Dryers – Processes & Protection

Henry Febo, PE Senior Engineering Technical Specialist FM Global, Engineering Standards Department

Prepared for presentation at the NFPA Dust Explosion Hazards Symposium September 20 – 21, 2011

©2011 Factory Mutual Insurance Company. All rights reserved.

Introduction

• Purpose

- Understand basic dryer types for handling powders

- Review loss history
- Review process features related to operating safety
- Review features controlling dust hazard & effects
- Lessons learned case studies

Dryer types

- Conventional (continuous tray/belt)
 - Roasters, food, grains
- Flash dryers
 - Wood, food, chemicals
- Ring dryers
- Rotating drum dryers
- Spray dryers
- Fluid bed dryers
- Direct or indirect heated

Common hazards

- Fire or explosion
- Fuel explosions
- Release of flammable vapors/solvents
- Deposits
- Overheating
- Spontaneous heating autoignition
- Sparks
 - Electrostatic
 - Friction
 - Electrical
- Discharge hot product to downstream processes or storage

Important material properties

- Solvent properties (where applicable)
- Thermal stability
 - DSC (Differential scanning calorimetry)
 - DTA (Differential thermal analysis)
 - Isothermal stability test
- Spontaneous ignition test
- Layer ignition test
- Minimum ignition energy (MIE)
- Toxicity
- Kst, Pmax, MEC, Cloud ignition test, LOC
- Resistivity, conductivity, chargeability

Loss history – Dryers (explosions)

Dryer Type	Number of events	Percent of Loss \$
Flash	2	36%
Rotary	7	37%
Spray	5	27%
Grand Total	14	

Cause		
Burner Flame	4	33%
Chemical Action	1	1%
Hot Surface	1	0%
Overheating	2	1%
Spark	2	37%
Static Electricity	1	9%
Unknown	3	19%
Grand Total	14	

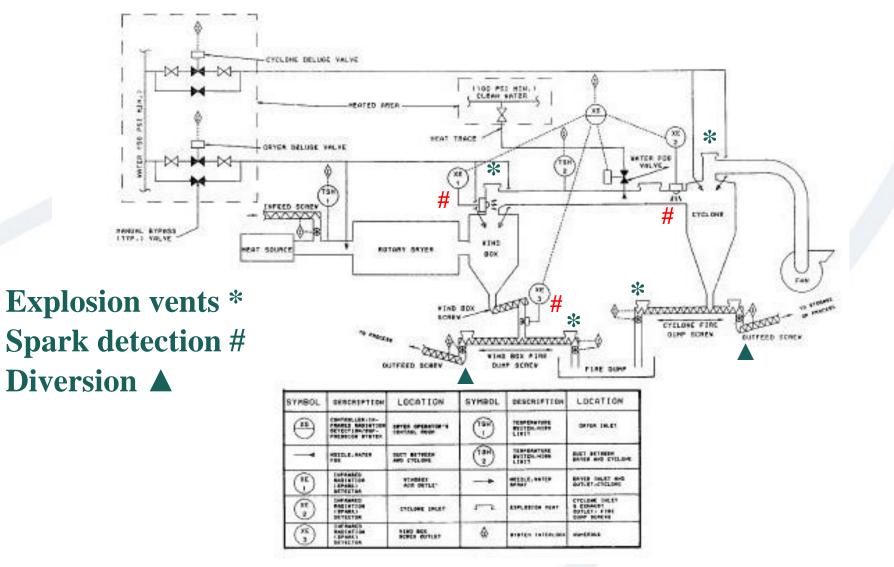
Loss History F&X – Spray Dryers

Cause	Number of events	Percent of Loss \$
Chemical Reaction	1	10%
Component Failure	1	0%
Hot Surface	1	1%
Overheating	8	15%
Spark	2	1%
Spontaneous Ignition	1	61%
Unknown	4	12%
Grand Total	18	

FM Slabsi

Industry	Number of events
Food	13
Chemical	4
Metal Product	1
Grand Total	18

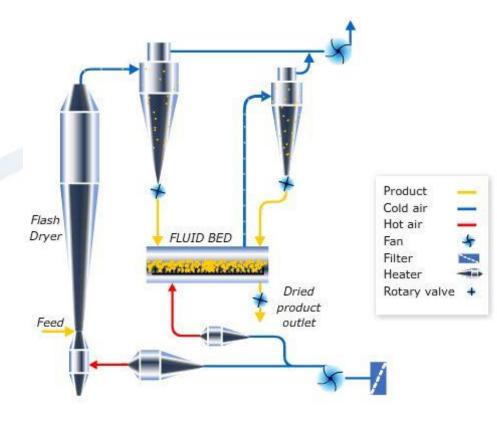
Loss History – other


- CSB dust hazard study (1985 2005)
 281 incidents no spray dryers
 - GEA Niro (1963 2010)
 - Estimated 4500 5000 spray dryers in service
 - 285 recorded incidents
 - 229 fires, 56 explosions (all with some venting)
 - 174 major
 - At least 28 starting in fluid bed
 - Contributing factors
 - Explosion vents welded shut or not ducted outside
 - Fire extinguishing inoperable

