
A Middleware-level Approach to Adaptive Distributed Systems

Jingtao Sun
Department of Informatics

The Graduate University for Advanced Studies (SOKENDAI)
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

sun@nii.ac.jp

Abstract

This paper proposes an approach to adapting distributed applications to changes in environmental conditions, e.g., user
requirements and resource availability. The key idea behind the proposed approach is to introduce the relocation of software
components to define functions between computers as a basic mechanism for adaptation on distributed systems. It also
introduces application-specific built-in policies for relocating components to define higher-level adaptation. It is constructed
as a middleware system for Java-based general-purposed software components. This paper describes the proposed approach
and the design and implementation of the approach with three applications, e.g., dynamic deployment of software at nodes in
a sensor network and adaptive selection between data replication between primary backup and chain replication approaches
in a distributed system.

Keywords: Distrubuted Systems, Middleware-level approach

I. INTRODUCTION

The complexity and dynamism of distributed systems are
beyond our ability to build and manage systems through
conventional approaches, such as those that are central-
ized and top-down. This is because distributed systems are
complicated and dynamic by nature. For example, com-
puters and software components of which an application
consists may be dynamically added to or removed from
them, and networks between computers may be connected or
disconnected, dynamically. Software running on distributed
systems should be resilient so that the systems can adapt
themselves to various changes at runtime. Software running
on a distributed system should be adaptive to reuse it on
different distributed systems.

Distributed applications are executed for multiple-
purposes and multiple users whose requirements are various
and change, on a variety of distributed systems whose struc-
tures may change. Adaptation to support variety and change
in the underlying systems and applications’ requirements
should be separated from business logic. Therefore, we
distinguish between adaptation concerns and business logic
concerns by using the principle of separation of concerns
so that developers for applications can concentrate their
business logic rather than adaptation as much as possible. A
solution to this is to introduce concern-specific languages for
separating adaptive concerns from business logic concerns.
There have been several attempts to support the separation of
concerns on non-distributed systems, but adaptation mecha-

nisms in distributed systems tend to be complicated so that
it is difficult to define primitive adaptation.

This paper addresses the separation of adaptation con-
cerns from application-specific logic concerns in distributed
systems. We assumed that a distributed application would
consist of one or more software components, which might
have been running on different computers through a network.
Our proposed approach has two key ideas. The first is to
introduce policies for relocating software components as
a basic adaptation mechanism. The second is to provide
nature-inspired relocation policies for application-specific
adaptations. When changes in a distributed system occurred,
e.g., in the requirements of the application and the structures
of the system, its software components would automati-
cally be relocated to different computers according to their
policies to adapt it to the changes. We are constructing
a middleware system that will be used for building and
operating adaptive distributed systems.

The proposed approach is based on adaptive deployment
of software components but not on adaptive functions inside
software components like other existing work. If functions
inside software components are adapted, other components,
which communicate with the adapted ones, may have serious
problems. On the other hand, the relocation of software
components does not lose potential functions of components.
This may seem to be simple but it makes their applica-
tions resilient without losing availability, dependability, and
reliability. In fact, our approach can provide adaptation

International Journal of Computer Systems (ISSN: 2394-1065), Volume 02– Issue 11, November, 2015

Available at http://www.ijcsonline.com/
International Journal of Computer Systems (ISSN: 2394-1065), Volume 02– Issue 11, November, 2015
Available at http://www.ijcsonline.com/

 481 | International Journal of Computer Systems, ISSN-(2394-1065), Vol. 02, Issue 11, November, 2015

between practical approaches in distributed systems. For
example, primary-backup and chain replication, which are
widely used in distributed systems, including cloud com-
puting, consistently support replication mechanisms with
consistency on distributed systems. Nevertheless, the latter
has been designed to improve throughput rather than latency
in comparison with the former. They should be dynamically
selected according to the requirements of applications, which
may often change.

II. RELATED WORK

This section outlines related work. The notion of adapta-
tion is rapidly attracting attention in the area of distributed
systems. There have been several attempts to develop adap-
tive distributed systems. Most of them have aimed at man-
aging balance computational loads or network traffic.

