

Literature Review: Hybrid Water Mist Fire Extinguishment Systems

Michael J. Gollner

Assistant Professor, University of Maryland

Peter Raia

Undergraduate Student, University of Maryland

Project Supported By:

- Two systems have recently become commercially available
- Systems utilize inert gas and water mist (~100 micron drops) to extinguish fires

Figure 1: Two examples of hybrid water mist systems currently on the market. (left) Victaulic Vortex system discharging. (right) ANSUL Aquasonic system discharging.

- No NFPA Standard covers Hybrid Systems
- Only available guidance is FM 5580 an approval standard for hybrid systems
- NFPA Standards Council asked for a literature review
 - Should Hybrid Systems be a new standard?
 - Added to NFPA 2001?
 - Added to NFPA 750?
 - No action?

FM Approvals, FM 5580: Approval Standard for Hybrid (Water and Inert Gas) Fire Extinguishing Systems, Factory Mutual Global, 2012.

REVIEW OF WATER MIST, CLEAN AGENT & HYBRID SYSTEMS

- Introduced in the 1930's for military aviation/maritime applications
 - Highly toxic agents used
 - US Army Research introduced safer Halons
- 1989 Montreal Protocol banned Halons
 Ozone depleting gas
- 1991 NFPA 2001 was formed to cover a wide range of clean agent suppression systems

NFPA 2001 Standard on Clean Agent Extinguishing Systems, Quincy, MA: National Fire Protection Association , 2011.

- Covers the design, installation, maintenance and operation of clean agent systems
- Minimum design specifications provided for Class A, B, C fires as well as safety factors
- Primarily gas-phase extinguishment
 - Extinction mechanism: depleted oxygen levels
 - Oxygen < 15% by displacement of air

NFPA 2001 Standard on Clean Agent Extinguishing Systems, Quincy, MA: National Fire Protection Association , 2011.

- Introduced in 1940's for maritime applications
- New interest after 1989 Montreal Protocol
- Droplets < 1000 micron mean diameter
 - Droplets entrained into fire plume
 - Gas phase cooling achieved by droplet evaporation
 - Secondary effect of oxygen displacement through evaporation
 - Large droplet surface area = very effective operation

Z. Liu and A. K. Kim , "A Review of Water Mist Fire Suppression Systems- Fundamental Studies," Journal of Fire Protection Engineering, pp. 1-50, 1999.

[•] J. Mawhinney and J. Richardson , "A Review of Water Mist Fire Suppression Research and Development, 1996," Fire Technology: First Quarter , pp. 54-90, 1996

NFPA 750

- Introduced in 1996 after a strong industry demand for a standard
- Provides design objectives, fire test protocols, documentation, system acceptance criteria
- Test protocols designed around the hazard or occupancy of the structure

Figure 2: Example of Water Mist System Discharge (Marrioff HI-Fog System)

NFPA 750: STANDARD ON WATER MIST FIRE PROTECTION SYSTEMS

- NFPA 750 covers design objectives, fire test protocols, documentation, system acceptance, system maintenance and marine systems
- 5 performance objectives: fire extinguishment, fire suppression, fire control, temperature control, and exposure control
- Limitations typically due to the reactive properties of water with certain materials

NFPA 750: STANDARD ON WATER MIST FIRE PROTECTION SYSTEMS

- Combine water mist and inert gas to achieve gas-phase extinguishment
- 1996 US Navy performed combined halocarbon/mist tests aboard ships
- Very little additional data available except for new FM Approval Standard for Hybrid Water Mist Extinguishing Systems – FM 5580
- Goal of system is combined cooling/inerting extinguishment in the gas phase.

Forssell, E. W.; Scheffey, J. L.; DiNenno, P. J.; Back, G. G.; Farley, J. P.; Williams, F. W. , "False Deck Development Testing of Hybrid Nitrogen – Water Mist Fire Suppression Systems" NIST SP 984-2; NIST Special Publication 984-2; Halon Options Technical Working Conference, 14th. Proceedings. May 4-6, 2004, Albuquerque, NM, 1-13 pp, 2004.

