SMOKE DETECTOR PERFORMANCE FOR LEVEL CEILINGS WITH DEEP BEAMS AND DEEP BEAM POCKET CONFIGURATIONS

10th Fire Suppression \& Detection Research Application Symposium

Daniel J. O'Connor P.E.
Schirmer Engineering Corporation

Acknowledgements

- Vision Systems Ltd. (Aus.) ○ Schirmer Engineering
- Ming He, MIEA
- Yun Jiang, MIEA
- John Vythoulkas
- Tawfeeq AI-Farra
- Ervin Cui, Ph.D., P.E
- Matthew J. Klaus
- Chen Su, P.E.
- Fire Protection Research Foundation (FPRF) \& Supporting Patrons
- Fire Detection and Alarm Research Council
- FPRF Appointed Project Technical Panel
- NFPA 72 Initiating Devices Committee

Current NFPA 72 Spot Smoke Detector Rules for Solid Beams

≤ 12 feet

If Ceiling Ht. >12 or Beam depth $>12 \mathrm{in}$. Spot smoke detector every beam pocket
Detector must be on the ceiling

Parallel direction - 30 ft . guideline
Perpendicular - 15 ft spacing

Why Most Questioned Requirement

Review of Previous Work

- NFPRF Sponsored NIST's CFD work in 1993-94
- International Fire Detection Research Project, Field Modeling: Effects of Flat Beamed Ceilings on Detector and Sprinkler Response; Technical Report Year 1, October 1993
- Significant in identifying flow effects resulting from parallel channels due to beams
- Scope was limited, CFD modeling was computational intensive in earlv 1990's

Scenarios of 1993 Work

- Majority of Scenarios
- 11 ft . ceiling
- Fire to ceiling distance, constant at 8 ft .
- Beam depths 0, 4, 8, 12, 24 inches
- Beam spacing varied
- Few high ceiling scenarios
- 28 ft . ceiling
- Beam depth constant at 12 inches

Extract from 1993 Technical Report Year 1

- Activation - $13^{\circ} \mathrm{C}$ rise only
- Criteria for detector activation narrowly defined using a threshold fire size
- Medium growth 100 kW fire
- Medium growth 1 MW fire
- No comparison to the expectation of smoke detectors spaced per 30 foot guideline
- No understanding of how field conditions would change if examined $5,10,30$ or 60 seconds later
- No review of gas velocities at smoke detector
- Most scenarios with parallel channels, no consideration for constraining effects of corridor walls or beam pockets

Temp Tims, Plena IK, suce 16, File b6, Time 300.0 a

Tomp Tims, Flane KK , SHet 16, File fe, Time 300.0 a

Tamp Thene, Plane IK, SHea 16, Sile b24, Thme 300.0 :

Objectives - Methodology

- Identify appropriate spot smoke detector activation thresholds
- Optical density
- Temperature rise
- Flow velocity
- Best Source for data on thresholds - Recent work by Geiman (Masters thesis) and Geiman \& Gottuk (paper in Fire Safety Science)
- Identify baseline detector performance
- $30 \mathrm{ft} \times 30 \mathrm{ft}$ spacing on unconfined flat ceiling
- Vary performance with increasing height
- Perform modeling \& examine field conditions
- At postulated smoke detector locations
- Determine likelihood that field conditions would result in activation
- Compare postulated detectors with
- Baseline detector performance
- Spot detector activation thresholds
- Reduce the data to usable format - results, trends, conclusions

Review of Work by Geiman and Geiman \& Gottuk - Flaming Fires

| Only |
| :--- | :--- | :--- | :--- | :--- |

Review of Work by Geiman and Geiman \& Gottuk - Flaming Fires

		,	minm	
	10\% \%posedeas		cosm	
,	som	Ion vast majority over- predictions Photo 1:1	verer	
$0.15 \mathrm{~m} / \mathrm{s}$ Mean $0.13 \pm 0.07 \mathrm{~m} / \mathrm{s}$ (from GG data review)	IOPsposesead	sipm	-20\%	

Baseline - 30 ft . Guideline
 Cnazrinn

Plan View

Baseline - 30 ft . Guideline Spacing

Baseline Ceiling Jet Development

 12 ft Ceiling Ht., Red $\geq 65^{\circ} \mathrm{C}$, Green $\sim 40^{\circ} \mathrm{C}$
CFD Grid System