Common approaches for self-organization have included
genetic computation, genetic programming [9], and swarm
intelligence [2], [4]. Although there is no centralized control
structure dictating how individual agents should behave, in-
teractions between simple agents with static rules often lead
to the emergence of intelligent global behavior. Most exist-
ing approaches have only focused on their target problems
or applications but they are not general purpose, whereas
distributed systems are. Our software adaptation approach
should be independent of applications. Furthermore, most
existing self-organization approaches explicitly or implicitly
assume a large population of agents or boids. However,
real distributed systems have no room to execute such large
numbers of agents.

Computational reflection refers to the ability of a program
to reason about and define its own behavior. Reflection
enables a system to be open to dynamically define itself
without compromising portability or revealing parts unnec-
essarily. In this approach, the program contains one or more
meta levels, which enable reconfiguration of the underlying
base-level code. Separation of concerns enables the sep-
arate development of an applications functional behavior
and its adaptive behavior involving crosscutting concerns.
A widely used technique is aspect-oriented programming
(AOP), where the code implementing a crosscutting concern,
called an aspect, is developed separately from other parts of
the system and woven with the business logic at compile-
or run-time. Reflective and AOP approaches are primitive so
that they do not directly support adaptation for distributed
systems.

Several researchers have explored software adaptation
in the literature on adaptive computing and evolution
computing. Jaeger et al. [8] introduced the notion of
self-organization to an object request broker and a pub-
lish/subscribe system. Georgiadis et al. [5] presented
connection-based architecture for self-organizing software
components on a distributed system. Like other software
component architectures, they intended to customize their

systems by changing the connections between components
instead of the internal behaviors inside them. Like ours,
Cheng at al. [3] presented an adaptive selection mechanism
for servers by enabling selection policies, but they did
not customize the servers themselves. They also needed
to execute different servers simultaneously. Herrman et al.
proposed the bio-inspired deployment of services on sensor
networks [6]. Unlike ours, their work focused on the deploy-
ment and coordination of services, instead of the adaptation
of software itself to provide services. Nakano and Suda
[11], [16] proposed bio-inspired middleware, called Bio-
Networking, for disseminating network services in dynamic
and large-scale networks where there were large numbers of
decentralized data and services. Although they introduced
the notion of energy into distributed systems and enabled
agents to be replicated, moved, and deleted according to the
number of service requests, they had no mechanism to adapt
agents’ behaviors unlike ours. As most of their parameters,
e.g., energy, tended to depend on a particular distributed
system, so that they may not have been available in another
system. Our approach was designed independently of the
capabilities of distributed systems because adaptive policies
should be able to be reused in other distributed systems.

There have been several attempts to design specification
languages for self-adaptation. Several formal approaches
supported specific aspects of self-adaptation exist. For exam-
ple, Zhang [18] proposed an approach to formally modeling
and specifying two aspects: adaptation behavior and non-
adaptive behavior, separately in a graph-based notation and
generate an implementation of the system. They extended
Linear Temporal Logic (LTL) with an adaptive operator that
allows the description of adaptive behavior. However, the ap-
proach was intended to adapt finite state machines to changes
so that it could not support any distributed systems. FORMS
[17] provides an encompassing formally founded vocabulary
for describing and reasoning about different concerns of
self-adaptive software architectures. It, however, does not
define any notion of execution semantics, that is how the
adaptation of the system takes place. ACML [10] allows
the separated and explicit specification of self-adaptivity
concerns by using LTL notations. Based on formal semantics
we show how to apply quality assurance techniques to the
modeled self-adaptive system, which enable the provisioning
of hard guarantees concerning self-adaptivity characteristics
such as adaptation rule set stability and deadlock freedom.
Its specification was limited to the expressiveness of state
machines so that did not support distributed systems.