FIRE TESTING AND FM 5580

FM Approvals Standard for Hybrid (Water and Inert Gas) Fire Extinguishing Systems

- FM performed tests to determine if Hybrid systems are unique from other listed applications
 - Performed special enclosure fire testing
 - Determined Hybrid deserves separate listing
- Oxygen concentration at extinction was determining factor
- FM 5580 provides 9 applications, each with specific test protocols
 - Approval standard only

- FM performed tests to distinguish between:
 - Twin-fluid water mist gas only atomizes
 - Inert gas systems extinguish due to inerting
 - Hybrid systems water & gas contribute
- Enclosure fire testing and numerical modeling
 - Well stirred reactor numerical model
 - Applies to total-flooding applications only
- Distinguishing factor needed to classify systems

H.-Z. Yu, "Introducing the New FM Approvals Standard Class 5580 Hybrid (Water and Inert Gas) Fire Extinguishing Systems," 9th International Water Mist Conference, 23rd & 24th September 2009, London, UK, 2009

- a 260 m³ enclosure with a 0.9 m wide by 2.2 m high door opening
 - -1 MW enclosed diesel fire (test D3.2)
 - 2 MW open diesel fire (test D3.4)
 - -1 MW enclosed heptane fire (test E3.2)
 - 2 MW open heptane fire (test E3.4).
- The fires were given an average pre-burn time of around 20 seconds

H.-Z. Yu, "Introducing the New FM Approvals Standard Class 5580 Hybrid (Water and Inert Gas) Fire Extinguishing Systems," 9th International Water Mist Conference, 23rd & 24th September 2009, London, UK, 2009

FM Fire Test Results

	Mist & Nitrogen				Hypothetical (N2 Only)		Hypothetical (Mist Only)	
Test	Reported Fire Extinction Time (s)	Predicted Fire Extinction Time (s)	Measured O ₂ Concentration at Fire Extinction	Predicted O ₂ Concentration at Fire Extinction (%)	Predicted Fire Extinction time (s)	Predicted O ₂ Concentration at fire Extinction (%)	Predicted Fire Extinction Time (s)	Predicted Concentration At Fire Extinction (%)
D3.2	125	101	No data	14.6 (dry based) 12.3 (wet based)	113	12.3 (dry based) 12.0 (wet based)	124	16.1 (dry based) 12.5 (wet based)
D3.4	65	73	No data	14.0 (dry based) 12.2 (wet based)	84	12.5 (dry based) 12.0 (wet based)	88	14.9 (dry based) 12.4 (wet based)
E3.2	173	100	14.4 (dry based)	14.6 (dry based) 12.3 (wet based)	112	12.4 (dry based) 12.0 (wet based)	122	16.2 (dry based) 12.6 (wet based)
E3.4	86	72	13.5 (dry based)	14.1 (dry based) 12.3 (wet based)	83	12.6 (dry based) 12.1 (wet based)	87	14.9 (dry based) 12.4 (wet based)

H.-Z. Yu, "Introducing the New FM Approvals Standard Class 5580 Hybrid (Water and Inert Gas) Fire Extinguishing Systems," 9th International Water Mist Conference, 23rd & 24th September 2009, London, UK, 2009

- Traditional Water Mist
 - Dry-based O_2 14.9% 16.2% at extinguishment
 - Small degree of O₂ displacement
- Hybrid Systems
 - Dry-based O₂ 12.4% 12.6%
 - Lowered O₂ and water work together
- Gaseous Systems
 - Dry-based O₂ 12.3% 12.6%
 - Low O₂ levels provide for extinguishment

H.-Z. Yu, "Introducing the New FM Approvals Standard Class 5580 Hybrid (Water and Inert Gas) Fire Extinguishing Systems," 9th International Water Mist Conference, 23rd & 24th September 2009, London, UK, 2009

- Gaseous Extinguishing System
 - Dry Based O₂ level below 12.5% for 1 & 2 MW spray fires
- Twin Fluid System
 - Dry Based O₂ level below 16% for 1 & 2 MW spray fires
- Hybrid System
 - Dry Based O₂ level between 12.5 16% for 1 & 2
 MW spray fires

H.-Z. Yu, "Introducing the New FM Approvals Standard Class 5580 Hybrid (Water and Inert Gas) Fire Extinguishing Systems," 9th International Water Mist Conference, 23rd & 24th September 2009, London, UK, 2009

- Machinery in Enclosures with Volumes not Exceeding 2825 ft³ (80 m³)
- Combustion Turbines in Enclosures with Volumes not Exceeding 2825 ft³ (80 m³)
- Protection of Machinery in Enclosures with Volumes Exceeding 9175 ft³ (260 m³)
- Combustion Turbines in Enclosures with Volumes not Exceeding 9175 ft³ (260 m³)

FM Approvals, FM 5580: Appendix B, Approval Standard for Hybrid (Water and Inert Gas) Fire Extinguishing Systems, Factory Mutual Global, 2012.

