NRC CNRC

Institute for Research in Construction

Fire Suppression Performance of Manually Applied CAF and Other Water Based System

Andrew Kim and George Crampton

Fire Suppression Research and Applications – A Technical Working Conference (SUPDET2012)

National Research Conseil national Council Canada de recherches Canada

Outline

- Introduction
- Experimental set-up

NCCNC

- Test Results
- Discussion
- Conclusion

Introduction

Fire services currently use

- Water hose stream or
- Foam system with air-aspirated nozzle
 - poor foam quality
 - reduced discharge momentum
- Recently, several new mobile fire suppression systems
 - Compressed-air-foam (CAF) system
 - Medium Pressure Water system
 - High Pressure Water system
 - High Expansion Foam System

Mobile CAF System

- New type of fire suppression system
- Injects compressed air and foam concentrate into water stream in the mixing chamber
- Water/Foam/Air mixture flows in the pipe, producing good quality foam with high discharge momentum

Medium Pressure Water System

- Similar to current water system but discharge at higher pressure
- 550 psig (37 bar)
- Relatively new system

High Pressure Water System

- Similar to current water system but discharge at very high pressure
- 1450 psi (99 bar)
- Relatively new system

High Expansion Foam System

- Produces foam with high expansion ratio
- Expansion ratio of 250:1
- Questionable whether it can be used for manual fire suppression tactics

New Mobile System

- New type of fire suppression systems
- Some are gaining popularity among fire services
- No study done to systematically evaluate its fire suppression effectiveness
- Necessary to compare the fire suppression effectiveness of these new manual systems with traditional fire suppression system
 - fully developed compartment fires
 - fire control effectiveness
 - amount of water consumption

Objective of the Project

- Evaluate fire suppression performances of these new manual systems, and compare its performance with that of current fire suppression system
- Full-scale tests
 - fully developed compartment fires
 - suppress manually by same fire fighter
 - compare fire control effectiveness
 - amount of water consumption

Experimental Set-Up

Test compartment

- 4.3 m by 3.7 m and 2.4 m high
- 0.86 m by 2 m door opening
- a corridor (hallway) outside of the door opening
- Several ventilation openings
 - nine 0.23 m x 0.41 m openings on lower walls
 - simulated window opening of 0.41 m by 0.48 m

Fire load

- two wood cribs (48 pc of 38 x 90 x 800 mm pine studs)
- simulated wooden bench
- OSB board on the lower half of walls and floor

Test Compartment

Fire Load

Instrumentation

- Thermocouple trees
 - 24-gauge type K thermocouples
 - five T/C in each tree 0.5 m apart from ceiling
 - fire room and hallway
- Heat flux meter
 - in the fire room near the centre of the back wall
- Gas sampling
 - in the hallway
 - smoke obscuration, O₂, CO and CO₂
- Video cameras
 - two for visual records

CAF System

- NRC CAF system
- Variable foam concentrate and air input
- Variable flow rate

CAF System Nozzles

Special smooth bore nozzles

12.5 GPM nozzle

25 GPM nozzle

Medium Pressure Water System

NCCNIC

Rosenbauer truck mounted system
- 550 psi with flow rate of 43 GPM

Ultra High Pressure Water System

Trailer mounted system supplied by HMA
1450 psi with flow rate of 17.5 GPM

High Expansion Foam System

- Nozzle was Chemguard VARI-X-III with settings for low, medium and high expansions
- Coupled with Chemguard 25 GPM eductor at 2% foam concentration
- Expansion set at 250:1 with 750 CFM delivery rate

Foam Concentrate

- Hi-Combat Class A foam concentrate
 - designed for use in Class A/B foam systems

NCC C

- can also be used in CAF systems
- typically used at 0.3% 1.0%
- for CAF system, 0.1% 0.5% recommended
- For High Expansion Foam System, Hi-Ex Synthetic foam concentrate was used at 2%

Experimental Procedure

- Same procedure used to minimize variables
 - same fire load
 - same ignition method
 - same fire fighter
 - same fire development time
- Test Procedure
 - ignition of cribs (4 pans, 150 ml methyl hydrate)
 - flashover at approx. 3 min
 - 2 min beyond flashover for deep seated wood crib fire and intense fire in the compartment
 - suppression attempt by fire fighter
 - time for knock down noted (water consumption)
 - time for extinguishment of all fires in the compartment noted (water consumption)