The relocation of software components have been studied
in the literature on mobile agents [14]. However, existing
mobile agent platforms have been designed for solving prob-
lems in distributed systems, e.g., the reduction of network
latency and fault tolerance, instead of adaptation. There
have been a few attempts to introduce the policy-based
relocation of software components or agents. The FarGo

 482 | International Journal of Computer Systems, ISSN-(2394-1065), Vol. 02, Issue 11, November, 2015

Jingtao Sun et al A Middleware-level Approach to Adaptive Distributed Systems

system introduced a mechanism for distributed applications
dynamically laid out in a decentralized manner [7]. This
was similar to our relocation policy in the sense that it
allowed all components to have their own policies, but it
only supports a simple relocation unlike ours, and could
not specify any conditions for their policies, unlike ours.
Satoh [13] proposed other relocation policies for relocating
components based on policies that other components moved
to. However, these policies did not have the conditions that
select and execute them unlike the approach proposed in this
paper. One of the authors proposed an adaptation mechanism
for distributed systems [15]. However, the mechanism was
aimed at adapting functions of software components, which
are statically located at computers, by using the notion of
differentiation instead of their locations.

III. APPROACH

As the requirements of applications and the structures
of systems may often change in distributed systems, the
applications need to adapt themselves to such changes. Our
approach introduces the relocation of software components
to define functions at other computers as a basic adaptation
mechanism.

A. Requirements

Distributed systems are used for multiple purposes and
users and need abilities to adapt them to various changes
results from their dynamic properties. Our adaptation has
five requirements.

• Self-adaptation: Distributed systems essentially lack no
global view due to communication latency between
computers. Software components, which may be run-
ning on different computers, need to coordinate them to
support their applications with partial knowledge about
other computers.

• On-demand deployment of software: Computers in may
have limited resources so that they cannot support soft-
ware for various applications beforehand. To coordinate
multiple computers for an applications, software for
the application need to be dynamically deployed at
appropriate computers.

• Separation of concerns: All software components
should be defined independently of our adaptation
mechanism as much as possible. As a result, developers
should be able to concentrate on their own application-
specific processing.

• Reusability: There have been many attempts to provide
adaptive distributed systems. However, the approaches
and parameters in most of them these strictly and
statically depended on their target systems, so that
they would need to be re-defined overall to be reused
in other distributed systems. Our adaptation should
be abstracted away from the underlying systems for
reasons of reusability.

• No-centralized management: There is no central entity
to control and coordinate computers. Our adaptation
should be managed without any centralized manage-
ment for reasons of avoiding any single points of
failures and performance bottleneck for reliability and
scalability.

There are various applications running on distributed sys-
tems are various. Therefore, the approach should be imple-
mented as a practical middleware to support general-purpose
applications. Computers on distributed systems may have
limited resources, e.g., processing, storage resources, and
networks. Our approach should be available with such lim-
ited resource, whereas many existing adaptation approaches
explicitly or implicitly assume that their target distributed
systems have enriched resources. The bandwidth of networks
on several distributed systems tend to be narrow and their
latency cannot be neglected. The approach should support
such networks.

B. Adaptation

Our approach separates software components from their
policies for adaptation, although components have their own
policies.

1) Deployable software component:: This approach as-
sumes that an application consists of one or more software
components, which may be running on different computers.
Each component is general-purpose and is a programmable
entity. It can be deployed at another computer according
to its deployment policy, while it have started to run. It is
defined as a collection of Java objects like JavaBeans compo-
nent in the current implementation. It also has an interface,
called a reference, to communicate with other components
through dynamic method invocation developed in common
object request broker architecture (CORBA). The interface
supports the notion of being mobility-transparent in addition
to that of inter-component communication, in the sense that
it can forward messages to co-partner components after it
has migrated to another computer through a network.

2) Deployment policy for adaptation:: Each component
can have one or more policies, where each policy is basically
defined as a pair of information on where and when the com-
ponent is deployed. Before explaining deployment policies
in the proposed approach, we need to discuss policies for
adaptation in distributed systems. Our approach introduces
the these concepts:

• Adaptation as relocation of component: Our approach
introduces the relocation and coordination of software
components as a mechanism. Instead, it does not sup-
port any adaptation inside software components.

• Each application-specific component can have one or
more policies, where each policy is basically defined as
a pair of information on where and when the component
is deployed.

483 | International Journal of Computer Systems, ISSN-(2394-1065), Vol. 02, Issue 11, November, 2015

Jingtao Sun et al A Middleware-level Approach to Adaptive Distributed Systems

• Policies can be defined outside components, so that they
can be reused for other components and the components
can be reused with other policies.

