
IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 5, No3, June 2015

 300

A Study to the effect of task granulation for the DNA
multiple sequence alignment on Grid Computing

Mohamed Assal, Ahmed Said, Dina Mohamed and Nouran Osama
Faculty of Computer Science

MTI University
Cairo, Egypt

Abstract—DNA Multiple sequence alignment is widespread
bioinformatics application that determines the similarity between
a new sequence with other exist sequences. Along with the growth
in the heterogeneous biological data, many research groups
designed tools to analyze them. Integration of these biological
data and tools is becoming one of the major topics in the
field of bioinformatics. Grid computing provides the ability to
perform high performance computing by taking advantage of
many computers geographically distributed and connected by a
network. Task granulation can greatly affect the processing time
of the multiple sequence alignment on the grid. This paper shows
a DNA multiple sequence alignment framework using the GDS
Grid. Finally, the paper study the effect of the task granulation
on the processing time and its effect on the computation to
communication ratio.

Keywords-- DNA Computing, Computational biology,
Distributed computing, Grid computing, Bioinformatics

I. INTRODUCTION
Computational biology and bioinformatics is mainly

concerned with the analysis and processing of biologic data
related to the humans and other living orgasm. Laboratories all
over the world producing data at huge rates. Consequently,
there is a need to process the exponentially growing amount of
biological data for scientific advances and to solve the data
management problems. On the other hand, computational
biology aims to solve these biological problems by utilizing
computers to test and evaluate hypotheses and theories.

Research in the field of bioinformatics has grown
significantly in the recent years as demands for more
computing power increased. The solutions to these demands
usually involve using parallel and/or distributed techniques.
Grid Computing is an evolving technology to provide high
performance computing in a virtual environment composed of
a large number of computers connected through network[1].

Multiple sequences alignment involves more than two
biological sequences, generally protein, DNA, or RNA.
Multiple sequence alignment is computationally intensive
problem and classified as a NP-Hard problem [2] [3].

Sequence alignment is a common bioinformatics application
used to determine the degree of similarity between two
sequences. Sequence alignment is the elementary operation of
the DNA sequencing problem, due to the large number of
DNA sequences applications. Sequences can be aligned across

their entire length (global alignment) or only in certain regions
(local alignment). Local sequence alignment plays a major
role in the analysis of DNA and protein sequences [4] [5].

Several global and local sequence alignment tools use well-
known algorithms such as The popular Smith-Waterman and
Needleman-Wunsch used for local and global sequence
alignment respectively [6] [7].

This paper describes framework implemented both the
Smith-Waterman and Needleman-Wunsch algorithms along
with multiple scoring matrices on the Grid Developing System
(GDS) [8]. The paper also study the task granulation effect on
the overall processing time of the grid framework.

II. SEQUENCE ALIGNMENT
The data of sequence are partitioned into DNA sequences

and protein sequences. Each DNA sequence consists of four
types of base A, T, C and G and each protein sequence is made
up of 20 types of amino acid, hence any sequence can be
represented as a string over specific alphabet.

DNA sequence alignment is a representation of the
similarity between two or moresections of genetic code. It is
used to compare these sections in a quantitative way.Biologists
use the comparisons to discover evolutionary divergence, the
origins ofdisease, and ways to apply genetic codes from one
organism into another[9].

A. Pair wise Sequence Alignment
Pair wise sequence alignments are used to find

diagnosticpatterns that characterize the two DNA families; to
detect ordemonstrate homology between new sequences and
existingfamilies of sequences.

Two general models view alignments in different ways:the
first considers similarity across the full extent of thesequences
(a global alignment); the second focuses onregions of similarity
in parts of the sequences only (a localalignment). It is
important to understand these distinctions, toappreciate that
sequences are not uniformly similar, and thereis no value in
performing a global similarity on sequencesthat have only local
similarity. Therefore, finding local similaritymay produce more
biological meaning and sensitive resultthan finding optimal
alignment over entire length of thesequence[10].

