# Analysis of Suppressant-Enhanced Overpressure in the FAA Aerosol Can Simulator

SUPDET 2012 March 7 – 8, 2012 Phoenix, AZ

Greg Linteris, *NIST Fire Research*Don Burgess, Jeff Manion, *NIST Chemical Kinetics Vish Katta, ISI Fumi Takahashi, Case Western Reserve Univ.*Oliver Meier, *The Boeing Company* 







National Institute of Standards and Technology Building and Fire Research Laboratory



## Problem: want to eliminate Halon 1301 from use in aircraft cargo bays

## 1. Halon 1301 ( $CF_3Br$ ) => high ODP, high GWP.

|                           | Compound                                                                              | Atmospheric<br>Lifetime (yrs) | ODP | <b>GWP</b> <sub>100</sub> |
|---------------------------|---------------------------------------------------------------------------------------|-------------------------------|-----|---------------------------|
| FC F                      | Halon 1301<br>(CF <sub>3</sub> Br)                                                    | 65                            | 12  | 6,900                     |
| H                         | HFC-125<br>(CF <sub>3</sub> CF <sub>2</sub> H)                                        | 29                            | 0   | 3,400                     |
| F F F                     | 2-BTP<br>(CH <sub>2</sub> CBrCF <sub>3</sub> )                                        | 0.008                         | 0   | N/A                       |
| $H_2C \longrightarrow Br$ | FK-5-1-12<br>(CF <sub>3</sub> CF <sub>2</sub> C(O)CF(CF <sub>3</sub> ) <sub>2</sub> ) | 0.014                         | 0   | 1                         |
| O                         | E                                                                                     |                               |     |                           |

$$F_3C$$
 $F$ 
 $CF_3$ 
 $F$ 
 $CF_3$ 

#### Goals

Understand the overpressure phenomena in the FAA Aerosol Can Test

1. Why is the overpressure occurring with the added suppressants?

2. What can be done about it?



**FAA Aerosol Can Test Chamber** 

#### Other Applications

#### 1. Flammable refrigerants

- a.) new, low-ODP, low-GWP, working fluids are more flammable than the fire suppressants—which themselves burn under some conditions,
- b.) refrigerants may be mixed with more flammable materials (natural gas, hydrocarbons, oils, etc.).

#### 2. Clean agent suppression of electrical fires.

a.) added energy from an electrical source make clean agents less effective. The reasons are the subject of investigation.

#### Approach

#### Physics in FAA test is too complicated to examine with detailed kinetics, so

- 1. <u>simplify</u>, use flame descriptions which will be accurate in some parts of the test
- 2.  $\eta$ ,  $X_{inh}$



#### **Progress**

- 1. Review of previous work
- 2. Thermodynamic Equilibrium Calculations (HFC-125, CF<sub>3</sub>Br, 2-BTP)
- 3. Perfectly-Stirred Reactor (PSR) Calculations (HFC-125, CF<sub>3</sub>Br)
- 4. Novec Mechanism and Simulations
- 5. 2-BTP Mechanism (end)
- 6. Premixed Flame Calculations for HFC-125 (PREMIX)
- 7. Homogeneous Auto-Ignition (PFR) Calculations
- 8. Combustion Bomb Experiments
- 9. Comparison of Flammability limits and Bomb Results

- Last presentation
- This presentation

Background: Previous findings

## ~ Of the 65 relevant papers collected and assimilated, these are highlights (in which enhanced combustion has been discussed):

