
Chapter 17

Algebraic Geometry for CAGD

Initially, the field of computer aided geometric design and graphics drew most heavily from differen-
tial geometry, approximation theory, and vector geometry. Since the early 1980’s, some of the tools
of algebraic geometry have been introduced into the CAGD literature. This chapter presents some
of those tools, which can address the following problems:

1. Given a planar curve defined parametrically as x = x(t)
w(t) , y = y(t)

w(t) where x(t), y(t), and w(t)

are polynomials, find an implicit equation f(x, y) = 0 which defines the same curve. This
process of parametric to implicit conversion will be referred to as implicitization.

2. Given the (x, y) coordinates of a point which lies on a parametric curve x = x(t)
w(t) , y = y(t)

w(t) ,

find the parameter value t which corresponds to that point. This problem will be referred to
as the inversion problem.

3. Compute the points of intersection of two parametric curves using the implicitization and inver-
sion techniques.

Section 1.4 presents some preliminary terminology and theorems. Sections 17.1 through 17.4
discuss the implicitization and inversion of planar curves, and Section 17.5 applies those tools to
computing curve intersections. Section 17.8 discusses some special properties of parametric cubic
curves and Section 17.9 overviews surface implicitization. Section 17.11 discusses Gróbner bases.

17.1 Implicitization

It was noted that there are basically two ways that a planar curve can be defined: parametrically
(x = x(t)/w(t), y = y(t)/w(t)) and implicitly (f(x, y) = 0).

Obviously, the parametric equation of a curve has the advantage of being able to quickly compute
the (x, y) coordinates of several points on the curve for plotting purposes. Also, it is simple to define
a curve segment by restricting the parameter t to a finite range, for example 0 ≤ t ≤ 1. On the other
hand, the implicit equation of a curve enables one to easily determine whether a given point lies on
the curve, or if not, which side of the curve it lies on.

Given these two different equations for curves, it is natural to wonder if it is possible to convert
between representations for a given curve. The answer is that it is always possible to find an
implicit equation of a parametric curve, but a parametric equation can generally be found only
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188 Brute Force Implicization

for implicit curves of degree two or one. The process of finding the implicit equation of a curve
which is expressed parametrically is referred to as implicitization. In Section 17.4, we will discuss
how this can be accomplished using an important algebraic tool, the resultant, and Section 17.3
discusses resultants. Section 17.2 suggests how someone might tackle the implicitization problem
before learning about resultants. Section 17.5 applies these ideas to the problem of intersecting two
parametric curves.

17.2 Brute Force Implicization

Consider this simple example of parametric-to-implicit conversion: Given a line

x = t + 2 y = 3t + 1,

we can easily find an implicit equation which identically represents this line by solving for t as a
function of x

t = x − 2

and substituting into the equation for y:

y = 3(x − 2) + 1

or 3x − y − 5 = 0. Note that this implicit equation defines precisely the same curve as does the
parametric equation. We can also identify two inversion equations (for finding the parameter value
of a point on the line): t = x − 2 or t = (y − 1)/3.

This approach to implicitization also works for degree two parametric curves. Consider the
parabola

x = t2 + 1 y = t2 + 2t − 2.

Again, we can solve for t as a function of x:

t = ±
√
x − 1

and substitute into the equation for y:

y = (
√
x − 1)2 ± 2

√
x − 1 − 2.

We can isolate the radical and square both sides

(y − (x− 1) + 2)2 = (±2
√
x− 1)2

to yield

x2 − 2xy + y2 − 10x + 6y + 13 = 0

which is the desired implicit equation. Again, this implicit equation defines exactly the same curve
as does the parametric equation.

We run into trouble if we try to apply this implicitization technique to curves of degree higher
than two. Note that the critical step is that we must be able to express t as a function of x. For
cubic and quartic equations, this can be done, but the resulting expression is hopelessly complex.
For curves of degree greater than four, it is simply not possible.
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Polynomial Resultants 189

We cannot obtain an inversion equation for this parabola the way we did for the straight line.
For example, suppose we want to find the parameter of the point (5,−2) which we know to lie on
the curve. The brute force approach would be to find the values of t which satisfy the equation

x = 5 = t2 + 1

and then to compare them with the values of t which satisfy the equation

y = − 2 = t2 + 2t − 2.

