

A Critical Review on the Suppression Mechanisms of Total-flooding Agents

Tingguang Ma, Ph.D Qingsheng Wang , Ph.D Michael D. Larrañaga, Ph.D

Fire Protection & Safety Technology Oklahoma State University Stillwater, OK 74078

Outline

- A thermal explanation of flammability diagram
- Extrapolations from ignition to extinction
- Screening fuel suppressibility using flammability limits
- Ranking agent suppression effectiveness using CB values
- The thermal view on the synergistic effect

The simplest fire suppression theory

• Fire triangle

Overview of suppression mechanisms

Okelahoma State University

- Major mechanisms
 - Oxygen depletion
 - Heat absorption (specific heat)
 - Fuel removal
 - Chemical
 Inhibition/Synergistic
 effects
- Other effects
 - Radiative heat loss
 - Flow stretching
 - Wall-cooling

A universal theory is impossible

- Heat and mass transfer → Spalding's B-number theory (Rasbash's fire point theory) + droplet dynamics
- Fluid mechanics & chemistry → Damkoehler number theory
- Combustion/reaction → chemical equilibrium (Semenov theory)

Basic assumptions

Fire Protection & Safety Technology Okelahoma State University

- The thermal process governing ignition is similar to the thermal process governing extinction.
- The major thermal mechanisms are
 - Quenching by mass
 - Flame temperature change
 - Lump-sum heat loss term (including velocity effect)

A closer look at flammability diagram of propane

Fire Protection & Safety Technology Oklahoma State University

 $C_a H_b O_c + C_o \cdot (O_2 + 3.773 N_2) + C_d \cdot D \rightarrow a \cdot CO_2 + 0.5b \cdot H_2 O + 3.773a \cdot N_2 + C_d \cdot D$

Cupburner test

Fire Protection & Safety Technology Okelahoma State University

- Inerting effect
- Reacting effect
- Wall Quenching Cooling effect
- Temperature effect
- Velocity effect

From ignition to inertion

Fire Protection & Safety Technolog Okelahoma State University

Step 1:
$$X_{i,fuel} = LFL$$

Step 2: $v_{i,air} = \frac{1 - C_{st} \cdot X_{i,fuel}}{X_{i,fuel}}$
Step 3: $v_{i,agent} = \frac{V_{i,air}}{\alpha \cdot \beta}$ $\alpha_i = \frac{(H_{AFT}^0 - H_{298.15}^0)_i}{(H_{AFT}^0 - H_{298.15}^0)_{air}}$ $\beta_i = \frac{(T_{AFT})_{extinction}}{(T_{AFT})_{ignition}}$
Step 4: $X_{i,agent} = \frac{V_{i,agent}}{1 + V_{air} + V_{i,agent}}$

MIC prediction w/o FT corrections

- Fire Protection & Safety Technology Okelahoma State University
- without temperature correction ($\beta = 1$)
- with temperature correction ($\beta = 1.112$)

Cupburner test results 🐲

Fire Protection & Safety Technology Oklahoma State University

	Argon	Argonite	Inergen	Nitrogen	CO2
Quenching factor	0.632	0.812	0.898	0.992	1.615
Loss factor	1.282	1.282	1.282	1.282	1.282

LOC predictions under N₂ Inerting

Fire Protection & Safety Technology Okelahoma State University

• LOC estimation: $LOC = (1 - X_s - X_f) \cdot 0.209$

LOC predictions under CO₂ inerting

ire Protection & Safety Technology Okelahoma State University

Screening of fuels by suppressibility

Fire Protection & Safety Technology Oklahoma State University

14

MEC vs. Fuel suppression index

Fire Protection & Safety Technolog Oklahoma State University

Screening of agents by effectiveness

Fire Protection & Safety Technology Okelahoma State University

Role of Halons

Synergistic Index

Fire Protection & Safety Technology Okelahoma State University

Lott, J.L., Christian, S.D., Sliepcevich, C.M., Tucker, E.E., Synergism between Chemical and physical fire-suppressant agents, Fire Technology, Vol 32, No. 3, 1996 18

Fig. 2. Concentrations of He, CO₂, and CF₃Br required to extinguish an *n*-hexane flame at various "free oxygen concentrations" (Eq. 8).

FAA suppression experiments

Okelahoma State University

Combination of Halon 1301 & N2 During Aerosol Can Simulation Explosion

Conclusions

- Flame extinction is a thermal behavior governed by energy balance.
- Without the synergistic/catalytic effects, the inerting concentrations of a thermal agent are predictable based on the flammability of the fuel.
- Most agents work by mass, while the flame temperature is a good indicator of synergistic effects.
- The thermal view on suppression is not conflicting with the traditional chemical view. The advantage is a simple tool to manipulate binary agents.