B. Global Sequence Alignment
The idea of aligning two sequences (of possibly different

sizes) is to write one on top of the other, and break them into

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 5, No3, June 2015

 301

smaller pieces by inserting spaces in one or the other so that
identical Subsequences are eventually aligned in a one-to-one
correspondence - naturally, spaces are not inserted in both
sequences at the same position. In the end, the sequences end
up with the same size. The following example illustrates
aglobal alignment between the sequences
A=”ACAAGACAGCGT” and B=”AGAACAAGGCGT”.

 A = A C A A G A C A G - C G T
 | | | | | | | | |
 B = A G A A C A - A G G C G T

 Figure 1. Global Alignment of two sequences

The objective is to match identical subsequences as far as
possible. In the example, nine matches are highlighted with
vertical bars. However, if the sequences are not identical,
mismatches are likely to occur as different letters are aligned
together. Two mismatches can be identified in the example: a
“C” of A aligned with a “G” of B, and a “G” of A aligned with
a “C” of B. The insertion of spaces produced gaps in the
sequences. They were important to allow a good alignment
between the last three characters of both sequences [11].

An alignment can be seen as a way of transforming one
sequence into the other. From this point of view, a mismatch is
regarded as a substitution of characters. A gap in the first
sequence is considered an insertion of a character from the
second sequence into the first one, whereas a gap in the second
sequence is considered a deletion of a character of the first
sequence. In the previous example, A can be converted into B
in four steps: 1) substitute the first “C” for a “G”; 2) substitute
the first “G” for a “C”; 3) delete the second “C”; and 4) insert a
“G” before the last three characters.

Once the alignment is produced, a score can be assigned to
each pair of aligned letters, called aligned pair, according to a
chosen scoring scheme. We usually reward matches and
penalize mismatches and gaps. The overall score of the
alignment can then be computed by adding up the score of each
pair of letters. For instance, using a scoring scheme that gives a
+1 value to matches and −1 to mismatches and gaps, the
alignment of the two sequences in Figure 1 scores 9 * (1) + 2 *
(−1) + 2 * (−1) = 5.

The similarity of two sequences can be defined as the best
score among all possible alignments between them. Note that it
depends on the choice of scoring scheme. In the next sections,
the problem of finding the best alignment of two sequences (an
alignment that gives the highest score) will be addressed[11].

C. Local Sequence Alignment
The previous section described a type of alignment know as

global alignment since we are interested in the best match
covering the two sequences in their entirety. Frequently,
though, biologists are interested in short regions of local
similarity. A local alignment is one that looks for best
alignments between “pieces”, or more precisely, substrings of
both sequences.

Local alignment searches for segments of the two
sequences that match well. There is no attempt to force entire
sequences into an alignment, just those parts that appear to

have good similarity, according to some criterion are
considered [12].

The following example illustrates a local alignment
between the sequences A=”ACAAGACAGCGT” and
B=”AGAACAAGGCGT”.

 A = A C A A G A C A G C G T
 | | | |
 B = A G A A C A A G G C G T

Figure 2. Local Alignment of two sequences

Most commonly used algorithm for local alignment is
Smith-Waterman algorithm [12].

D. Substitution Matrices
In the previous example, fixed scores were given for

matches, mismatches and gap penalties. However, biologists
frequently use scoring schemes that take into account
physicochemical properties or evolutionary knowledge of the
sequences being aligned. This is common when protein
sequences are compared.

For instance, for some reason one might want to penalize
the mismatch of an aspartic acid (D) with leucine (L) more
heavily than a mismatch between the same aspartic acid with,
say, histidine (H). Similarly, one may want to reward a match
of two cysteine (C) better than two alanine (A) [11].

This type of scoring schemes is called alphabet-weight
scoring schemes, and is usually implemented by a substitution
matrix. Currently, two types of amino acid substitution
matrices are being largely used by biologists for practical
protein sequence alignment: PAM and BLOSUM. They were
developed from different concepts but have the same structure.
In fact, they are a series of matrices with varied degrees of
sensibility.

The PAM matrices (acronym for point accepted mutations)
are extrapolated from data obtained from very similar
sequences to reflect an amount of evolution producing on
average one mutation per hundred amino acids. The BLOSUM
matrices (acronym for blocks substitution matrix), in contrast,
were developed to detect more distant relationships [13]. In
particular, BLOSUM50 and BLOSUM62 are being widely
used for pairwise alignment and database searching [14].

