

Development of Standard Cooking Fires for Evaluation of Range Top Fire Prevention Technologies

Dr. Daniel T. Gottuk

SUPDET 2013 February 27, 2013

Range Top Cooking Fires

A leading cause of U.S. fire loss

- 58% of all reported home cooking fires (91,000 fires per year);
- 87% of home cooking fire deaths (331 annual deaths); and,
- 76% of home cooking fire injuries (3,730 civilian injuries).
- Unattended equipment a factor in 1/3 of all home cooking fires.
- Attempts to fight fires a factor in 3/5 of injuries.
- Automatic prevention of range top fires is key.

Sponsors and Participants

- National Fire Protection Research Foundation
- National Institute of Standards and Technology
- Consumer Product Safety Commission
- State Farm Insurance
- Association of Home Appliance Manufacturers
- Underwriters Laboratory

Objectives

- Develop standard fire tests to evaluate performance of prevention technologies
 - Representative of cooking
 - Reproducible flaming ignition
 - Detectable pre-ignition parameters
- Develop criteria for evaluation of prevention technologies

<u>Scope</u>

- Develop test for evaluation of *PREVENTION* technologies only
 - No warning or suppression devices
 - Automatically prevent flaming ignition
- Ignition scenario
 - Combustible cooking materials in pan
 - No spills, adjacent combustibles, etc.
- Electric open coil range tops only

Functional Premise

- Prior to flaming ignition, detectable indicators can be measured by sensors
 - Pan/Burner/Food temperatures
 - Smoke and gas emissions
- System automatically controls range
 - Prevent ignition
 - Minimal impact on cooking operations

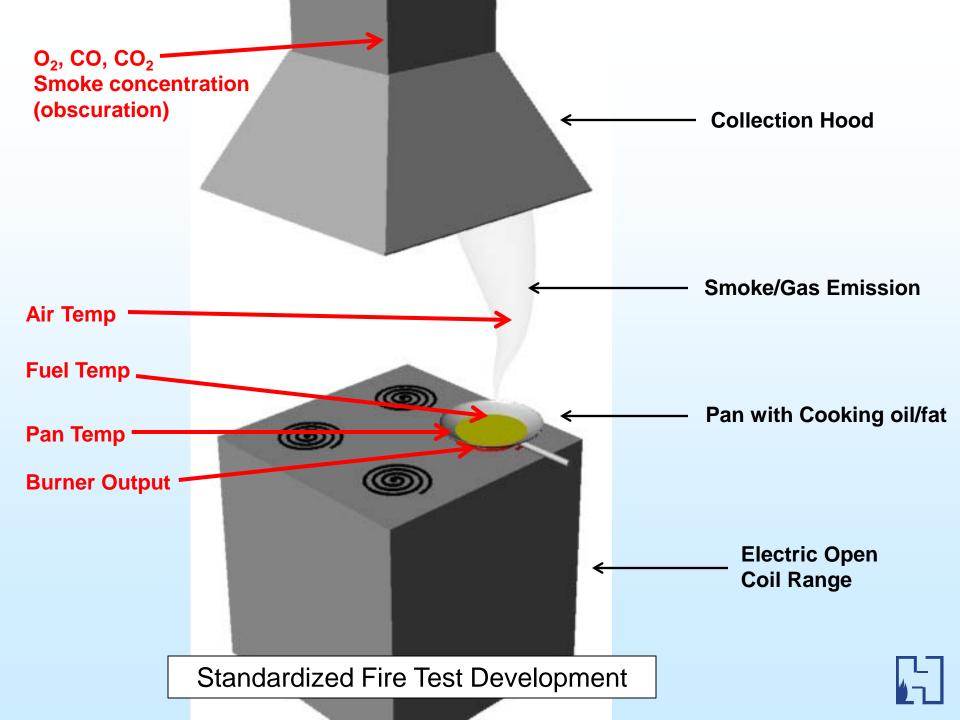
Fire Test Development

Representative Cooking Scenarios

- Only combustible fats and oils
- Soybean (vegetable), corn, canola, and peanut oils
- Beef tallow and pork lard

Pans

- Aluminum
- Varying thicknesses and diameters


Ranges

- Electric coil
- Varying power outputs and surface areas

Fire Test Development

- Characterize Pre-ignition Parameters
 - Surface/fuel/air temperatures
 - Smoke
 - O_2 , CO, CO₂ gas emissions
- Standardized test parameters
 - Establish a valid test
 - Assess reproducibility
 - Independent of mitigation system

Fire Test - Ranges

Two commercially available ranges

2600 W Max Power Output 6 coil burner surface

2100 W Max Power Output 4 coil burner surface

Fire Test - Pans

- Aluminum Pans
 - ♦ 70% of consumer products
 - Single material construction
 - No coatings, claddings
 - Repeatable and reproducible
 - Highest heat transfer Ignition potential
- Investigated variables include:
 - Pan thicknesses
 - 5–10 gauge
 - Impact heat transfer
 - Ignition times/occurrence
 - Pan diameter
 - 7–14 inches
 - Ratio to burner diameter

Fire Test – Combustible Fats and Oils

- Oils selected based on total consumption and use for frying
 - Soybean oil (vegetable oil)
 - Canola oil
 - Corn oil
 - Peanut oil
- Animal fats
 - Beef tallow
 - Pork lard
 - Not commonly used for frying, but released by cooking solid foods

Fire Test – Combustible Fats and Oils

- Fats and oils purchased through commercial grade producer
 - High variability in consumer grade oils
 - Composition
 - Crop quality/time of year
 - Brand/manufacturer
- Characterized by Free Fatty Acid (FFA) content
 - Inversely proportional to auto-ignition temperature
 - Laboratory measurement of FFA
 - Characterize fuels for reproducing standardized testing

Fire Test – Additional Variables

- Used oil ignition
 - Reduced auto-ignition temperature
 - May be most hazardous scenario for evaluation of prevention devices
- Warped pan application
 - Flatness of pan bottom varied
 - Potential impact on detection device performance (contact sensor)
 - Potential impact on heating profile of test fuel (impacts valid test determination)

Fire Test Evaluation Criteria

- Determine fuels/pan/range settings that produce consistent flaming ignition and detectable parameters
 - Must ignite without prevention system
 - Lowest ignition temperature
 - Both slow and fast heating rates
- Measured pre-ignition parameters
 - Pan/fuel/air temperatures
 - Smoke and gas emissions
 - Reproducible curves for standard testing

Prevention Technology – Performance Criteria

Prevent Flaming Ignition

Absolute minimum performance

Temperature based criteria

- Limit fuel temperature below ignition with safety factor applied
- Use fuel temperature regardless of detection principle
- Minimum activation temperature indicator of potential cooking performance effect

Project Outcomes

- A well characterized and standardized test (or set of tests) to be used for evaluation of open electric coil range top fire prevention devices
- A set of criteria for comparative evaluation of prevention devices

Questions?

