B Kimberly-Clark | DELIVERING TODAY... BUILDING TOMORROW

Housekeeping Solutions: Strategies and Tools

OS&H

Mark Holcomb, MS, CIH, CSP Technical Leader – Global

Personal Care

Diapers, Training/Youth/Swim Pants, Feminine Care, Incontinence Care, Infant and Child Wipes and Toiletries

K-C Professional and Other

Disposable Health & Hygiene Products for Away-From-Home Use: Facial Tissue, Bathroom Tissue, Paper Towels, Wipers, Protective/Absorbent Products for Do-It-Yourself Use; Nonwovens

Consumer Tissue

Facial Tissue, Bathroom Tissue, Paper Towels

Health Care

Surgical Drapes and Gowns, Sterilization Wrap, Face Masks, Exam and Surgical Gloves, Respiratory Products

K-C's Businesses

•Nearly 55,000 employees worldwide

Manufacturing
 Facilities in 36
 countries

•Sales in over 150 countries

K-C's Brands

Kimberly-Clark provides some of the world's most recognized consumer brands in more than 80 countries

Nearly 1.3 billion people purchased K-C's quality products last year!

Scimberly-Clark | DELIVERING TODAY... BUILDING TOMORROW

A Combustible Dust Journey

- Practical tips for establishing a sustainable combustible dust compliance process.
- Help you avoid the "PDCA" approach (plan-do-complicateabandon)

A Brief "CD" History

- General Awareness of the hazards, especially in the air systems engineering group.
- Tested dust collector materials.
- Relied heavily on spark suppression in dust collectors.
- Never experienced a secondary explosion.
- Had experienced deflagrations in duct work of wet dust collection systems.
- Small fires in overheads and in equipment.

Combustible Dust before OSHA

- K-C established guidelines for housekeeping in tissue manufacturing in the late 1980's, based on testing of fugitive dust by FM.
- Relied heavily on spark suppression to protect dust collection systems.
- Primary risk was fires, although infrequent occurrences in overheads were not severe.
- Established fugitive dust level requirements based on depth - ¹/₄ - ¹/₂ inch.
- Relied on compressed air as primary "cleaning" method.
- NEMA 12 (dust tight) electrical required for upgrades and new plants. Did not retrofit older plants.

OSHA Inspection

- Began in September, 2005.
- Initiated by an employee complaint.
- Same time frame as CSB Combustible Dust study.

Plant Description

- Build in 1952
- Tissue Manufacturing and converting in separate areas of the plant.
- Both general and local ventilation system:
 - Local ventilation collects 99%+ of generated dust.
 - Sprinkler protection in building and dust collection systems
 - Spark Suppression and Explosion venting
- House Keeping:
 - Relied on Compressed Air because of access issues when process is running.

8

- Following FM 7-76 equation to trigger overhead cleaning $(\frac{1}{4} - \frac{1}{2})$ inch average depth).

Scherly-Clark | DELIVERING TODAY... BUILDING TOMORROW

Converting Area

9

Scherberly-Clark | DELIVERING TODAY... BUILDING TOMORROW

Ventilation System and Overhead Areas

10

Citations

- OSHA issued one serious citation, two parts:
 - Electrical equipment not approved for class II, division 2 29 CFR 1910.307 (b) (2) (i)
 - House Keeping excessive dust accumulations in overheads
 29CFR 1910.22(a)(1)
 - \$9,000 penalty.

Key Questions

- How much dust is too much?
- How to clean the overheads?

Scherty-Clark | DELIVERING TODAY... BUILDING TOMORROW

Bulk Dust Testing Results

- Density: < 2.5 lbs per cubic foot.
- Particle Size Distribution: 90% passed 40 mesh (425 um) sieve.
- Moisture Content: ~5%
- Minimum Explosive Concentration (MEC): 75
 - 100 g/m³, dried and sieved
- K_{st}: 136 bar-m/s dried and sieved; 54 bar-m/s as is.

13

NFPA 654 and FM 7-76 Depth Approach

- Based on Dust Density
 - No standard method for determining dust density, as it accumulates on surfaces
- Results: 0.5 4.5 inch depth.
- Non-uniform accumulations and high overhead area make accurate measurement of dust depth challenging.
- Depth of dust does not predict the hazard the mass of dust predicts the hazard.