Rotary Drum Dryers

- Potential hot embers direct fired or accumulations
- Operate at rated capacity
 - Higher capacity, increase operating temperature, overheating
- Monitor temperature
- Systems for spark detection/extinguishing
- Explosion risk usually downstream of dryer
- Venting not practical

Rotary Drum Dryers – protection


FMGlabal

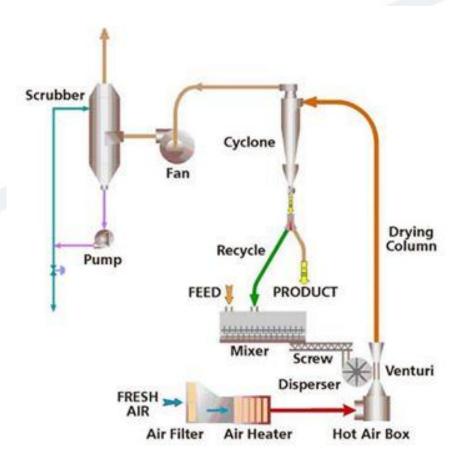
Source – FM Global loss prevention data sheet 7-10

Flash Dryers

GEA Niro

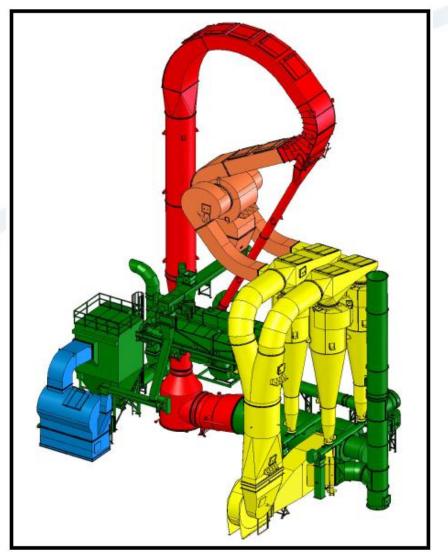
Flash Dryer with Fluid Bed Post Dryer

- Accumulation of wet material in ducts
- Potential hot embers


 Direct vs. indirect fired
- Operate at rated capacity
- Temperature monitoring
- Systems for spark detection/extinguishing
- Explosion venting
- Fire protection for FBD
- FM Global LPDS 7-10