• The destinations of the relocation of software compo-
nents are specified at the addresses of other components
instead of the addresses of computers, because our
adaptation should be independent of the underlying
system, e.g., computers and networks.

Since our approach is designed for disaggregated computing
rather than general distributed computing, we intend to
provide only a set of essential and useful adaptation policies
for disaggregated computing as follows:

• The approach supports relocation of software compo-
nents but not any adaptation inside software compo-
nents When more than one dimension must be con-
sidered for adaptation, representing the policies and
choices between policies tends to be too complicated
to define and select policies. Therefore, we intend
to support at most one dimension, i.e., the dynamic
deployment of components.

• Each component has one or more policies, where a
policy specifies the relocation of its components and
instructs them to migrate to the destination according
to conditions specified in the policy. The validation
of every policy can be explicitly configure to be one-
time, within specified computers, or permanent within
its component.

• Each policy is specified as a pair of a condition part
and at the most one destination part. The former is
written in a first-order predicate logic-like notation,
where predicates reflect information about the system
and applications. The destination part refers to another
components instead of the computer itself. This is
because such policies should be abstracted away from
the underlying systems, e.g., network addresses, so that
they can be reused on other distributed systems. The
policy deploys its target component (or a copy of the
component) at the current computer of the component
specified as the destination, if the condition is satisfied.

• The approach also provides built-in policies for adap-
tation as extensions of the above primitive relocation
policy. In fact, it is not easy to define relocation
policies, because such policies tend to depend on the
underlying systems.

Since components for which other components have policies
can be statically or dynamically deployed at computers, the
destinations of policies can easily be changed for reuse by
other distributed systems. Next, we describe our built-in
policies for adaptation in distributed systems (Fig. 1).

Our approach provides a set of essential and useful
adaptation policies for distributed systems:

• Attraction: Frequent communication between two com-
ponents yields stronger force. The both or one of the

components are dynamically deployed at computers
that other components are located at.

• Spreading: Copies of software components are dynami-
cally deployed at neighboring and propagated from one
computer to another over a distributed system. This
policy progressively spreads components for defining
functions over the system and reduces the lack of the
functions.

• Repulsion: Components are deployed at computers in a
decentralized manner to avoid collisions among them.
This policy moves software components from regions
with high concentrations of components to regions with
low concentrations.

• Evaporation: Excess of components results in over-
loads. The same or compatible functions must be dis-
tributively processed to reduce the amount of load and
information. This policy consists in locally applying to
synthesize multiple components or periodically reduces
the relevance of functions.

Each policy is activated only when its condition specified
in it is satisfied, where the condition is written in a first-
order predicate logic-like notation, where predicates reflect
information about the system and applications.

IV. DESIGN

The proposed approach dynamically deploys components
to define application-specific functions at computers accord-
ing to the policies of the components to adapt distributed
applications to changes in distributed systems.

Our middleware system consists of two parts: a compo-
nent runtime system and an adaptation manager, where each
of the systems are coordinated with one another through
a network. The first part is responsible for executing and
duplicating components at computers and also exchanging
components and messages in runtime systems on other com-
puters through a network. The second part is responsible for
managing policies for adaptation. It consists of an interpreter
for policies written in our proposed language and a database
system to maintain the policies.

A. Component runtime system

Each runtime system allows each component to have at
most one activity through the Java thread library. When
the life-cycle state of a component changes, e.g., when
it is created, terminates, duplicate, or migrates to another
computer, the runtime system issues specific events to the
component. To capture such events, each component can
have more than one listener object that implements a specific
listener interface to hook certain events issued before or
after changes have been made in its life-cycle state. The
current implementation uses the notion of dynamic method
invocation studied in CORBA so that it can easily hide
differences between the interfaces of objects at the original
and other computers.