Alternative Dust Threshold Equation

- $M_{dmax} = (0.031 * C_{opt} * V_{room})/A_{dust}$
- C_{opt} Concentration that produces highest pressure rise
- V_{room} Room volume
- A_{dust} Dust accumulation surface area
- Results:
 - 233 g/m² average loading.
 - Apply 50% safety factor (missed cleaning):
 - $= 116 \text{ g/m}^2$

Dust Accumulation Rate

- Determine average based on 6 representative sample points.
- Perform monthly sampling for 6 months to determine average accumulation rates

Dust Collection and Testing

- Collected dust in preweighted metal 1 gallon paint cans.
- Battery operated vacuum with cyclonic dust system used for curved surfaces
- Dried, posted weighed by 3rd party laboratory

What We Learned

- New consensus standard requirements are for the most part retroactive.
- Existing standards do not address low density materials.
- Electrical safety requirements and house keeping are closely linked.
- Vacuum cleaning can introduce new hazards associated with working at heights.
- Engineering solutions aimed at eliminating fugitive dust accumulations in over-head structures are more cost effective.
- Dust thresholds based on mass instead of depth are much easier to apply.

S Kimberly-Clark | DELIVERING TODAY... BUILDING TOMORROW

Implementing a Combustible Dust Compliance Program

Leadership Endorsement

Concerns:

- Leaders questioned if there was a real risk or if this was only a compliance issue.
- Unknown cost impact.
- High plant & staff work loads.
- Gap closure timeline.

Response:

- Used the Chemical Safety Board video "Combustible Dust – An Insidious Hazard"
- Fires & Explosion history
- Developed a phased approach. Started with Pilot. Defined the cost impact.
- Integrated the risk assessment approach into existing corrective action structure.

The Assessment Plan

- Phase I Communications, Leadership Endorsement, Training, Guidance, and Testing
- Phase II Gap Identification
- Phase III Corrective Action Plan Development
- Phase IV Corrective Action Closure

Risk Based!!

The Assessment Team

- Global OS&H
- Business unit OS&H
- Engineering
 - Air Systems
 - Electrical
- Risk Management
- Operations Endorsement

Risk Classification Matrix

Combustible Dust Risk Ranking:	Required Action
Acceptable	Fully compliant with applicable standards. Presenting very little risk. No action required.
Low	Requires further control measures. Requires temporary plans followed by permanent mitigation plan. Timing Guideline: 1 to 2 years.
High	Partial compliance with applicable standards. Requires temporary control measures to be implemented followed by a permanent control plan. Timing Guideline: 1 year or less.
Unacceptable	Continued operation at this risk level is not acceptable. Risks at this level requires an action plan approved by the mill manager.

The Combustible Dust Tool Box

- Internal Standards:
 - Fugitive Dust Control & Housekeeping
 - Dust Collector Safety Requirements
- Guidance & Information:
 - Dust Testing Guide
 - Dust Testing Database
 - 6 Element Assessment Tool
- Assessment Process:
 - Standardized dust collection system inventory form and risk assessment.
 - Standardized Assessment Checklist and Reporting

6 Element Assessment

- Dust & Material Testing
- Employee Safety & Training
- Fugitive Dust Control & Housekeeping
- Electrical Systems
- Dust Collector Systems
- Pneumatic Transport & Process Systems

Fugitive Dust Control & Housekeeping Standard (based on NFPA 654)

 Requires fugitive dust control through engineering controls and process changes.

- Develop overhead surfaces cleaning protocol that relies on vacuum cleaning of accessible surfaces as the primary cleaning method (compressed air cleaning allowed for inaccessible surfaces only).
- Three methods for determining conformance with the new "dust threshold" requirements.
- "Depth" screening chart based on the "Fire" threshold & dust density.

S Kimberly-Clark | DELIVERING TODAY... BUILDING TOMORROW

NFPA 654-2011 Dust Threshold Equations

• "Explosion"

$$M_{exp} = \begin{bmatrix} P_{es} \\ DLF \end{bmatrix} \bullet \begin{bmatrix} C_{w} \\ P_{max} \end{bmatrix} \bullet \begin{bmatrix} A_{floor} \bullet H \\ \eta_{D} \end{bmatrix}$$

• "Fire"

$$M_{fire} = 0.05 \bullet C_{w} \bullet \left[\frac{P_{initial}}{1 + P_{max}}\right] \bullet \frac{A_{floor} \bullet D}{\eta_{D}}$$

Dust Threshold Determination Methods

- Method 1 Collecting & weighting.
 - "Busy overhead areas"
 - Easiest to implement
 - Most accurate
- Method 2 Representative area sampling.
 - Time consuming
 - Error prone based on overhead area estimates
- Method 3 Dust depth.
 - Screening method
 - Inaccurate if accumulations are not uniform

