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Abstract—DNA Multiple   sequence   alignment   is widespread 
bioinformatics application that determines the similarity between 
a new sequence with other exist sequences. Along with the growth 
in the heterogeneous biological data, many research groups 
designed tools to analyze them. Integration of these biological 
data and tools  is  becoming  one  of  the  major  topics  in  the  
field of bioinformatics. Grid computing provides the ability to 
perform high performance computing by taking advantage of 
many computers geographically distributed and connected by a 
network. Task granulation can greatly affect the processing time 
of the multiple sequence alignment on the grid. This paper shows 
a DNA multiple sequence alignment framework using the GDS 
Grid. Finally, the paper study the effect of the task granulation 
on the processing time and its effect on the computation to 
communication ratio. 
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I.  INTRODUCTION 
Computational biology and bioinformatics is mainly 

concerned with the analysis and processing of biologic data 
related to the humans and other living orgasm. Laboratories all 
over the world producing data at huge rates. Consequently, 
there is a need to process the exponentially growing amount of 
biological data for scientific advances and to solve the data 
management problems. On the other hand, computational 
biology aims to solve these biological problems by utilizing 
computers to test and evaluate hypotheses and theories. 

Research in the field of bioinformatics has grown 
significantly in the recent years as demands for more 
computing power increased. The solutions to these demands 
usually involve using parallel and/or distributed techniques. 
Grid Computing is an evolving technology to provide high 
performance computing in a virtual environment composed of 
a large number of computers connected through network[1]. 

Multiple sequences alignment involves more than two 
biological sequences, generally protein, DNA, or RNA. 
Multiple sequence alignment is computationally intensive 
problem and classified as a NP-Hard problem [2] [3].  

Sequence alignment is a common bioinformatics application 
used to determine the degree of similarity between two 
sequences. Sequence alignment is the elementary operation of 
the DNA sequencing problem, due to the large number of 
DNA sequences applications. Sequences can be aligned across 

their entire length (global alignment) or only in certain regions 
(local alignment).  Local sequence alignment plays a major 
role in the analysis of DNA and protein sequences [4] [5]. 

Several global and local sequence alignment tools use well-
known algorithms such as The popular Smith-Waterman and 
Needleman-Wunsch used for local and global sequence 
alignment respectively [6] [7].  

This paper describes framework implemented both the 
Smith-Waterman and Needleman-Wunsch algorithms along 
with multiple scoring matrices on the Grid Developing System 
(GDS) [8]. The paper also study the task granulation effect on 
the overall processing time of the grid framework.  

II. SEQUENCE ALIGNMENT 
The data of sequence are partitioned into DNA sequences 

and protein sequences. Each DNA sequence consists of four 
types of base A, T, C and G and each protein sequence is made 
up of 20 types of amino acid, hence any sequence can be 
represented as a string over specific alphabet.  

DNA sequence alignment is a representation of the 
similarity between two or moresections of genetic code. It is 
used to compare these sections in a quantitative way.Biologists 
use the comparisons to discover evolutionary divergence, the 
origins ofdisease, and ways to apply genetic codes from one 
organism into another[9]. 

A. Pair wise Sequence Alignment 
Pair wise sequence alignments are used to find 

diagnosticpatterns that characterize the two DNA families; to 
detect ordemonstrate homology between new sequences and 
existingfamilies of sequences. 

Two general models view alignments in different ways:the 
first considers similarity across the full extent of thesequences 
(a global alignment); the second focuses onregions of similarity 
in parts of the sequences only (a localalignment). It is 
important to understand these distinctions, toappreciate that 
sequences are not uniformly similar, and thereis no value in 
performing a global similarity on sequencesthat have only local 
similarity. Therefore, finding local similaritymay produce more 
biological meaning and sensitive resultthan finding optimal 
alignment over entire length of thesequence[10]. 

B. Global Sequence Alignment 
The idea of aligning two sequences (of possibly different 

sizes) is to write one on top of the other, and break them into 



IRACST - International Journal of Computer Science and Information Technology & Security (IJCSITS), ISSN: 2249-9555  
Vol. 5, No3, June 2015 

 301

smaller pieces by inserting spaces in one or the other so that 
identical Subsequences are eventually aligned in a one-to-one 
correspondence - naturally, spaces are not inserted in both 
sequences at the same position. In the end, the sequences end 
up with the same size. The following example illustrates 
aglobal alignment between the sequences 
A=”ACAAGACAGCGT” and B=”AGAACAAGGCGT”. 

