SUPDET 2012

Quantifying Sprays from Fire Hose Streams

Yinghui Zheng March 2012

2012/2/23

2012/2/23

Background

-Long History -Wide Application -Building fires -Wild fires -Oil refinery protection -Ship/Offshore drilling fires -Nozzle Type -Smoothbore nozzle -Fog nozzle -Master nozzle -Code Requirement -NFPA 1964: Standard for Spray Nozzles, 2008 -Fire hose testing standard operting guideline, 2007

What

Objectives

Experiment Methods

- Flow visualization
- Shadowgraphy

Physics Based Models (PBM)

- Based on integral force balance analysis resolving streamwise evolution of the spray
- Why physics based model

Why

- PBM fast compared to CFD with large grids and associated long computational time
- PBM real time capability which would not be possible with CFD
- PBM coupling capability which could track the solid core and spray simultaneously

How

Results

6

What

Preliminary Results

- Spray Measurements
 - ¹/₂ in nozzle diameter
 - 55 GPM
 - X=0
 - X=76 cm
 - X=180 cm

What

Preliminary Results

Trajectory Calculation

Preliminary Results

- Spray Calculation
 - Drop size distribution
 - Drop velocity
 - Drop location
 - Coverage on the ground
 - Percentage delivered

How

