloom filter instructions. The Instruction Decoder 
receives control signals from the event processor to 
determine the current operation, and sends control 
signals to other modules in the accelerator (shaded in 
Figure 7). As the cycle completes, the Instruction 
Decoder monitors progress and notifies the Event 
Processor using acknowledgment signals and interrupts 
when appropriate. 

B. Data Builder 
As noted earlier, all hardware accelerators must 

support a 16-bit bus. However, several Bloom filter 
operations require 32-bit hash keys and 32-bit items. 
The Data Builder is used to combine 16-bit segments 
from the data bus over two cycles into a 32-bit integer. 
If future designs require larger items, the Data Builder 
can be easily modified to combine segments over more 
cycles. We chose to design the data builder as a distinct 
module for reuse in future accelerators. 

C. Hash Unit 
The Hash Unit is responsible for managing hash 

keys and performing multiply and shift hashing. When 
initially powered, the mote’s code must save the correct 
hash keys. These hash keys are rarely changed and 
could be statically programmed. However, regularly 
changing hash keys could deter snooping on gathered 
data. Once the hash keys are saved, the Hash Unit uses 
multiply and shift hashing to generate bit addresses for 
item insertion and querying. As noted in Section III.B, 
we simply take the 31st through 15th bits from the hash 
key-item multiplication, and do not require a full 32-bit 
multiplication. We implemented this complicated 
operation in hardware so that the calculation could be 
performed within one cycle. These hash operations are 
extremely fast in hardware and we are able to use the 
hash result to access memory in the same cycle. 

D. Hash Key Memory 
The Hash Unit uses the Hash Key Memory to store 

hash keys. The memory stores up to 16 hash functions. 
As only 14 hash functions are required for a false 
positive rate below 0.01%, no need exists for more hash 
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key capacity. We separated the Hash Key Memory from 
the Hash Unit for applications which never change hash 
keys. In this case, the Hash Key Memory could be 
replaced by a lower power ROM. 

E. Counter 
The counter is used when iterating through hash 

keys for item insertion or querying, and for several 
operations iterating through the entire Bloom filter 
memory. Because these operations require several 
cycles, the counter is used to remember the next hash 
key or address in Bloom filter memory at the next cycle. 
We chose to create a distinct counter module because it 
is used by the Memory Access Controller and Hash 
Unit, although never simultaneously. By sharing the 
counter, we reduce power consumption by eliminating 
counting-related memory by half. 

F. Bloom Filter Memory 
The Bloom filter bit array is stored in four 2K x 16-

bit modules. The bit array is stored sequentially by 
address, so that bits are stored in the following order: 
Module1[0], Module2[0], Module3[0], Module4[0], 
Module1[1], and so on. We chose a four-module 
configuration to provide access to all four memory 
modules simultaneously, boosting performance by up to 
4x. Only one memory access is possible per cycle, so 
increasing the amount of memory available at a given 
cycle can greatly improve performance. We also 
decided to use four modules with a 16-bit data bus 
rather than one module with a 64-bit data bus because 
some Bloom filter operations only use one block per 
cycle. In this case, the unused three blocks can be 
disabled to reduce dynamic power consumption. We 
decided not to support an even larger data bus because 
significant additional logic would be required and wider 
bus lengths would rarely be fully utilized. 

G. Memory Data Controller 
The Memory Data Controller manages data stored 

in the Bloom filter memory. The accelerator supports 
several Bloom filter operations, each writing to memory 
in a distinct style. Insertions and queries only modify 
one bit at a time, while other operations may modify 
one block or four blocks per cycle. The Memory Data 
Controller is responsible for ensuring each operation 
can write as many or as few bits as is required. 

The Memory Data Controller also counts the 
number of 1s inserted into the Bloom Filter at every 
cycle. We use this counter during compression 
operations to eliminate the need for an additional full 
memory iteration as described in Section III.B.I. As 
previously noted, memory access can be a bottleneck, 
so this optimization is critical for performance. 

H. Memory Address Controller 
The Memory Address Controller coordinates with 

other blocks to correctly set the addresses of each of the 
four Bloom filter blocks. Although item insertion and 
query operations randomly jump from bit to bit in 
memory, some operations may sequentially read one 
module at a time, and others read sequentially from all 
blocks simultaneously. During sequential operations, 
the Memory Address Controller remembers where 
processing ended in the last cycle so that the operation 
can be easily resumed. 

 
 

Figure 7: Bloom filter hardware accelerator 
hardware flow: arrows indicate the direction of 

information, shaded blocks indicate modules 
controlled by the Instruction Decoder. 

I. Decompressor 
The Decompressor reads 16-bit Golomb-Rice 

encoded Bloom filter blocks from the data bus and 
unpacks up to 64 bits of uncompressed Bloom filter. 
The Decompressor guarantees the entire compressed 
block will be processed, or 64 bits of uncompressed 
Bloom filter will be unpacked. These limits are solely 
due to the 16-bit data bus and 64-bits of Bloom filter 
memory accessible during a given cycle. Although these 
limits require significant additional logic, we decided to 
support this higher performance design to avoid 
elevated computation times when processing Bloom 
filters containing many elements. 

The Decompressor is composed of 16 serially-
connected bit decompressors. This design allows each 
compressed bit to be decompressed serially, as 
described in the implementation portion of Section 
III.C.2. Although each bit could be decompressed in 
parallel and reassembled, the serial design allows bit 
compressors to be disabled when the uncompressed 
stream is full, thus reducing dynamic power. A dynamic 
style would increase the speed of decompression, but is 
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unnecessary due to the slow 100 KHz clock frequency 
used by the Hempstead processor. 

J. Compressor 
The Compressor reads 64 bits of uncompressed 

data from the Bloom filter bit array, producing up to 16 
bits of compressed data per cycle. These bit limitations 
are due to memory access and data bus limitations, 
respectively. As a result, compressed Bloom filters can 
be produced 4x faster than uncompressed Bloom filters. 
As noted in Section V.I, supporting these guarantees 
requires additional logic, but gains in performance make 
this addition worthwhile. 

The Compressor design, is composed of 64 serially 
connected single-bit compressors. Each single-bit 
compressor performs the implementation discussed in 
Section III.C.1, adding a single bit to the compressed bit 
stream as needed. Although the compressors could 
execute in parallel and reassemble the compressed bit 
stream, serial execution allows later bit compressors to 
be disabled if no room is available in the compressed bit 
stream. Due to the slow operating frequency, parallel 
processing is not required. 

VI. CONCLUSION 
In this paper we have proposed an ASIP solution 

for a low energy and performance efficient wireless 
sensor networks. Proposed ASIP approach is validated 
for three versatile standard processors and results are 
encouraging. Since proposed approach uses scheduler 
based approach for performance estimation, it is 
significantly better than traditional time consuming 
simulator based approaches. In addition to that our 
approach is able to handle larger design space compared 
to simulator based approaches. We plan to implement at 
prototype level for an efficient wireless sensor network 
in future.  
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