Substitution matrices allow for the possibility of giving a
positive score for a mismatch, what is sometimes called an
approximate or partial match. For instance, the BLOSUM62
matrix returns a score of +2 for the substitution of a lysine (K)
for an arginine (R) [11].

III. GRID COMPUTING
A grid is a type of parallel and distributed system that

enables the sharing, selection, and aggregation of
geographically distributed resources dynamically at runtime
depending on their availability, capability, performance, cost,
and users' quality of-service requirements. At the basic level, a
grid can be viewed as an aggregation of multiple machines
(each with one or more CPUs) abstracted to behave as one
"virtual" machine with multiple CPUs.

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 5, No3, June 2015

 302

Grid applications distinguished from traditional client
server applications by their simultaneous use of large numbers
of resources, use of resources from multiple administrative
domains, complex communication topologies and severe
performance requirements.

The GDS is a .NET based computational grid environment
implemented in MTI University [8]. The GDS Grid allow the
seamless aggregation of the computing power of multiple
distributed machines connected through network into a virtual
super computer. The GDS grid computing framework was
conceived with the aim of making grid construction and
development of grid software as easy as possible without
sacrificing flexibility, scalability, reliability and extensibility
[8].

GDS has practical capabilities of connecting up to 4096
workstations. In addition, GDS is hardware scalable in which
workstations could be easily replaced with a high-end server
through the GDS plug and play agent feature. The GDS will
automatically utilize the new powerful resources in the new
connected agents [15].

GDS Grids are constructed using two types of distributed
components (or nodes). These are GDS Coordinator and GDS
Agent according to their roles with respect to a grid
application.

A. GDS Coordinator
Coordinator manages the execution of grid applications and

provides services associated with managing thread execution.
The coordinator distribute the tasks to agents according to
certain scheduling policy. The default GDS scheduling policy
distribute tasks to grid agents based on their available physical
cores. The coordinator considers each physical core of each
agent as a separate execution unit [8].

GDS separates the coordinator into several components,
each component responsible for a specific task. Figure. 3 shows
the different GDS Coordinator components [15]. GDS expose
an Application Programming Interface (API) for both the
Problem Decomposition and the Result aggregation
components for the grid application developer to write the
application to utilize the GDS grid.

Figure 3. GDS Coordinator components

B. GDS Agent
The agent represent the worker unit in the GDS Grid. The

agent registers itself with a GDS coordinator and waits to
receive grid tasks to process [8]. Again, GDS expose an API
for the grid application developer to utilize the agent’s
resources. Figure. 4 shows the different GDS agent
components[15].

Figure 4. GDS Agent components

IV. THE IMPLEMENTED FRAMEWORK
The implemented DNA multiple sequence alignment

framework is a tool developed using the GDS grid
environment. The framework uses one GDS Coordinator and
several agentsto align the DNA sequences.

The framework supports both the Global sequence
alignment using Smith waterman and Local sequence
alignment using Needleman Wunch algorithms along with 3
different substitution scoring matrices (BLOSUM62, PAM250
and Gonnet160).

In addition, the framework aims to study and overcome the
effect of the computation to communication ratio. Therefore,
to overcome the computation to communication ratio, the
workload of each grid task must has heavier computation. The
idea is to bundle more than one sequence from the dataset
along with the unknown sequence. That is, the enhanced
framework adds an option to choose the sequence bundle from

Input / Output

Task Executor

Parallel (Multicore) Executor A
PI

A

PI

Input / Output

Load Balancer

Problem Decomposition

Agents Controller

Result Aggregation

Fault Monitoring & Handling

Grid Evaluation

A
PI

A

PI

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 5, No3, June 2015

 303

1 up to 4 sequences. For example 2 sequences bundle, means
each grid task will contain 2 sequences from the dataset and the
unknown sequence and 4 sequences bundle, means each grid
task has 4 sequences from the dataset and the unknown
sequence.

The framework has the ability to limit the dataset working
space to a specific class in case that the dataset is classified into
different classes.

Figure 5. The framework user interface

The framework is been based on pairwise comparison to
query large databases to find the maximum complete or partial
alignment over the grid computing. Figure 5 shows the
implemented framework user interface.