484 | International Journal of Computer Systems, ISSN-(2394-1065), Vol. 02, Issue 11, November, 2015

Jingtao Sun et al A Middleware-level Approach to Adaptive Distributed Systems

Step 1
Attraction policy

Component

A

co-partner

component

co-partner

component
Component

A

Step 2

Step 1
Spreading policy

Component

A

Destination

component

Destination

component

Copy of

Component

A

Step 2

Component

A

Step 1
Repulsion policy

Component

A

Destination

component

Destination

component

Component

A

Step 2

Component

A

Component

A

Step 1
Evaporation policy

Component

A

Step 2

Component

A+A’

Component

A’

Figure 1. Built-in Relocation Policies for adaptation

Each runtime system can exchange components with other
runtime systems through a TCP channel using mobile-agent
technology. When an component is transferred over the
network, not only the code of the component but also its
state is transformed into a bitstream by using Java’s object
serialization package and then the bit stream is transferred
to the destination. The component runtime system on the
receiving side receives and unmarshals the bit stream.

Even after components have been deployed at destina-
tions, their methods should still be able to be invoked from

other components, which are running at local or remote com-
puters. The runtime systems exchanges information about
components that visit them with one another in a peer-to-
peer manner to trace the locations of components.

B. Adaptation manager

Figure 2 shows the policy-based relocation of component.
Each adaptation manager periodically advertises its address
to the others through UDP multicasting, and these computers
then return their addresses and capabilities to the computer
through a TCP channel.1 It evaluates the conditions of its
storing policies, when the external system detects changes
in environmental conditions, e.g., user requirements and
resource availability.

Computer 1 Computer 2

Condition

Relocation
policy

Computer 1 Computer 2

Step 1

Step 2

Component

Component Destination

component

Destination

component

Relocation

Component or its clone is relocated according to policy

Policy is activated only when condition is satsified

Figure 2. Attraction policy for relocation

Each policy is specified as a pair of conditions and
actions. The former is written in a first-order predicate
logic-like notation and its predicates reflect various system
and network properties, e.g., the utility rates and process-
ing capabilities of processors, network connections, and
application-specific conditions. The latter is specified as a
relocation of components. Our adaptation was intended to be
specified in a rule-style notation. However, existing general-
purpose rule-based systems tend to be unwieldy because they
cannot express necessary adaptation expertise or subtleties
of adaptation in distributed systems.

name { (Name of policy)
predicate1, · · ·, predicaten (Condition of policy)
relocation(componentid) (The destination of relocation)

validation (Validation of policy)
}

where relocation in the syntax is provided with built-in or
user-defined policies. validation specifies whether the policy

1We assumed that the components that comprised an application would
initially be deployed at computers within a localized space smaller than the
domain of a sub-network.

 485 | International Journal of Computer Systems, ISSN-(2394-1065), Vol. 02, Issue 11, November, 2015

Jingtao Sun et al A Middleware-level Approach to Adaptive Distributed Systems

is one time or permanent. Our adaptation has four built-in
policies:

• When a component has an attraction policy for another
component, if communications between the former and
latter becomes more than a specified number, the policy
instructs the former to migrate to the current computer
of the latter.

• When a component has a spreadinG: policy for another
component, if the current computer of the latter does
not have the same or compatible components, the policy
makes a copy of the former copy of it and instructs the
copy to migrate to the current computer of the latter.

• When a component has a repulsion policy for another
component, if there are a specified number or more of
the same or compatible components of the former at
the current computer, the policy instructs the former to
migrate to the current computer of the latter.

• When a component has an evaporation policy, if there
are a specified number or more of the same or compat-
ible components of the former at the current computer
or its specified life span, called time-to-live (TTL) is
over, it terminates.

For example, when the condition of the attraction policy
is the movement of the co-partner component, the target
component follows the movement of the co-partner. This is
useful when the two components need to interact frequently
and/or require heavy data-transfer on each interaction yet
they cannot be programmed inside a single component.
When the condition of the evaporation policy is that the
target component and specified component are at the same
computer, it reduces the number of components.

V. IMPLEMENTATION

This section describes the current implementation of a
middleware system based on the proposed approach.