| Researchers                  | <u>Fuel</u>       | Agents                        | Experiment                           | Phenomena                                    | Explanation                   |            |        |
|------------------------------|-------------------|-------------------------------|--------------------------------------|----------------------------------------------|-------------------------------|------------|--------|
| Grosshandler and<br>Gmurczyk | Propane, ethylene | CF3I, CF3Br, HFCs             | Detonation -<br>Deflagratoin<br>Tube | Higher Ma,<br>flame speed,<br>pressure ratio | None                          |            |        |
| Shebeko et al.               | methane, hydrogen | C2HF5, C4F10                  | Deflagration                         | Higer pressure rise and dP/dt                | Added heat release from agent |            |        |
| Moriwaki et al.              | methane, ethane   | CH3Cl, CH3l, CH3, Br          | Shock tube                           | Shorter ignition dela                        | None                          |            |        |
| Ikeda and Mackie             | ethane            | C3HF7                         | Shock tube                           | Shorter ignition dela                        | None                          |            |        |
| Mawhinney et al.             | heptane           | water mist                    | Heptane pool fi                      | Higher heat release                          | Enhanced flu                  | id-dynamic | mixing |
| Hamins et al                 | hydrocarbons      | HFCs, water mist, N2, powders | Full-scale tests                     | Higher pressure, visual flames               | Enhanced flu                  | id-dynamic | mixing |
| Holmstedt et al.             | propane           | C3HF7, C2H2F4, CF3Br,         | Diffusion flame                      | Higher heat release                          | None                          |            |        |
| Katta et al.                 | methane           | CF3H                          | Cup burner                           | Higher heat release                          | Agent reaction                | on         |        |
| Ural                         | none              | C3HF7, C2H2F4, CHCIF2         | Flammability tube/chamber            | Visual observation                           | Heat loss/<br>gain            |            |        |

Background: Flame Extinction

## Flames go out when: $\tau_{chem} > \tau_{flow}$

A measure of the overall chemical reaction rate can be obtained with:

Perfectly-Stirred Reactor (PSR) Calculations

Diffusion Flame Calculations (Counterflow)

Premixed Flame Calculations

=> Examine behavior of R-125, 2-BTP, Novec 1230 and CF<sub>3</sub>Br

Background: Flame Extinction

⇒ Why is it surprising that R-125 enhanced combustion in the ACT at 11.3 % ?

#### **Experimental R-125 Extinction Results:**

- 1. Methane air cup burner: ≈10.4 %
- 2. 0 strain, heptane air counterflow diffusion flame: ≈9 %
- 3. 0 strain, propane air counterflow diffusion flame: ≈9.5 %



- $T_{aff}$  is high for all  $\eta$ .
- Change in behavior at [X]/[H]=1 (about 7.5 % HFC-125, red curve above).
- With large amounts of agent, a wide range of  $\boldsymbol{\eta}$  gives nearly equivalent  $T_{\text{aft}}.$
- As agent is added, more and more chamber volume is necessary to achieve stoichiometric combustion.



- $T_{aff}$  is high for all  $\eta$ .
- Change in behavior at [X]/[H]=1 (about 2.7 % Novec 1230, purple curve above)
- With large amounts of agent, a wide range of  $\eta$  gives nearly equivalent  $T_{aff}$ .
- As agent is added, more and more chamber volume is necessary to achieve stoichiometric combustion.



- $T_{aff}$  is high for all  $\eta$ .
- most of the plot is below [X]/[H]=1 (about 6 % 2-BTP), so can't see change at [X]/[H]=1 .
- With large amounts of agent, a wide range of  $\boldsymbol{\eta}$  gives equivalent  $T_{\text{aft}}.$
- As agent is added, more and more chamber volume is necessary to achieve stoichiometric reaction.
- Where flame might extinguish( $X_i$ =6 %), all the chamber volume is involved in combustion (i.e.,  $\eta$ =1).



- $T_{\text{aft}}$  is high for all  $\eta$ ., but decreases somewhat as agent is added.
- most of the plot is below [X]/[H]=1 (about 11 % CF<sub>3</sub>Br), so can't see change at [X]/[H]=1.
- The amount of chamber volume for peak T<sub>aft</sub> does not change with X<sub>i</sub>.

-Why? => 
$$CF_3Br + 2H_2O = 3HF + HBr + CO_2$$
,

- -i.e., there's always enough H and O in the system to oxidize the CF<sub>3</sub>Br without more air!
- The  $T_{\text{aft}}$  is very sensitive to  $\eta.$



## Thermodynamic Equilibrium Calculations

What do they tell us about the <u>maximum</u> pressure rise?



- The higher  $\eta$ , the greater  $\Delta P$  (more reactants, more heat release, more expansion of hot products—since the oxidizer also includes a "fuel" species).
- The actual fraction of chamber volume (oxidizer) which can react has a large influence on  $\Delta P$ .
- Equilibrium thermodynamics predicts the final pressure quite well.
- Why does the agent not reduce the extent of reaction?