The GDS Coordintor use the problem settings and dataset
supplied by the grid user to generator DNA sequence alignment
task. Next, the coordinator divides the tasks equally according
to GDS default load balancing policyto the connected agents.
The agents start to execute the tasks one by one and send the
results to the coordinator. If any failure happened during the
execution, the coordinator handle this failure and recover from
it. For example if one of the agent discennected for any reason,
the coordinator will reassigned the tasks assigned to the
disconnected agent toother available agentsaccording to the
load balancing policy. At last, the coordinator selects the
sequence with maximum matching score.

V. EXPERIMENTS AND DISCUSSIONS
The implemented framwork tested against 3 different

datasets TABLE I. shows the 3 different datasets properties.
Each dataset tested using the Smithwaterman algorithm and 3
bundles configurtions (1:1, 1:2 and 1:4). The experiments done
using a GDS grid of 9 workstations (8 as agents and 1 as a
coordinator). TABLE II. shows each workstation
specifications.

The first expirement was against the 1st dataset and using

the 3 different bundle configurations (1:1, 1:2 and 1:4). The
expirement compare the sequential time (single core)
incremental against up to 8 agents. TABLE III. Shows the
results of this expirment. Figure 6. Shows the speedup of the
expirment incremental up to the 8 agents.

The second expirement done against the 2nd dataset and the
3 different bundle configurations. TABLE IV. Shows the
expirement reulsts and Figure 7. Shows its speed up.

Finally, The third was against the 3rd dataset and the 3
different bundle configurations. TABLE V. shows the
expirement results and Figure 8. Shows its speed up ratio.

TABLE III. FIRST EXPIREMENT RESULTS

Processing Time (in minutes) Number of
Cores 1:1 Bundle 1:2 Bundle 1:4 Bundle

1 (Sequential) 4.38891 4.38891 4.38891

4 1.479 1.1556 1.10101

8 0.747 0.573 0.551

12 0.50674 0.40681 0.39049

16 0.49873 0.30803 0.30567

20 0.30313 0.25708 0.24979

24 0.2645 0.2152 0.2213

28 0.35199 0.20645 0.1883

32 0.23146 0.16398 0.1728

Figure 6. Speedup of the first expirment

TABLE II. WORKSTATION SPECIFICATION

Specification

Operating System Microsoft Windows Enterprise Service Pack 1

Processor Intel Core i7-2600

Number of Cores 4 Physical & 4 Virtual

Actual Clock 3.701 GHz.

Memory 4 GB

TABLE I. DIFFERENT DATASETS PROPERTIES

aset Size Sequence len
(nucleotid

t 800 600
d 1600 600
d 19200 2000

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 5, No3, June 2015

 304

TABLE IV. SECOND EXPIREMENT RESULTS

Processing Time (in minutes) Number of
Cores 1:1 Bundle 1:2 Bundle 1:4 Bundle

1 (Sequential) 8.77782 8.77782 8.77782

4 2.958 2.3112 2.20202

8 1.494 1.146 1.102

12 1.01348 0.81362 0.78098

16 0.99746 0.61606 0.61134

20 0.60626 0.51416 0.49958

24 0.529 0.4304 0.4426

28 0.70398 0.4129 0.3766

32 0.46292 0.32796 0.3456

Figure 7. Speedup of the second expirment

TABLE V. THIRD EXPIREMENT RESULTS

Processing Time (in minutes) Number of
Cores 1:1 Bundle 1:2 Bundle 1:4 Bundle

1 (Sequential) 182.3112 182.3112 182.3112

4 63.96264 50.50008 46.76274

8 32.05206 25.45002 22.8267

12 21.54222 16.63398 15.40116

16 16.20594 12.66912 11.73402

20 13.1517 10.56132 9.48636

24 12.65958 9.4365 7.94646

28 11.52792 8.5212 7.13142

32 11.68182 7.55838 6.04134

Figure 8. Speedup of the third expirment

The pervious expirements show that time decerses and the
speedup increases as the number of cores increases. In addition,
in the case of the 1:1 bundle expirement the speedup ratio
suffer from the local saturation problem. Making the task more
computational heavier through the using of task bundles (1:2
and 1:4) solved the local saturation problem. Expirements with
1:4 bundle achieved the best speed up ratio and didn’t suffer
from the local saturation problem.