Measurment Points

manm
-
NIST Smokeview 3.1 - Apr 92003

Temperature

Corridor Scenario ć

- In this scenario 12 inch deep beams interrupt the ceiling surface every 3 feet. Temperature rise exceeds the threshold of $13^{\circ} \mathrm{C}$ and $4^{\circ} \mathrm{C}$ during an early time frame and all locations exceed that of the baseline detector. Optical density exceeds that of the baseline for all detector locations. Detector locations within pocket or on the bottom of the beam experience comparable optical density valu

Time Shift - Δ t Relative to

n 1

Optical Density per meter Case:CF100CL48W5H9BD12W6S3P0_P1

Corridor Ceiling Jet Development

12 ft C.ailing Ht Winth 5 ft Ream Renth 12 in - Red $>65^{\circ} \mathrm{C}$. Greon ~

Temperature

Corridor Scenario 1

- : In this scenario 24 inch deep beams interrupt the ceiling surface every 3 feet. Introducing a 24 " beam at the 18 ft ceiling height shifts the baseline 15 to 20 seconds before the noted detector locations. However, all detector locations relatively quickly exceed the temperature rise and optical density values observed for the baseline

Case:CF100CL48W12H18BD24W6S3P0_P1

Trends Shown

- For a 5 ft wide corridor, the optical density at all locatic along corridor reaches intc blue range and exceeds th baseline in 30 seconds. Tr comparison graph for the ϵ second time frame illustrat trends resulting as steady conditions are reached. A seconds for any given ceili height grouping the genera trend is that optical density values tend to increase as depth increases. This is attributable to a reservoir ϵ that allows soot concentra build in the deep beam por As ceiling height groupings data are reviewed left to ric (from 9 ft to 18 ft) the trenc that optical density values reducing in value due to th additional entrainment into plume that results with increasing ceiling height. | cases shown it is evident t 60 seconds all postulate detector locations would b_{1} expected to alarm and exceed valıo fnr the hacaline race

Optical Density Comparison at 30 Second 5 Feet Wide Corridor, 3 Feet Beam Spacing

Optical Density Comparison at 60 Second 5 Feet Wide Corridor, 3 Feet Beam Spacing

「rends Shown

- For a 12 ft wide corridor, the optica density at all locations along corridor reaches in the green range ar exceeds the base line in most cases 60 seconds. Some turbulence impacts are observed at ea time frame (30 seconds). Also Optical density val shows more entrainment and
 dilution results in tt..

Zeservoir Effect ncreases OD

- Top Graph
- Corridor Smooth Ceiling
- OD rise earlier than unconfined smooth ceiling baseline
- Bottom Graph
- 12 in. beams delay transport 10-15 sec.
- OD rise readily surpasses baseline

Beam Effect Diminishes at 30 ft . Corridor Width with 18 ft . Height

- For 100 kW fire result is comparable to baseline
- Expectation for alarm of baseline detector and postulated detectors with 30 ft . corridor width is low

Optical Density Comparison at 30 Second 18 Feet Ceiling Height

Optical Density Comparison at 90 Second 18 Feet Ceiling Height

=ire Size Key To Jetection for Increasing Jeiling Heights

- For 100 kW fire result is comparable to baseline
- Circled data is result for 300 kW fire
- An increased fire size results in relatively fast rise in OD to levels of expected alarm

Optical Density Comparison at 30 Second
18 Feet Ceiling Height

Uptıcai Uensity Uomparison at ou secona 18 Feet Ceiling Height

Optical Density - Well Mixed

- These graphics show the traversal soot density distribution at 15 ' and 16.5 ' from fire, at 60 seconds. The results show that the spaces inside the beam pocket and near the bottom of the beam have comparable soot density gradient. No stagnant zone is observed near the sidewall or at the
 nenrnerc

Velocity - (Ceiling Height 12', Corridor Width 5',

 Beam Depth 12") - 1.5 " off wall

Velocity - (Ceiling Height 12', Corridor Width 5', Beam Depth 12") - 1.5" below ceilina