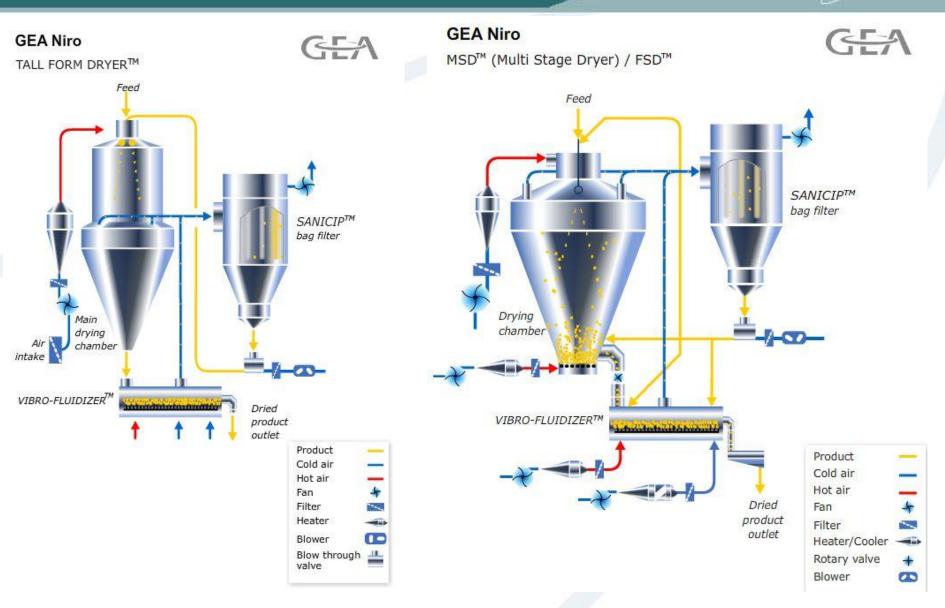
Flash Dryers

FM 619881


Ring dryers

GEA – Barr-Rosin

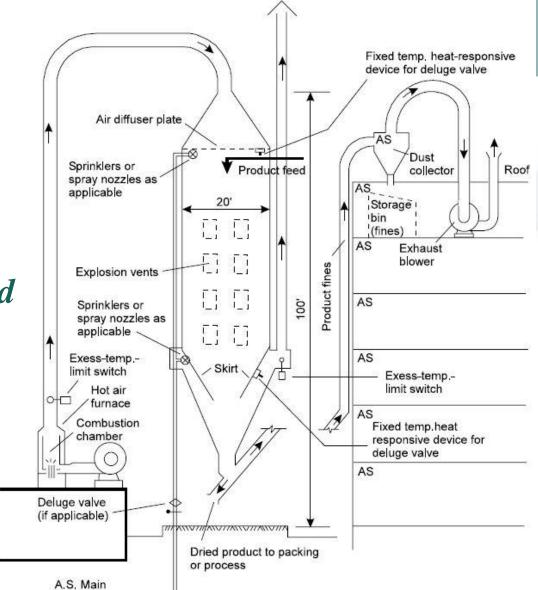
- Modified flash dryer
- Ethanol industry
 - 2 fires, 1 explosion, 1 implosion
 - Spontaneous heating
 - Sudden stop/start
 - Accumulations
- Operate within specs
- Pre-plan response to process upsets
- Fire protection
- Explosion & implosion relief


Ring dryers

• Explosion venting

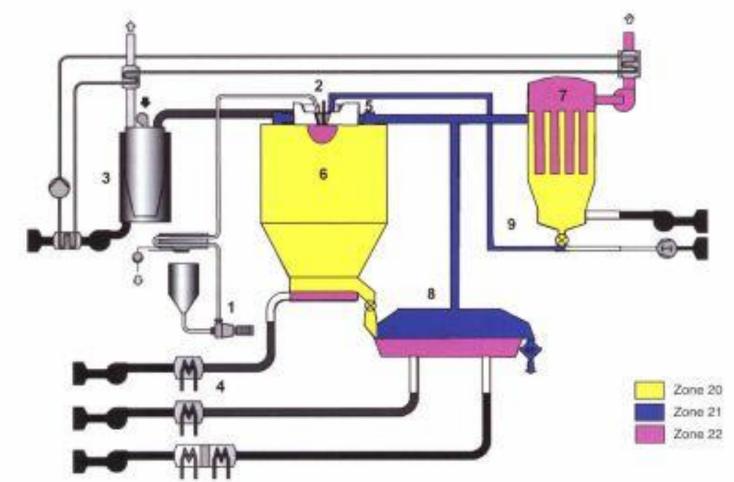
- Break into zones
- Cyclones, bag houses standard methods
- Drying column has H/D issues; calculate in virtual sections

GEA – Barr-Rosin



FM Slabsi

- Process hazards
 - Solvent wet material; hybrid mixtures
 - Accumulations near atomizer, elsewhere
 - Potential spontaneous heating
 - Peripheral equipment hazards
 - Hot bearings/surfaces
 - Fans/blowers mechanical sparks
 - Heating system hazards
 - Direct sparks, glowing particles, fuel explosions
 - Indirect external fires, fuel explosions
 - Dust explosion
 - Unit isolation


- Process interlocks/alarms/monitoring
 - Vibration (fans in dust stream)
 - Temperature
 - Dryer inlet & outlet (spray & fluid bed)
 - Product outlet
 - Heating system
 - Key fan/blower bearings supply, exhaust
 - Video for buildup in equipment & process ducts
 - Carbon monoxide/CO (spontaneous heating)

- Fire protection
 - Detection fixed temp
 - Deluge sprinklers
 - Spray & fluid bed
 - Dust collectors (closed heads)
- Explosion venting
 - Spray & fluid bed
 - Dust collectors
 - Cyclones

Source – FM Global loss prevention data sheet 6-9

Spray Dryers – Ignition Sources

VDI 2263 Part 7

20 – continuous, long term (Div 1) 21 – occasionally normal operation (Div 1) 22 – seldom, short term (Div 2)