A. Deployable component

Each component is a general-purpose programmable en-
tity defined as a collection of Java objects like JavaBeans and
packaged in the standard JAR file format. It has no specifica-
tion for adaptation inside it, but it can be migrated duplicated
to a remote computer by the current adaptation manager. We
introduce our original remote method invocation between
computers instead of Java remote method invocation (RMI),
because Java RMI does not support object migration. Each
runtime system can maintain a database that stores pairs
of identifiers of its connected components and the network
addresses of their current runtime systems. It also provides
components with references to the other components of the
application federation to which it belongs, as was discussed
in Section III. Each reference enables the component to
interact with the component that it specifies, even if the
components are on different hosts or move to other hosts.

These references are managed by using our original protocol
for locating components by using UDP multicasting.

B. Component runtime system

Our runtime system is similar to a mobile agent plat-
form [14], but it has been constructed independently of
any existing middleware systems. This is because existing
middleware systems, including mobile agents and distributed
objects, have not supported the policy-based relocation of
software components. The system is built on the Java
virtual machine (JVM), which can abstract away differences
between operating systems.

The current implementation basically uses the Java object
serialization package to marshal or duplicate components.
The package does not support the capture of stack frames
of threads. Instead, when a component is duplicated, the
runtime system issues events to it to invoke their specified
methods, which should be executed before the component
is duplicated or migrated, and it then suspends their active
threads.

It can encrypt components before migrating them over
the network and it can then decrypt them after they arrive
at their destinations. Moreover, since each component is
simply a programmable entity, it can explicitly encrypt its
individual fields and migrate itself with these and its own
cryptographic procedure. The Java virtual machine could
explicitly restrict components so that they could only access
specified resources to protect computers from malicious
components. Although the current implementation cannot
protect components from malicious computers, the runtime
system supports authentication mechanisms to migrate com-
ponents so that all runtime systems can only send compo-
nents to, and only receive from, trusted runtime systems.

C. Adaptation Manager

The adaptation manager is running on each computer and
consists of three parts: an interpreter, a database for policies,
and an event manager. The first is responsible for evaluating
policies, the second maintains the policies that components
are running on the computer, and the third receives events
from the external systems to notify changes in the underlying
system and applications and then forwards them to the first.

We describe a process of the relocation of a component
according to one of its policies. (1) When a component
creates or arrives at a computer, it automatically registers its
deployment policies with the database of the current adap-
tation manager, where the database maintains the policies of
components running on its runtime system. (2) The manager
periodically evaluates the conditions of the policies main-
tained in its database. (3) When it detects the policies whose
conditions are satisfied, it deploys components according to
the selected policies at the computer that the destination
component is running on.

486 | International Journal of Computer Systems, ISSN-(2394-1065), Vol. 02, Issue 11, November, 2015

Jingtao Sun et al A Middleware-level Approach to Adaptive Distributed Systems

Two or more policies may specify different destinations
under the same condition that drive them. The current
implementation provides no mechanism to solve conflict
between policies. We assumed that policies would be defined
without any conflicts between policies. The destination of
the component may enter divergence or vibration modes due
to conflicts between some of a component’s policies, if it has
multiple deployment policies. However, the current imple-
mentation does not exclude such divergence or vibration.

VI. APPLICATIONS

This section describes two applications of the proposed
approach.

A. Adaptive remote information retrieval

Suppose users try to search certain text patterns from data
located at remote computers like Unix’s grep command.
A typical approach is to fetch files from remote computers
and locally find the patterns from all the lines of the files.
However, if the sum of the volume of its result and the size
of a component for searching patterns from data is smaller
than the volume of target data, the approach is not efficient.
The component should be executed at remote computers
that maintain the target data rather than at local computers.
However, it is difficult to select where the component is to
be executed because the volume of the result may not be
known before.

The proposed approach can solve this problem by re-
locating such components from remote computers to local
computers and vise versa while they are running. Figure 3
shows our system for adaptive remote information retrieval,
which consists of client, search, and data access manager
components. The first and the third are stationary compo-
nents. The second supports finding text lines that match
certain patterns provided from the first in text files that it
accesses via the third. It has a attraction policy that relocates
itself from local to remote computers when the volume of
its middle result is larger than the size of the component,
otherwise it relocates from remote to local computers2

Although the volume of the result depends on the content
of the target files and the patterns, it is typically about
one over hundred less than the volume of the target files.
Therefore, the cost of our system is more efficient in
comparison with Unix’s grep command. This means that
our approach enables distributed applications to be available
with limited resources and networks, as was discussed in
Section III. Our approach is self-adaptive in the sense that
it enables the search component to have its own adaptation
policy and manage itself according to the policy indepen-
dently of these components themselves. It is independent
of its underlying systems because the destinations of our
component relocations are specified as components instead

2The size of the component is about 20 KB.

of computers themselves. Our adaptation can be reused by
changing the locations of such destination components.