 A = A C A A G A C A G - C G T  
   |  | |  |  | |  | | |  
 B = A G A A C A - A G G C G T  

 Figure 1.  Global Alignment of two sequences  

The objective is to match identical subsequences as far as 
possible. In the example, nine matches are highlighted with 
vertical bars. However, if the sequences are not identical, 
mismatches are likely to occur as different letters are aligned 
together. Two mismatches can be identified in the example: a 
“C” of A aligned with a “G” of B, and a “G” of A aligned with 
a “C” of B. The insertion of spaces produced gaps in the 
sequences. They were important to allow a good alignment 
between the last three characters of both sequences [11]. 

An alignment can be seen as a way of transforming one 
sequence into the other. From this point of view, a mismatch is 
regarded as a substitution of characters. A gap in the first 
sequence is considered an insertion of a character from the 
second sequence into the first one, whereas a gap in the second 
sequence is considered a deletion of a character of the first 
sequence. In the previous example, A can be converted into B 
in four steps: 1) substitute the first “C” for a “G”; 2) substitute 
the first “G” for a “C”; 3) delete the second “C”; and 4) insert a 
“G” before the last three characters. 

Once the alignment is produced, a score can be assigned to 
each pair of aligned letters, called aligned pair, according to a 
chosen scoring scheme. We usually reward matches and 
penalize mismatches and gaps. The overall score of the 
alignment can then be computed by adding up the score of each 
pair of letters. For instance, using a scoring scheme that gives a 
+1 value to matches and −1 to mismatches and gaps, the 
alignment of the two sequences in Figure 1 scores 9 * (1) + 2 * 
(−1) + 2 * (−1) = 5. 

The similarity of two sequences can be defined as the best 
score among all possible alignments between them. Note that it 
depends on the choice of scoring scheme. In the next sections, 
the problem of finding the best alignment of two sequences (an 
alignment that gives the highest score) will be addressed[11]. 

C. Local Sequence Alignment 
The previous section described a type of alignment know as 

global alignment since we are interested in the best match 
covering the two sequences in their entirety. Frequently, 
though, biologists are interested in short regions of local 
similarity. A local alignment is one that looks for best 
alignments between “pieces”, or more precisely, substrings of 
both sequences. 

Local alignment searches for segments of the two 
sequences that match well. There is no attempt to force entire 
sequences into an alignment, just those parts that appear to 

have good similarity, according to some criterion are 
considered [12]. 

The following example illustrates a local alignment 
between the sequences A=”ACAAGACAGCGT” and 
B=”AGAACAAGGCGT”. 

  A = A C A A G A C A G C G T   
            | | | |   
  B = A G A A C A A G G C G T   

Figure 2.  Local Alignment of two sequences 

Most commonly used algorithm for local alignment is 
Smith-Waterman algorithm [12]. 

D. Substitution Matrices 
In the previous example, fixed scores were given for 

matches, mismatches and gap penalties. However, biologists 
frequently use scoring schemes that take into account 
physicochemical properties or evolutionary knowledge of the 
sequences being aligned. This is common when protein 
sequences are compared.  

For instance, for some reason one might want to penalize 
the mismatch of an aspartic acid (D) with leucine (L) more 
heavily than a mismatch between the same aspartic acid with, 
say, histidine (H). Similarly, one may want to reward a match 
of two cysteine (C) better than two alanine (A) [11]. 

This type of scoring schemes is called alphabet-weight 
scoring schemes, and is usually implemented by a substitution 
matrix. Currently, two types of amino acid substitution 
matrices are being largely used by biologists for practical 
protein sequence alignment: PAM and BLOSUM. They were 
developed from different concepts but have the same structure. 
In fact, they are a series of matrices with varied degrees of 
sensibility. 

The PAM matrices (acronym for point accepted mutations) 
are extrapolated from data obtained from very similar 
sequences to reflect an amount of evolution producing on 
average one mutation per hundred amino acids. The BLOSUM 
matrices (acronym for blocks substitution matrix), in contrast, 
were developed to detect more distant relationships [13]. In 
particular, BLOSUM50 and BLOSUM62 are being widely 
used for pairwise alignment and database searching [14]. 

Substitution matrices allow for the possibility of giving a 
positive score for a mismatch, what is sometimes called an 
approximate or partial match. For instance, the BLOSUM62 
matrix returns a score of +2 for the substitution of a lysine (K) 
for an arginine (R) [11]. 