Spray Dryers – Ignition Sources

- Flame or hot work
 - Indirect heating preferred
 - Hot work permit and controls
- Overheated materials
 - Accumulations especially near atomizer where hot air usually enters
 - Proper operating limits for atomizer
 - Temperature limits hot air & dryer
 - Monitor (video)
 - Maintenance (lubrication, alignment, clean)
 - Clean air broom or wash down

Spray Dryers – Ignition Sources

- Static ignition
 - MIE less than 10 25 mJ
 - Grounding, bonding, inerting, other controls
- Mechanical spark
 - Fans in dust stream
 - Type A or B construction per AMCA 99-0401-86, Classifications for Spark Resistant Construction
 - Monitor (detection or physical check)
 - Maintenance (lubrication, alignment, clean)
- Friction sources
 - Monitor & maintenance

Spray Dryers – Explosion Mitigation

- Eliminate fuel
- Eliminate oxygen
 - Operate inert sometimes possible with direct heated systems
- Explosion suppression
 - Large scale up factor from testing
 - Proprietary design
 - Detection usually pressure
 - Will suppressant reach the flame core?
 - History of success
- Containment
 - Explosion 'pressure' or 'pressure shock' resistant

Spray Dryers – Explosion Mitigation

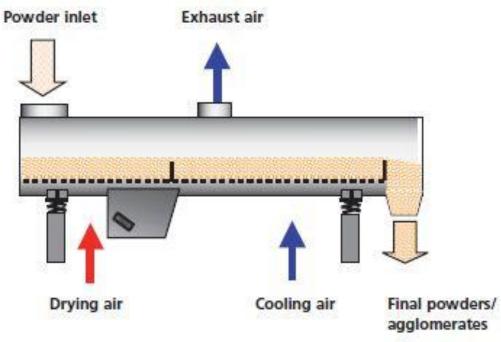
• Isolation

- Between major pieces of equipment
- Flexible connections rated for Pred
- Rotary valves designed to prevent flame passage
- Monitoring for hot particles and diversion to a safe location
- Fast acting valves
- Chemical blocking
- Design criteria in NFPA 69

Spray Dryers – Explosion Mitigation (vents)

Design criteria

- FM Global DS 7-76 & NFPA 68 (2007)
 - Partial volume & full Kst
- VDI 3673 (2002) or EN 14491 (2006)
 - Full volume & Kst but adjustment permitted 'based on published or experimental data from representative venting trials'


FMSI

- GEA Niro
 - Radandt adjustment to VDI/EN equations based on testing at moderate scale
 - Filling factor to adjust for cloud dispersion method
 - Reduced K & Pmax values by test at 250 g/m³ (typical)

Fluid Bed Dryers

GEA – Niro

Fluid Bed Dryers

- Process hazards
 - Solvent wet material; hybrid mixtures
 - Potential spontaneous heating
 - Maintain fluidizing medium (air) flow
 - Product thermal stability / temperature control
 - Hot bearings/surfaces
 - Mechanical sparks
 - Grounding & bonding
 - Dust explosion
 - Component isolation
 - Flexible connections

Fluid Bed Dryers

- Process interlocks/alarms/monitoring
 - Maintain fluidizing medium (air) flow
 - Loss of fluidizing medium, shut down heating
 - Temperature
 - Fluidizing medium inlet & outlet
 - Product outlet
 - Heating system
 - Key bearings mechanical components, blowers
 - LEL monitoring for hybrid mixtures
 - Carbon monoxide/CO (spontaneous heating)

Fluid Bed Dryers – Explosion Mitigation

- Eliminate fuel
- Eliminate oxygen
- Explosion suppression
- Containment
- Isolation
- Venting
 - FM Global DS 7-76 & NFPA 68 (2007)
 - VDI 3673 (2002) or EN 14491 (2006)
 - Standard design criteria

Other References

- Guidelines for Safe Handling of Powders & Bulk Solids, AIChE CCPS, 2005 Chap 5.3.3 Drying Equipment
- VDI 2263 Part 5 Dust fires and dust explosions, Hazards assessment protective measures, Explosion protection in fluidized bed dryers (2005)
- VDI 2263 Part 7 Dust fires and dust explosions, Hazards assessment – protective measures, Dust fires and explosion protection in spraying and drying integrated equipment (2010)
- Approved Code of Practice for the Prevention, Detection and Control of Fire and Explosion in New Zealand Dairy Industry Spray Drying Plant, Department of Labour, June 1993
- HSE 103, Safe Handling of Combustible Dusts (2003)