Attraction policy

for condition

Step 1

Step 2

Component migration
(Relocation)

Computer 1 Computer 2

Data
access

manager
component

Search

component

Client

Component

)

Computer 1 Computer 2

(

Data
access

manager
component

Search

component

Client

Component

Database/
data

storage

Database/
data

storage

Remotely
fetching data

Locally fetching data

e.g., Size of serarch component + volume of result
< Volume of fetched data

Condition: largerSize function

Policy

Figure 3. Adaptive remote information retrieval

B. Spreading software for sensor nodes

The second example is the dynamic deployment of software
components over a sensor network in a self-adaptive manner.
It is a well known fact that after a sensor node detects
environmental changes, the presence of people, in its area of
coverage, some of its geographically neighboring nodes tend
to detect similar changes after a period of time. Software
components should be deployed at nodes where and when
environmental changes can be measured. The basic idea
behind this example is to deploy software components at
only nodes around such changes. Such deployment could be
easily provided from our policy-based relocation.

We assumed that the sensor field was a two-dimensional
surface composed of sensor nodes and it monitored envi-
ronmental changes, such as motion in objects and variations
in temperature. Each software component had spreading
and evaporation policies in addition to its application-
specific logic, i.e., monitoring environmental changes around
its current node, where the destination components of the
former were neighboring sensor nodes and the condition of
the latter was the detection of changes within a specified
time. We assumed that such a component was located at
nodes close to the changes. When the event manager of the
current node detected changes with sensors, the adaptation
manager evaluated the policies of the component, if there
were no components at neighboring nodes, it made clones
of the component and deployed clones at the neighboring
nodes. When the change moved to another location, e.g.,
walking people, the components located at the nodes near
the change could detected the changed in the same way,
because clones of the components had been deployed at the
nodes.

Each clone was associated with a resource limit that
functions as a generalized TTL field. Although a node could
monitor changes in interesting environments, it set the TTLs
of its components to their own initial values. It otherwise
decremented TTLs as the passage of time. When the TTL

 487 | International Journal of Computer Systems, ISSN-(2394-1065), Vol. 02, Issue 11, November, 2015

Jingtao Sun et al A Middleware-level Approach to Adaptive Distributed Systems

of a component became zero, the component automatically
removed itself according to its evaporation policy to save
computational resources and batteries at the node.

Sensor

node

Component

Policy

Step 1

Step 2

ompo

Policy

Sensor

node

Figure 4. Component diffusion for moving entity

VII. CONCLUSION

This paper proposed an approach to adapting distributed
applications for resilient distributed systems. It introduced
the relocation of software components between computers
as a basic mechanism for adaptation. It also provided four
relocation policies, called attraction, repulsion, spreading,
and evaporation to easily implement practical adaptations.
It separated software components from their adaptations
in addition to underlying systems by specifying policies
outside the components. It was simple but provided various
adaptations to support resilient distributed systems without
any centralized management. It was available with limited
resources because it had no speculative approaches, which
tended to spend computational resources. The relocation
of components between computers was useful to avoid
network latency. It was constructed as a general-purpose

middleware system on distributed systems instead of any
simulation-based systems. Components could be composed
from Java objects like JavaBean modules. The three practical
applications proved that the proposed approach was useful
to construct resilient distributed systems.

In concluding, we would like to identify further issues that
need to be resolved. We need to improve the implementation
of the approach. The policy specification language of the
current implementation is still naive. We are interested in
refining it. We also want to develop more applications with
the approach to evaluate its utility.

REFERENCES

[1] P.A. Alsberg and J.D. Day: A principle for resilient sharing
of distributed resources, In Proceedings of 2nd International
Conference on Software Engineering (ICSE’76), pp.627-644,
1976.