III. GRID COMPUTING 
A grid is a type of parallel and distributed system that 

enables the sharing, selection, and aggregation of 
geographically distributed resources dynamically at runtime 
depending on their availability, capability, performance, cost, 
and users' quality of-service requirements. At the basic level, a 
grid can be viewed as an aggregation of multiple machines 
(each with one or more CPUs) abstracted to behave as one 
"virtual" machine with multiple CPUs. 
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Grid applications distinguished from traditional client 
server applications by their simultaneous use of large numbers 
of resources, use of resources from multiple administrative 
domains, complex communication topologies and severe 
performance requirements. 

The GDS is a .NET based computational grid environment 
implemented in MTI University [8]. The GDS Grid allow the 
seamless aggregation of the computing power of multiple 
distributed machines connected through network into a virtual 
super computer. The GDS grid computing framework was 
conceived with the aim of making grid construction and 
development of grid software as easy as possible without 
sacrificing flexibility, scalability, reliability and extensibility 
[8]. 

GDS has practical capabilities of connecting up to 4096 
workstations. In addition, GDS is hardware scalable in which 
workstations could be easily replaced with a high-end server 
through the GDS plug and play agent feature. The GDS will 
automatically utilize the new powerful resources in the new 
connected agents [15]. 

GDS Grids are constructed using two types of distributed 
components (or nodes). These are GDS Coordinator and GDS 
Agent according to their roles with respect to a grid 
application. 

A. GDS Coordinator 
Coordinator manages the execution of grid applications and 

provides services associated with managing thread execution. 
The coordinator distribute the tasks to agents according to 
certain scheduling policy. The default GDS scheduling policy 
distribute tasks to grid agents based on their available physical 
cores. The coordinator considers each physical core of each 
agent as a separate execution unit [8]. 

GDS separates the coordinator into several components, 
each component responsible for a specific task. Figure. 3 shows 
the different GDS Coordinator components [15]. GDS expose 
an Application Programming Interface (API) for both the 
Problem Decomposition and the Result aggregation 
components for the grid application developer to write the 
application to utilize the GDS grid. 

 

Figure 3.  GDS Coordinator components 

 

B. GDS Agent 
The agent represent the worker unit in the GDS Grid. The 

agent registers itself with a GDS coordinator and waits to 
receive grid tasks to process [8]. Again, GDS expose an API 
for the grid application developer to utilize the agent’s 
resources. Figure.  4 shows the different GDS agent 
components[15]. 

 

Figure 4.  GDS Agent components 

IV. THE IMPLEMENTED FRAMEWORK 
The implemented DNA multiple sequence alignment 

framework is a tool developed using the GDS grid 
environment. The framework uses one GDS Coordinator and 
several agentsto align the DNA sequences. 

The framework supports both the Global sequence 
alignment using Smith waterman and Local sequence 
alignment using Needleman Wunch algorithms along with 3 
different substitution scoring matrices (BLOSUM62, PAM250 
and Gonnet160). 

In addition, the framework aims to study and overcome the 
effect of the computation to communication ratio.  Therefore, 
to overcome the computation to communication ratio, the 
workload of each grid task must has heavier computation. The 
idea is to bundle more than one sequence from the dataset 
along with the unknown sequence. That is, the enhanced 
framework adds an option to choose the sequence bundle from 
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1 up to 4 sequences. For example 2 sequences bundle, means 
each grid task will contain 2 sequences from the dataset and the 
unknown sequence and 4 sequences bundle, means each grid 
task has 4 sequences from the dataset and the unknown 
sequence. 

The framework has the ability to limit the dataset working 
space to a specific class in case that the dataset is classified into 
different classes. 

 

Figure 5.  The framework user interface 

The framework is been based on pairwise comparison to 
query large databases to find the maximum complete or partial 
alignment over the grid computing. Figure 5 shows the 
implemented framework user interface.  

The GDS Coordintor use the problem settings and dataset 
supplied by the grid user to generator DNA sequence alignment 
task. Next, the coordinator divides the tasks equally according 
to GDS default load balancing policyto the connected agents. 
The agents start to execute the tasks one by one and send the 
results to the coordinator. If any failure happened during the 
execution, the coordinator handle this failure and recover from 
it. For example if one of the agent discennected for any reason, 
the coordinator will  reassigned the tasks assigned to the 
disconnected agent toother available agentsaccording to the 
load balancing policy. At last, the coordinator selects the 
sequence with maximum matching score. 

V. EXPERIMENTS AND DISCUSSIONS 
The implemented framwork tested against 3 different 

datasets TABLE I. shows the 3 different datasets properties. 
Each dataset tested using the Smithwaterman algorithm and 3 
bundles configurtions (1:1, 1:2 and 1:4). The experiments done 
using a GDS grid of 9 workstations (8 as agents and 1 as a 
coordinator). TABLE II. shows each workstation 
specifications. 