- The higher  $\eta$ , the greater  $\Delta P$  (more reactants, more heat release, more expansion of hot products—since the oxidizer also includes a "fuel" species).
- The actual fraction of chamber volume (oxidizer) which can react has a large influence on  $\Delta P$ .
- Equilibrium thermodynamics predicts the final pressure quite well.
- Why does the agent not reduce the extent of reaction?



- Same basic behavior as R-125, but greater  $\Delta P$ .
- The actual fraction of chamber volume (oxidizer) which can react has a large influence on  $\Delta P$ .
- Equilibrium thermodynamics predicts the final pressure quite well.
- Why does the agent not reduce the extent of reaction?



- Higher  $\eta$  has very little effect on  $\Delta P$ .
- At  $\eta$  of peak  $T_{aff}$ , or  $CO_2$ , the  $\Delta P$  is constant! => can't use pressure rise to determine  $\eta$ .
- Actual  $\Delta P$  is always less than predicted. This is due to a chemical kinetic effect, but is it from Br or from reduced temperature (i.e., from mixing-induced dilution)?
- => MUST LOOK AT THE KINETICS TO FIND OUT!



- As  $X_i$  of agent goes up,  $\Delta P$  can increase for R-125 and 2-BTP, but not for 1301.
- But why don't all the agents lower the reaction rate?
- => MUST LOOK AT THE KINETICS TO FIND OUT WHY!

| Sub Mechanism                                   | <u>Species</u> | <u>Reactio</u> | <u>ons</u>                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------|----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C <sub>4</sub> hydrocarbon mechanism from Wang  | 111            | 784            |                                                                                                                                                                                                                                                                                                                                                               |
| Ethanol mechanism of Dryer                      | 5              | 36             |                                                                                                                                                                                                                                                                                                                                                               |
| HFC mechanism from NIST                         | 51             | 600            |                                                                                                                                                                                                                                                                                                                                                               |
| CF <sub>3</sub> Br mechanism of Babushok (NIST) | 10             | 122            |                                                                                                                                                                                                                                                                                                                                                               |
|                                                 |                |                |                                                                                                                                                                                                                                                                                                                                                               |
|                                                 | 177            | 1494           |                                                                                                                                                                                                                                                                                                                                                               |
| Novec 1230 mechanism (Babushok)                 | 3              | 14             | Reaction  C2F5COC3F7 => C3F7+C2F5CO  C2F5CO = CF3-CF2+CO  C2F5COC3F7 + H = C2F5CHO + C3F7  C2F5CHO + H = C2F5CO + H2  C2F5CHO = CF3-CF2 + HCO  C2F5COC3F7+OH = C2F5CO+C3F7OH  C2F5COC3F7+O = C2F5CO+C3F7O  CF3+C2F5CHO = CHF3+C2F5CO  CH3+C2F5CHO = CH4+C2F5CO  CF3COF+CF3=CF3CO+CF4  CF3COF+CF3-CF2=CF3CO+CF3-CF3  CF3-CF3+CF3-CF4+CF3-CF2  CF3CO+F=CF3+CF:O |

#### 2-BTP Mechanism Development

Jeff Manion, Don Burgess, Iftikhar A. Awan

Combustion and Kinetics Group
Chemical and Biochemical Reference Data Division
Material Measurement Laboratory
NIST

(in progress)

#### 2-BTP Simulant

- Can't do calculations yet for 2-BTP because there's no mechanism for its initial decomposition.
- Once we have its decomposition to HFC and HBrC fragments, it will feed into the overall NIST HFC mechanism.
- So, we must first estimate/measure/calculate its decomposition => CSTL.

## Kinetic Mechanism Development

CH4-air premixed flame, 0, 4, and 6 % R-125

Currently developing these charts for HFC-125 with propane and ACT.



Background: Why PSR?

#### Perfectly-Stirred Reactor (PSR) Calculations

Overall reaction rate in a PSR has been correlated with

- flame speed [1],
- extinction of cup-burner flames [2].

The Aerosol Can test is turbulent, 2-phase, partially premixed, so a PSR is a reasonable approximation.

[1] R.B.Barat, Chemical Engineering Science 56 (2001) 2761-2766.

[2] S.Liu, M.C.Soteriou, M.B.Colket, J.A.Senecal, Fire Safety Journal 43 (2008) 589-597.

