

Droplet Characterization Using Direct Imaging Techniques

March 8, 2012

Suppression Detection Conference

Melissa Avila, Tyco Fire Protection Products

Co-authors and acknowledgements

- •Zachary Magnone, Tyco Fire Protection Products
- •Cooperation with Shanghai Jiao Tong University (SJTU) and Worcester Polytechnic Institute (WPI)
 - Hao "Jonathan" Bohan, SJTU, mechanical engineering
 - Chu "Stella" Yueshan, SJTU, mechanical engineering
 - Nicholas Fast, WPI, mechanical engineering
 - Rachel Winsten, WPI, civil engineering
 - Professor Nick Dembsey, WPI, fire protection engineering
- •Chad Goyette, Tyco Fire Protection Products
- Dr. Patricia Beaulieu

Background

Sprinkler Design

- Can streamline development with more in-depth knowledge of sprays

Approval Agencies

- Similar testing is starting to be used for sprinkler approvals

•Work by others in the field

- Marshall, Sheppard, Drysdale, Brenton, Grant, etc.

• Fire Modeling

- Fire models are only as accurate as the information you provide them
- Characterization means more precise models in FDS

Background – Research Need

Need critical spray characteristics (relate to CFD inputs)

- -Spray geometry: 3D spatial distribution of water droplets
- -Energy transfer: droplet size, velocity, temperature, total flow rate, etc.

Our research questions

• How is sprinkler spray droplet size affected by:

- K-factor?
- Pressure?
- Spray angle?
- Measurement location in spray?

•What implications do our results have on how specific spray patterns are:

- Developed?
- Studied?
- Simulated?

Setup – Imaging System

Setup – Translation Stage, Nozzle Rotation

- Nozzle mounted in automatic rotational indexer
- Can set rotation angle within 1° accuracy

- Camera assembly mounted on 3-axis linear translation stage
- Can set measurement coordinate to 1 mm accuracy within 1 m³ space

Raw shadow image

- Backlight causes
 bright background
- Droplets show up as dark shadows

tuco

Fire Protection Products

8

•Step 1: Apply smoothing filter

- Only inconsistencies in background brightness remain
- "Small" in-focus objects washed out

•Step 2: Even out image intensity

- Subtract smooth image from original to normalize
 - \Box Brightest = 100%
 - □ Darkest = 0%
- Droplets now show up as bright spots

•Step 3: Find possible droplets

- Scan for areas
 brighter than a
 certain "global"
 threshold
 - e.g. brighter than
 40% total intensity
 range

•Step 4: Filter out of focus droplets, measure size

- Review droplets using brightness thresholds (low 30%; high 70%)
- Compare relative areas
 - low area < 200% high area = in focus
- Avg intensity = diameter

Testing – nozzle parameters

- Tyco D3 nozzle
- 132 tests in total
 - Every sensible combination of given parameters tested
 - Some repeated multiple times

•K-factor

- 1.2K (K17.3)
- 3.0K (K43.2)

Spray angle

- 65°
- 180°

Testing – location parameters

Nozzle rotation

- -0° (tine)
- -45° (slot)
- 90° (frame arms)
- Location in spray
 - Under
 - Middle
 - Edge

Distance from nozzle

- 1 ft (0.3m)
- 3 ft (0.9m)

Analysis – statistics definition

•D10: Mean diameter

- D32: Sauter Mean Diameter
 - Droplet with same surface area to volume ratio as total distribution
 - Useful when interested in evaporative cooling processes
- $D_v XX$ (e.g. $D_v 10$, $\underline{D_v 50}$, $D_v 90$): Volumetric Mean Diameter
 - The diameter below which the distribution contains XX percentage of the total flow
 - $D_V 50$ commonly used in CFD

Volumetric Mean Diameter

Fire Protection Products

Analysis – D_vXX sensitivity

•The cumulative volume distribution is very sensitive to droplet size.

- -Droplet volume ~ diameter³
- –One big droplet in image set can greatly skew D_VXX results

Analysis - statistical confidence

- Sample size is related to several parameters
 - -Number of images
 - Density of measurable droplets per image
- In areas where the spray is disperse, more images are needed for proper statistical confidence

Figure Reference: Grant, G., Brenton, J., & Drysdale, D. (2000). Fire suppression by water sprays. *Progress in Energy and Combustion Science*, 26, pp. 79-130.

Results – Tine (3.0K, 65° nozzle)

1 ft (30.5 cm) radius

Results – Tine (3.0K, 65° nozzle)

1 ft (30.5 cm) radius

Results – Slot (3.0K, 65° nozzle)

1 ft (30.5 cm) radius

Results – Slot (3.0K, 65° nozzle)

1 ft (30.5 cm) radius

Results – orifice and spray angle (20 psi, tine, 1 ft)

K = 1.2 gpm/psi^{0.5}

K = 3.0 gpm/psi^{0.5}

Results – orifice and spray angle (20 psi, tine, 1 ft)

K = 1.2 gpm/psi^{0.5}

 $K = 3.0 \text{ gpm/psi}^{0.5}$

Conclusions

 Interactions with the frame arms cause relatively unpredictable results

- -Frame arm shadow at 90° spray angle
- -Directly underneath the nozzle

•Big drops tend to maintain trajectory, small droplets fill in gaps

-Leads to full conical spray pattern of D3

•An increase in orifice size causes an increase in droplet size

- -Exception: frame shadow region
- -On the "edge" of the pattern (subjective definition)

Conclusions

•A wider spray angle produces smaller droplets

- -Thinner water sheet or more turbulence in spray? Or combination?
- •There is a significant reduction in droplet size with an increase in pressure
 - -Most significant reduction on tines
- •Trends tend to match what is generally expected for variations in the chosen parameters
- •Research is first step in continuation of spray characterization
 - -Leads to streamlined development and better modeling capabilities

Thank You