[2] E. Bonabeau, M. Dorigo, and G. Theraulaz: Swarm Intelli-
gence: From Natural to Artificial Systems, Oxford University
Press, 1999.

[3] S. Cheng, D. Garlan, B. Schmerl: Architecture-based self-
adaptation in the presence of multiple objectives, in Proceed-
ings of International Workshop on Self-adaptation and Self-
managing Systems (SEAMS’2006), pp.2-8, ACM Press, 2006.

[4] M. Dorigo and T. Stutzle: Ant Colony Optimization, MIT
Press, 2004.

[5] I. Georgiadis, J. Magee, and J. Kramer: Self-Organising Soft-
ware Architectures for Distributed Systems in Proceedings of
1st Workshop on Self-healing systems (WOSS’2002), pp.33-
38, ACM Press, 2002.

[6] K. Herrman: Self-organizing Ambient Intelligence, VDM,
2008.

[7] O. Holder, I. Ben-Shaul, and H. Gazit, System Support for
Dynamic Layout of Distributed Applications, Proceedings of
International Conference on Distributed Computing Systems
(ICDCS’99), pp 403-411, IEEE Computer Soceity, 1999.

[8] M. A. Jaeger, H. Parzyjegla, G. Muhl, K. Herrmann: Self-
organizing broker topologies for publish/subscribe systems,
in Proceedings of ACM symposium on Applied Computing
(SAC’2007), pp.543-550, ACM, 2007.

[9] J.R. Koza: Genetic Programming: On the Programming of
Computers by Means of Natural Selection, MIT Press, 1992.

[10] M. Luckey and G. Engels: High-Quality Specification of
Self-Adaptive Software Systems, in Proceedings of Workshop
on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS’2013), pp.143-152, 2013.

[11] T. Nakano and T. Suda: Self-Organizing Network Services
With Evolutionary Adaptation, IEEE Transactions on Neural
Networks, vol.16, no.5, pp.1269-1278, 2005.

[12] R. van Renesse and F. B. Schneider: Chain replication for
supporting high throughput and availability, in Proceedings of
6th conference on Symposium on Opearting Systems Design
& Implementation (OSDI’2004), 2004.

[13] I. Satoh: Self-organizing Software Components in Distributed
Systems, in Proceedings of 20th International Conference
on Architecture of Computing Systems System Aspects in
Pervasive and Organic Computing (ARCS’07), Lecture Notes
in Computer Science (LNCS), vol.4415, pp.185-198, Springer,
March 2007.

[14] I. Satoh: Mobile Agents, Handbook of Ambient Intelligence
and Smart Environments, pp.771-791, Springer 2010.

 488 | International Journal of Computer Systems, ISSN-(2394-1065), Vol. 02, Issue 11, November, 2015

Jingtao Sun et al A Middleware-level Approach to Adaptive Distributed Systems

[15] I. Satoh: Evolutionary Mechanism for Disaggregated Com-
puting, in Proceedings of 6th International Conference on
Complex, Intelligent, and Software Intensive Systems (CI-
SIS’2012), pp.343-350, IEEE Computer Society, 2012.

[16] T. Suda and J. Suzuki: A Middleware Platform for a
Biologically-inspired Network Architecture Supporting Au-
tonomous and Adaptive Applications. IEEE Journal on Se-
lected Areas in Communications, vol.23, no.2, pp.249-260,
2005.

[17] D. Weyns, S. Malek, J. Andersson: FORMS: Unifying Ref-
erence Model for Formal Specification of Distributed Self-
Adaptive Systems, ACM Transactions on Autonomous and
Adaptive Systems, Vol. 7, No. 1, 2012.

[18] J. Zhang and B.H.C. Cheng: Model-based development of dy-
namically adaptive software, Proceedings of 28th International
Conference on Software Engineering (ICSE’2006), pp.371-
380, ACM, 2006.

481 | International Journal of Computer Systems, ISSN-(2394-1065), Vol. 02, Issue 11, November, 2015489 | International Journal of Computer Systems, ISSN-(2394-1065), Vol. 02, Issue 11, November, 2015

Jingtao Sun et al A Middleware-level Approach to Adaptive Distributed Systems