## Perfectly-Stirred Reactor (PSR) Calculations

- Used to estimate the overall chemical reaction rate.
- Performed for R-125, Novec, and 1301.



## **Assumptions:**

- specified premixed inlet conditions.
- adiabatic (no heat losses), no species reaction at the walls.
- perfectly stirred (outlet conditions are the same as the reactor conditions).
- steady-state operation.



- 1. We want a measure of  $\tau_{\text{chem}}$
- 2. At the blow-out condition,  $\tau_{\text{chem}} = \tau_{\text{flow}}$
- 3. To find the blow-out condition, calculate  $T_{psr}$  at decreasing values of the residence time,  $\tau_{flow}$ , until the time is too short for reaction to occur ( $T_{psr}$  drops to inlet temperature at blow-out).



- Adding R-125 lowers  $\omega_{\text{chem}}$  for rich mixtures (low  $\eta$ ), but raises (then lowers) it for lean mixtures (high  $\eta$ ).
- $-\eta$  has a big effect on overall chemical rate at low  $X_i$ , less effect at high  $X_i$  (follows temperature results).
- i.e., for higher  $X_{i}$ , these curves flatten (  $\omega_{chem}$  is insensitive to  $\eta$  for  $\eta$  > 0.4 ).



- Adding R-125 lowers  $\omega_{\text{chem}}$  for rich mixtures (low  $\eta$ ), but raises (then lowers) it for lean mixtures (high  $\eta$ ).
- $-\eta$  has a big effect on overall chemical rate at low  $X_i$ , less effect at high  $X_i$  (follows temperature results).
- i.e., for higher X<sub>i</sub>, these curves flatten (  $\omega_{\text{chem}}$  is insensitive to  $\eta$  for  $\eta$  > 0.4 ).



- Adding 1301  $\underline{\text{always}}$  lowers  $\omega_{\text{chem}}$  (for all  $\eta)$
- $\omega_{\text{chem}}$  falls off very steeply with  $\eta$  (for all  $X_{\text{inh}}\!;$  follows temperature results).



- For R-125, we can use pressure rise data with equilibrium calculations to estimate  $\eta$  (solid dots).
- For 1301, can't use pressure rise, so we don't really know  $\eta$ . =>BUT for 1301  $\omega_{chem}$  is very sensitive to  $\eta$ .



- 1. More agent generally reduces reaction rate, for all assumed values of  $\eta$ .
- For the case η=0.47, there is little change in reaction rate for the curve for HFC-125 up to 30 %.
- 3. For HFC-125 (blue curves), the reduction in reaction rate with addition of agent is similar regardless of the value of h; i.e., for  $\eta$ =0.33,  $\eta$ =0.47, or  $\eta$ ( $T_{aft|peak}$ ).
- 4. The effectiveness of the agent  $CF_3Br$  is very sensitive to the value of  $\eta$ .
- For CF<sub>3</sub>Br to be more effective than HFC-125, η must be greater than about 0.4.

#### Equilibrium and PSR Calculations Indicate:

- In the FAA ACT with R-125, Novec 1230, or 2-BTP, to achieve the observed pressure rise, a large fraction of the chamber volume (with the agent) must be involved in the combustion.
- 2. Thus, the agents are not inert, but rather, participate in exothermic reactions.
- 3. CF<sub>3</sub>Br will not cause a pressure rise in hydrocarbon-air systems (due to H<sub>2</sub>O + CF<sub>3</sub>Br stoichiometry).
- 4. The amount of chamber volume involved in the combustion,  $\eta$ , appears to be a key parameter controlling the kinetic behavior (i.e., the kinetic inhibition by CF<sub>3</sub>Br is very sensitive to  $\eta$ , but R-125 is not).

## Key Questions Still to Answer

- Does Br help slow the kinetics in the aerosol can test with 2-BTP?
- Is the amount of involved oxidizer the key feature?
- Why are the kinetics with R-125 not slower (i.e., slow enough for extinguishment)?
- Does the compression heating enhancement of the agent flammability and stop the chemical inhibition?
- Is the inerting concentration required for suppression?
- Is there any way around the undesired results?

## Acknowledgements

Wing Tsang, Don Burgess, NIST

John Reinhardt, Dave Blake FAA Technical Center

Med Colket, Ken Smith, UTRC

The work was supported by The Boeing Company.