In the first case, we find t = -2 or 2, and in the second case, t = -2 or 0. The value of t which
satisfies both equations is -2, which must therefore be the parameter value of the point (5,-2).

This unsuccessful attempt at implicitization and inversion motivates the following discussion
of resultants, which will provide an elegant, general solution to the implicitization and inversion
problems.

17.3 Polynomial Resultants

17.3.1 Definition of the Resultant of Two Polynomials

Polynomial resultants address the question of whether two polynomials have a common root. Con-
sider the two polynomials

f(t) =

n∑
i=0

ait
i g(t) =

n∑
i=0

bit
i (17.1)

The resultant of f(t) and g(t), written R(f, g), is an expression for which R(f, g) = 0 if and only
iff(t) and g(t) have a common root.

Consider the resultant of two polynomials given in factored form:

f(t) = (t− f1)(t− f2) · · · (t− fm), g(t) = (t− g1)(t− g2) · · · (t− gn) (17.2)

where f1, f2, . . . fm are the roots of f(t) and g1, g2, . . . gn are the roots of g(t). The resultant of
f(t) and g(t) is the unique polynomial expression that will be zero if and only if at least one fi is
the same as at least one gi:

R(f, g) =

m∏
i=1

n∏
j=1

(fi − gj)

For example, the resultant of f(t) = t2−7t+12 = (t−3)(t−4) and g(t) = t2−3t+2 = (t−2)(t−1)
is

R(f, g) = (3− 2)(3− 1)(4− 2)(4− 1) = 12 (17.3)

while the resultant of f(t) = t2 − 7t+ 12 = (t− 3)(t− 4) and g(t) = t2 − 5t+ 6 = (t− 2)(t− 3) is

R(f, g) = (3− 2)(3− 3)(4− 2)(4− 3) = 0.

Of course, if f(t) and g(t) are given in factored form, it is a trivial matter to detect if they have any
common roots. However, it takes a fair amount of computation to determine all roots of a polynomial,
and those roots are typically not rational and often complex. Therefore, of much greater value would
an equation for a resultant that does not require the polynomials to be given in factored form, but
can be computed directly from equations (17.1). The good news is that such equations for a resultant
do exist and are relatively easy to compute, without needing to first compute any polynomial roots.
Such an equation for the resultant can be written in closed form. Furthermore, if the polynomial
coefficients are integers, the resultant will also be an integer, even if the roots are complex!
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190 Polynomial Resultants

17.3.2 Resultant of Two Degree One Polynomials

The simplest resultant is for the case when f(t) and g(t) are degree one:

f(t) = a1t+ a0; g(t) = b1t+ b0.

The root of f(t) and the root of g(t) are easily found:

a1t+ a0 = 0 → t = −a0
a1

; b1t+ b0 = 0 → t = −b0
b1

;

Since each polynomial has exactly one root, f(t) and g(t) have a common root if and only if

−a0
a1

=
b0
b1
, or a1b0 − b1a0 = 0.

The resultant of f(t) and g(t) is thus

R(f, g) = a1b0 − b1a0. (17.4)

We can also derive this resultant using matrix algebra. This will make more sense if we use the
homogeneous form

f(T,U) = a1T + a0U ; g(T,U) = b1T + b0U

where t = T/U The equations f(T,U) = 0 and g(T,U) = 0 can be written[
a1 a0
b1 b0

] [
T
U

]
=

[
0
0

]
(17.5)

This is a system of homogeneous linear equations. We know from linear algebra that the necessary
and sufficient condition for this system to have a solution is if the determinant of the matrix is zero,
that is, if ∣∣∣∣ a1 a0

b1 b0

∣∣∣∣ = a1b0 − b1a0 = 0

This is the same equation as the resultant that we arrived at earlier.
This resultant can answer for us the question of whether two degree-one polynomials have a

common root.