Velocity - (Ceiling Height 12', Corridor Width 5', Beam Depth 12") - 1.5" below

 heame为

Corridor - Basic Findings

- Linear Spacing of Smoke Detection
- The data observed in this analysis indicates that for ceilings up to 18 feet in height, that deep beam configurations do not negatively affect expected performance. Reservoir effect contributes to beneficial rise in OD as compared to smooth ceiling scenarios. This means that for these conditions, detector can be effectively used in corridor with deep beams at spaces of 30 to 41 feet as is permitted for smooth ceilings
- Increasing Ceiling Heights
- As ceiling height increases the fire size threshold needed for activation of the baseline spot smoke detector must increase. With an increased fire size the smoke detectors on a beam ceiling will be comparable to the performance result for the baseline detector at the same ceiling height.
- Location Under Beams/On Ceiling Between Beams
- Where deep beams interrupt the ceiling surface in a corridor, mounting the detector on the ceiling between beams or the bottom of the beam is acceptable, either location providing comparable response to alarm
- Sidewall Mount or Center of Corridor
- Keeping smoke detector locations 12 inches below or away from a ceiling-wall corner appears unsubstantiated. No stagnant zone or locations are observed that would preclude smoke detector alarm. Temperature and smoke optical density are relatively uniform and well-mixed throughout the volume of the beam pocket within seconds after the initial ceiling jet passes

Beam Pocket Scenarios

Small rooms:

- Pocket size $3 \times 3,6 \times 6,12 \times 12 \mathrm{ft}$, and
- Beam depth of 0 (as baseline), 12, 24 inches, with
- \quad Ceiling heights of 12,18 , and 24 feet

Large rooms:

- Pocket size $3 \times 3,6 \times 6,12 \times 12 \mathrm{ft}$, and
- Beam depth of 0 (as baseline), 12 inches, with
- \quad Ceiling heights of 36 feet

Fire sizes:

Ceiling height (ft)
12
18
24
36 feet

Constant Flaming Fire (kW)
100
200
300
600kW

Beam Pocket Model

Case - CH 18 ft., BD 24 in., PS 6x6

 ft .
slice in-pocket under ceiling

Case - CH 18 ft., BD 24 in., PS $6 \times 6 \mathrm{ft}$.

slice just under beams

Optical Density Profile for $3 \times 3 \mathrm{ft}$. Pockets

OD, H18D24P3, 15 to 30 seconds, 10 cm below the ceiling

Optical Density Profile for $12 \times 12 \mathrm{ft}$. Pockets

OD, H18D24P12 at 30 seconds

Temperature Profile for 12×12 Pockets

Temperature, H18D24P12 at 30 seconds

Case - CH 18 ft., BD 24 in., PS $3 \times 3 \mathrm{ft}$.

Case - CH 12 ft., BD 24 in., PS Gre f+

Scenario H12D24P06 In the Pocket

Scenario H12D24P06 Under the Beam

Case - CH 12 ft., BD 24 in., PS $6 \times 6 \mathrm{ft}$.

Beam Pockets Data Summarv

ODs at various points at 10s

Beam Pockets Data Summary

Waffle or Pan Type Ceilings Basic Findings

- Linear Spacing of Smoke Detection
- The data observed in this analysis indicates that for pan type ceilings with beams or solid joists no greater than 24 in . deep, and beam spacing no greater than 12 ft . center -to-center configurations do not negatively affect expected performance. Reservoir effect contributes to beneficial rise in OD as compared to smooth ceiling scenarios. This means that for these conditions, detector can be effectively used in waffle or pan type at a spacing of 30 ft .
- Increasing Ceiling Heights
- As ceiling height increases the fire size threshold needed for activation of the baseline spot smoke detector must increase. With an increased fire size the smoke detectors on a beam ceiling will be comparable to the performance result for the baseline detector at the same ceiling height.
- Location Under Beams/On Ceiling Between Beams
- Where deep beams interrupt the ceiling surface in a room, mounting the detector on the ceiling in beam pockets or the bottom of the beams is acceptable, either location providing comparable response to alarm for flaming fires
- Sidewall Mount or Center of Corridor
- Keeping smoke detector locations 12 inches below or away from a beam-ceiling corner appears unsubstantiated. No stagnant zone or locations are observed that would preclude smoke detector alarm. Temperature and smoke optical density are relatively uniform and well-mixed throughout the volume of the beam pocket within seconds after the initial ceiling jet passes.

Thanks for Your Attention Questions?