 

 
The first expirement was against the 1st dataset and using 

the 3 different bundle configurations (1:1, 1:2 and 1:4). The 
expirement compare the sequential time (single core) 
incremental against up to 8 agents. TABLE III. Shows the 
results of this expirment. Figure 6. Shows the speedup of the 
expirment incremental up to the 8 agents. 

The second expirement done against the 2nd dataset and the 
3 different bundle configurations. TABLE IV. Shows the 
expirement reulsts and Figure 7. Shows its speed up. 

Finally, The third was against the 3rd dataset and the 3 
different bundle configurations. TABLE V. shows the 
expirement results and Figure 8. Shows its speed up ratio. 

TABLE III.  FIRST EXPIREMENT RESULTS 

Processing Time (in minutes) Number of 
Cores 1:1 Bundle 1:2 Bundle 1:4 Bundle 

1 (Sequential) 4.38891 4.38891 4.38891 

4 1.479 1.1556 1.10101 

8 0.747 0.573 0.551 

12 0.50674 0.40681 0.39049 

16 0.49873 0.30803 0.30567 

20 0.30313 0.25708 0.24979 

24 0.2645 0.2152 0.2213 

28 0.35199 0.20645 0.1883 

32 0.23146 0.16398 0.1728 

 

 

Figure 6.  Speedup of the first expirment 

 

TABLE II.  WORKSTATION SPECIFICATION 

Specification 

Operating System Microsoft Windows Enterprise Service Pack 1 

Processor Intel Core i7-2600 

Number of Cores 4 Physical & 4 Virtual 

Actual Clock 3.701 GHz. 

Memory 4 GB 

TABLE I.  DIFFERENT DATASETS PROPERTIES 

aset  Size Sequence len
(nucleotid

t  800 600 
d  1600 600 
d  19200 2000 
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TABLE IV.  SECOND EXPIREMENT RESULTS 

Processing Time (in minutes) Number of 
Cores 1:1 Bundle 1:2 Bundle 1:4 Bundle 

1 (Sequential) 8.77782 8.77782 8.77782 

4 2.958 2.3112 2.20202 

8 1.494 1.146 1.102 

12 1.01348 0.81362 0.78098 

16 0.99746 0.61606 0.61134 

20 0.60626 0.51416 0.49958 

24 0.529 0.4304 0.4426 

28 0.70398 0.4129 0.3766 

32 0.46292 0.32796 0.3456 

 

 

Figure 7.  Speedup of the second expirment 

 

TABLE V.  THIRD EXPIREMENT RESULTS 

Processing Time (in minutes) Number of 
Cores 1:1 Bundle 1:2 Bundle 1:4 Bundle 

1 (Sequential) 182.3112 182.3112 182.3112 

4 63.96264 50.50008 46.76274 

8 32.05206 25.45002 22.8267 

12 21.54222 16.63398 15.40116 

16 16.20594 12.66912 11.73402 

20 13.1517 10.56132 9.48636 

24 12.65958 9.4365 7.94646 

28 11.52792 8.5212 7.13142 

32 11.68182 7.55838 6.04134 

 

 

Figure 8.  Speedup of the third expirment 

 

The pervious expirements show that time decerses and the 
speedup increases as the number of cores increases. In addition, 
in the case of the 1:1 bundle expirement the speedup ratio 
suffer from the local saturation problem. Making the task more 
computational heavier through the using of task bundles (1:2 
and 1:4) solved the local saturation problem. Expirements with 
1:4 bundle achieved the best speed up ratio and didn’t suffer 
from the local saturation problem. 

Obviously, the gird system shows good scalability with 
respect to both the grid size and the workload size. In the case 
of small number of tasks the speedup obtained is not sufficient. 
Increasing the number of tasks results in speedup improvement 
because of the better utilization of the cores. 

VI. CONCLUSION 
The paper presented a grid DNA multiple sequence 

alignment framework implemented on the GDS Grid 
environemnt.  

From the expirements its obvious, that Grid computing can 
be a good solution for the challenges faced in bioinformatics 
field. Since bioinformatics demands more computing power, 
integration of distributed, huge and complex data as well as 
applications of heterogeneous networks, Grid computing 
environments can be a right choice. The integration of a 
platform dedicated to biology into GDS grid opens up new 
opportunities in terms of computing resources and data storage. 

The expirements proved that increasing the task workload 
achieve better speedup, better computation to communication 
ratio and a good solution to the local saturation problem. 
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