NAC-CNAC

Fire Growth and Suppression

Ignition of wood cribs

2 min after ignition

3 min after ignition (Flashover)

4 min

5 min after ignition (Fire attack starts)

5 min 30 s

NC-CNRC

- Flow rates of 12.5 GPM (47.3 L/min) and 25 GPM (94.6 L/min) were used
- For quantitative comparison, following instrumentations were used
 - T/C tree in the test compartment and hallway
 - heat flux meter in the test room
 - smoke obscuration in the hallway
 - gas concentrations in the hallway
- Most useful data;
 - temperature in the test room
 - amount of water used for control

Summary of Results

Test #	Description	Water Flow Rate	Knock-down Time	Water Used for Knock-down	Fire ext. time	Total Water Consumption
4	CAF	25 GPM (94.6 L/min)	10 s	13.8 L	54 s	63.9 L
9	Water only	25 GPM (94.6 L/min)	24 s	39 L	144 s	66.2 L
2	Foam-solution	25 GPM (94.6 L/min)	20 s	32 L	134 s	67.3 L
7	CAF	12.5 GPM (47.3 L/min)	34 s	25 L	232 s	87.4 L
5	Water only	12.5 GPM (47.3 L/min)	74 s	60 L	300 s	128.6 L
8	Foam-solution	12.5 GPM (47.3 L/min)	58 s	46 L	162 s	93 L
10	MPW	43 GPM (162.8 L/min)	16 s	39.5 L	148 s	71.9 L
11	MPW (0.3% foam-solution)	43 GPM (162.8 L/min)	13 s	18.2 L	110 s	64.6 L
13	HPW	17.4 GPM (65.9 L/min)	18 s	20.6 L	216 s	42.4 L
14	HPW (0.3% foam-solution)	17.4 GPM (65.9 L/min)	19 s	24.6 L	246 s	41.2 L
15	High Exp. Foam	21 GPM (79.5 L/min)	110 s	147.2 L	205 s	182.4 L

- CAF is more effective in suppressing compartment fire than water or foam-solution
 - suppression time less than $\frac{1}{2}$
 - water consumption for suppression about 1/3
 - extinguishment time less than 1/2
 - water consumption for extinguishment slightly less

Figure 1 Average room temperature for 25 GPM tests (Test # 2, 9 and 12)

NC-CNRC

Figure 2 Water Consumption 25 GPM tests (Test # 2, 4 and 9)

Figure 3 Average room temperature for 12.5 GPM tests (Test # 5, 7 and 8)

Figure 4 Water Consumption 12.5 GPM tests (Test # 5, 7 and 8)

Figure 5 Total Water Consumed for 12.5 GPM tests (Test # 5, 7 and 8)

- MPW system is difficult to compare with others
 - fixed flow rate (43 GPM)
 - effectiveness similar to water hose-stream
 - when 0.3% foam concentrate was used, MPW system

performance was improved substantially

- UHP system was very effective in suppressing the compartment fire
 - knocking-down big flames quickly with small amount of water
 - UHP system with 17.4 GPM performed better than hose-stream with 12.5 and 25 GPM
 - when 0.3% foam concentrate was used, UHP system performance was the same

Figure 6 Water Consumption curve for UHP and water only tests (Test #5, 9 and 13)

- HEF system was not effective in suppressing the compartment fire
 - no discharge momentum
 - it has to be put through an opening
 - difficulty in suppressing compartment fire
 - 110 s to control the fire with 147 L of water
 - 205 s to extinguish the compartment fire

Figure 7 Water Consumption curves for UHP and CAF systems

Conclusion

- Project to evaluate several mobile systems in suppressing fully developed compartment fire
- Using foam-solution slightly more effective than using water alone
- CAF and UHP system performed better
- Used manual fire fighting, thus human factor was involved, and difficult to get the same results in repeat test
- Effectiveness of the system depends on fire fighting technique
- CAF system requires some training for it to be used effectively

NRC CNRC

Institute for Research in Construction

Bringing quality to the built environment

www.irc.nrc-cnrc.gc.ca

National Research Conseil national Council Canada de recherches Canada