Obviously, the gird system shows good scalability with
respect to both the grid size and the workload size. In the case
of small number of tasks the speedup obtained is not sufficient.
Increasing the number of tasks results in speedup improvement
because of the better utilization of the cores.

VI. CONCLUSION
The paper presented a grid DNA multiple sequence

alignment framework implemented on the GDS Grid
environemnt.

From the expirements its obvious, that Grid computing can
be a good solution for the challenges faced in bioinformatics
field. Since bioinformatics demands more computing power,
integration of distributed, huge and complex data as well as
applications of heterogeneous networks, Grid computing
environments can be a right choice. The integration of a
platform dedicated to biology into GDS grid opens up new
opportunities in terms of computing resources and data storage.

The expirements proved that increasing the task workload
achieve better speedup, better computation to communication
ratio and a good solution to the local saturation problem.

REFERENCES

[1] I. Foster, "What is the Grid? A Three Point Checklist,"
[Online]. Available:
http://www.mcs.anl.gov/~itf/Articles/WhatIsTheGrid.p
df. [Accessed 1 May 2015].

[2] L. W. a. T. Jiang, "On the complexity of multiple
sequence alignment," Journal of Computational
Biology, vol. 1, no. 4, p. 337–348, 1994.

IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555
Vol. 5, No3, June 2015

 305

[3] Y. L. a. Q. Y. S. Sze, "A polynomial time solvable
formulation of multiple sequence alignment," Journal
of Computational Biology, vol. 13, no. 2, p. 309–319,
2006.

[4] W. G. W. M. E. W. M. D. J. L. S.F. Altschul, "Basic
Local Alignment Search Tool," Journal of Molecular
Biology, vol. 215, no. 3, pp. 403-410, 1990.

[5] D. L. W. R. Pearson, "Improved Tools for Biological
Sequence Comparison," in Proceedings of The National
Academy of Sciences - PNAS, USA, 1988.

[6] M. W. T.F. Smith, "Identification of Common
Molecular Subsequences," Journal of Molecular
Biology, vol. 147, pp. 195-197, 1981.

[7] S. N. a. C. Wunsch, "A general method applicable to
the search for similarities in the amino acid sequence of
two proteins," Journal of Molecular Biology, vol. 48,
no. 3, pp. 443-453, 1970.

[8] M. H. A. a. M. B. A. Said, "An Enhanced framework
for Grid Computing Developing System (EGDS),"
Managerial Research Journal, Consultancy Research &
Development Center, 2012.

[9] M. Lehman, "Experiments with Algorithms for DNA
Sequence Alignment," Simpson College, Indianola,
Iowa.

[10] S. Vasantharathna, A. Kunthavai and R. Karuppayya,
"AGAligner – DNA Local Sequence Alignment Using
Alchemi Grid," IRACST – Engineering Science and
Technology: An International Journal (ESTIJ), ISSN:
2250-3498, vol. 2, no. 3, 2012.

[11] S. A. d. C. Junior, "Sequence Alignment Algorithms,"
King's College London, University of London, London,
2003.

[12] T. Naveed, I. S. Siddiqui and S. Ahmed, "Parallel
Needleman-Wunsch Algorithm for Grid," Bahria
University, Islamabad, Pakistan, 2004.

[13] D. Gusfield, Algorithms on Strings, Trees, and
Sequences, Cambridge University Press, 1997.

[14] R. Durbin, S. Eddy, A. Krogh and G. Mitchison,
Biological Sequence Analysis, Probabilistic Models of
Proteins and Nucleic Acids, Cambridge University
Press, 1998.

[15] A. Said, Design and Building of a Framework for Grid
Computing Developing System, Cairo: Arab Academy
for Science, Technology & Maritime Transport,
December 2012.

[16] E. Orabi, M. Assal, M. Abdel Azim and Y. Kamal,
"Designing and Building a Framework for DNA
Sequence Alignment Using Grid Computing,"
International Journal of Advanced Computer Science
and Applications, vol. 5, no. 9, pp. 83-88, 2014.