Scherly-Clark | DELIVERING TODAY... BUILDING TOMORROW

Uniform Tissue Dust Layer Thickness

(NFPA "fire" equation)

		Uniform Dust Layer Thickness, mm/inches					
		Overhead Area above Floor Height (OA), %					
Floor Area	Dust	5	10	20	30	40	
(A _{floor}), m ²	Threshold, kg						
500	17.72						
1000	35.45	22.2	11.1	5.5	3.7	2.8	
2000	70.89	0.86	0.43	0.22	0.14	0.11	
3000	106.34						
5000	177.23						
7500	265.85						
10000	354.47						

B Kimberly-Clark | DELIVERING TODAY... BUILDING TOMORROW

NFPA 654 House-Keeping Practices

- Vacuum accessible areas prior to use of compressed air.
 - Vacuums must meet dust explosion proof criteria.
 - Compressed air pressure limited to 15 psig.
- Contracted services with 3rd Party
- All electrical circuits not meeting Class II Div 2 must be de-energized, including lifts.

Scherty-Clark | DELIVERING TODAY... BUILDING TOMORROW

Fugitive Dust Control Long-Term Strategy

- Engineering Solutions
 - Optimize dust collection systems and reduce overhead surface area.
 - Design structural members to minimize dust accumulation.
 - Deploy dust accumulation prevention fans in converting.

Fugitive Dust Control Using Overhead Fans

- Dust accumulation prevention – not removal!
 Operate continuously.
- Oscillating 360 deg over 15 minute period. 70 deg above to 50 deg below horizontal.
- 35 50 ft reach Mounted on 50 ft centers.
- Tied into the fire detection and suppression system for automatic shut down.
- Low ceiling height, obstructions and overhead equipment require careful layout planning.

Dust Collector Safety Standard

- Established minimum requirements for K-C designs.
- Documentation requirements.
- Standardized risk analysis model.

Scherberly-Clark | DELIVERING TODAY... BUILDING TOMORROW

Project Management Using SharePoint™

- Combustible Dust
 <u>SharePoint Site.</u>
- Capture and share data.
- Provide access to internal standards and guidance.
- Manage gap closure.

34

SharePoint Central Global Occupational Safety & Hygiene Welcome Holcomb, Mark V My Site My Links V W									
Combustible Dust				All Sites	~		Advanced	l Search	
Global Occupational Safe	ety & Hygiene Combustible Dust	Global Follow Up					Site /	Actions 🗸	
	Global Occupational Safety & Hyg Deliverables	iene > Combustib	ole Dust > Deliv	erables					
View All Site Content	New - Upload - Actions -	Settings -				Vi	ew: Deliverables	-	
Pictures	Name		Category	Description	Facility	Å Modified By	🔏 Checked Out To	Version	
Images	Content Type - Assessment Data	(102)							
Documents	TILLCTADConvscrubber_DCSIPAr1	(102)	Dust Collector	Converting Dust	lenks	Clouch		6.0	
Process Documents	10001ADC0N3Clabbel-DC3RAFT		Inventory &	Scrubber	Jenna	Maria R		0.0	
Solutions	DIGETE Of a Market Street And A DOCUDA		RA Duct Collector		Decel labor	Claush		6.0	
Deliverables	BICE I ECTOIOE02CENTRAIVACIDOSIRA		Inventory &	Seconday Separator	Beech Island	Maria R		5.0	
Lists			RA						
Calendar	BICETEC folded-1-DCSIRA		Dust Collector Inventory &	MFT-1 Drum Filter	Beech Island	Clough, Maria R		5.0	
Tasks			RA						
Discussions	BICETEC folded-2-DCSIRA		Dust Collector	MFT-2 Drum Filter	Beech Island	Clough, Maria P		5.0	
Team Discussion			RA						
Sites	BICETEC folded final collDCSIRA		Dust Collector	MF Final Collector (Bagbouse)	Beech Island	Clough, Maria R		5.0	
Chemical Safety Board			RA	(Bughouse)		ind id it.			
OSHA National	BICETECfoldedscrubberDCSIRA		Dust Collector Inventory & RA	MF Wet Scrubber	Beech Island	Clough, Maria R		5.0	
People and Groups	BICETECOLPscrubber-DCSIRA		Dust Collector	Venturi Scrubber	Beech Island	Clough,		5.0	

S Kimberly-Clark | DELIVERING TODAY... BUILDING TOMORROW

Questions