- Machinery in Enclosures with Volumes Exceeding 9175 ft³ (260 m³)
- Combustion Turbines in Enclosure with Volumes Exceeding 9175 ft³ (260 m³)
- Protection of Computer Room Raised Floors
- Future Applications

FM Approvals, FM 5580: Appendix B, Approval Standard for Hybrid (Water and Inert Gas) Fire Extinguishing Systems, Factory Mutual Global, 2012.

- Based on Extinguishment Time
 - 0-5 Minutes Minimum 10 min discharge Required
 - 5-8 Minutes Minimum 10 min discharge Required
 - Greater than 8 minutes 20% safety factor
 Required
- Approval based upon full evaluation of system

FM Approvals, FM 5580: Appendix B, Approval Standard for Hybrid (Water and Inert Gas) Fire Extinguishing Systems, Factory Mutual Global, 2012.

- Hybrid systems differ from traditional systems
 - Suggested Agent Safety Factor
 - Extinguishment Time
 - Discharge Time

Agent	Extinguishment Time	Agent Safety Factor	Discharge/Hold Time	
CO ₂	60 seconds	20%	10 minutes	
Inert Gas	60 seconds	20-30%	10 minutes	
Water Mist	No requirement	No requirement	2X's extinguishment time or 10 minutes	
	0 to 5 minutes	Not required	10 minutes	
	5 to 8 minutes	20 %	10 minutes	
Hybrid Water Mist	Greater than 8 minutes	Not permitted		

OTHER CONSIDERATIONS

- Systems on the market can act like an inert gas, water mist or hybrid system.
- Classification depends on mechanisms responsible for extinguishment, not hardware
- While system may work for local applications, it performs in a water mist configuration
 - Only testing available is for total flooding applications

CONCLUSIONS AND RECOMMENDATIONS

- A limited amount of work is available on hybrid systems
 - US Navy and others showed Hybrid's potential
 - FM Global has recently shown differentiation between hybrid and traditional systems
 - This work is only available in 1 public presentation
- FM Global testing shows unique combined gas-phase extinguishment mechanism of hybrid water mist systems.

H.-Z. Yu, "Introducing the New FM Approvals Standard Class 5580 Hybrid (Water and Inert Gas) Fire Extinguishing Systems," 9th International Water Mist Conference, 23rd & 24th September 2009, London, UK, 2009

- Hybrid systems may be distinguished by $O_2\%$
 - Gaseous Extinguishing $O_2 < 12.5\%$
 - Twin Fluid System $O_2 < 16\%$
 - Hybrid System O₂ 12.5% 16%
 - Dry-based O_2 % at extinction for 1 & 2 MW spray fires in a total flooding configuration
- FM Approvals have adopted FM 5580 as a new approval standard in response

H.-Z. Yu, "Introducing the New FM Approvals Standard Class 5580 Hybrid (Water and Inert Gas) Fire Extinguishing Systems," 9th International Water Mist Conference, 23rd & 24th September 2009, London, UK, 2009

- Due to different operating/extinction mechanisms and safety considerations, a new standard/code is necessary
- Options for code adoption
 - New Standalone standard
 - Addendum to NFPA 2001
 - Addendum to NFPA 750
- Note: Before new developments, more data needs to be publicly available

- New code must include separate chapters on system definitions, system design and system inspection, testing, maintenance and training.
 - Currently, these criteria rest only on the manufacturer's specifications, which must be standardized
- Both NFPA 2001 and 750 do not sufficiently provide a standard for a hybrid water mist system without the addition of a dedicated subsection of the existing code

- A standalone code would be cleaner/simpler
 - Addendum would require many stipulations combining total flooding and water mist
 - Approach taken by FM is to create new approval standard
- NFPA 2001 is another possibility for inclusion
 - Simpler than NFPA 750 as it already includes agent safety factor, pressure venting, etc.
 - Water-based considerations would need to be added

Technical Panel

George Laverick (UL) Bob Kasiski (FM Global) Zachary Magnone (Tyco) Peter Thomas (Victaulic) Sandra Stanek (NFPA)

Student Project Support

Special Thanks

Bert Yu (FM Global) Amanda Kimball (FPRF)