Example: Do f(t) = 2t+ 1 and g(t) = t+ 3 have a common root? They have a common root if and
only if their resultant is zero. Since R(f, g) = 2 · 3− 1 · 1 = 5 6= 0, they do not have a common root.

Example: Do f(t) = t−2 and g(t) = 3t−6 have a common root? Since R(f, g) = 1·(−6)−3·(−2) = 0,
they do have a common root.

17.3.3 Resultants of Degree-Two Polynomials

The degree one resultant is obvious. Higher-degree resultants are not so obvious. Consider the
degree two polynomials

f(t) = a2t
2 + a1t+ a0, g(t) = b2t

2 + b1t+ b0.
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Polynomial Resultants 191

It does not work so well to solve for the roots of these two polynomials and check for a common
root. The roots of f(t) and g(t) are, respectively,

t =
−a1 ±

√
a21 − 4a2a0

2a2
, t =

−b1 ±
√
b21 − 4b2b0

2b2

So, f(t) and g(t) have a common root if and only if

−a1 +
√
a21 − 4a2a0

2a2
=
−b1 +

√
b21 − 4b2b0

2b2
, or
−a1 +

√
a21 − 4a2a0

2a2
=
−b1 −

√
b21 − 4b2b0

2b2
, or

−a1 −
√
a21 − 4a2a0

2a2
=
−b1 +

√
b21 − 4b2b0

2b2
, or
−a1 −

√
a21 − 4a2a0

2a2
=
−b1 −

√
b21 − 4b2b0

2b2

But, the resultant we are looking for is a single expression in terms of a0, a1, a2, b0, b1, and b2
that will be zero if and only if one or more of the above expressions is true. We could accomplish
that some algebraic manipulation of these equations, but there is an easier way, one that extends to
polynomials of any degree.

For this degree-two case, the idea is to create a pair of degree-one polynomials h1(t) and h2(t)
that will have a common root if and only if f(t) and g(t) have a common root. Those polynomials
are:

h1(t) = a2g(t)− b2f(t) = a2(b2t
2 + b1t+ b0)− b2(a2t

2 + a1t+ a0)

= (2, 1)t+ (2, 0) (17.6)

where the notation (aibj) = aibj − ajbi. We also create

h2(t) = (a2t+ a1)g(t)− (b2t+ b1)f(t)

= (a2t+ a1)(b2t
2 + b1t+ b0)− (b2t+ b1)(a2t

2 + a1t+ a0)

= (a2b0)t+ (a1b0) (17.7)

It is easy to verify that h1(t) and h2(t) will each vanish for any value of t that is a common root
of f(t) and g(t). Therefore, any common root of f(t) and g(t) is also a common root of h1(t) and
h2(t). Since we already have a resultant for two linear polynomials (17.4), the resultant of our two
quadratic polynomials is

R(f, g) =

∣∣∣∣ (a2b1) (a2b0)
(a2b0) (a1b0)

∣∣∣∣ (17.8)

Example We again compute the resultant of f(t) = t2 − 7t + 12 = (t − 3)(t − 4) and g(t) =
t2 − 3t+ 2 = (t− 2)(t− 1), which we saw from (17.3) is equal to 12, but this time we use (??).

R(f, g) =

∣∣∣∣ (a2b1) (a2b0)
(a2b0) (a1b0)

∣∣∣∣ = R(f, g) =

∣∣∣∣ 4 −10
−10 22

∣∣∣∣ = −12 (17.9)

We should here note that a resultant computed by (??) and a resultant computed using (17.8) can
differ by a sign, and that their absolute value will be equal if a2 = b2 = 1.
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192 Polynomial Resultants

17.3.4 Resultants of Degree-Three Polynomials

We illustrate by finding the resultant of two cubic polynomials

f(t) = a3t
3 + a2t

2 + a1t + a0 g(t) = b3t
3 + b2t

2 + b1t + b0.

In other words, we want to determine whether there exists a value α such that f(α) = g(α) = 0
without having to actually find all roots of both polynomials and comparing. We begin by forming
three auxiliary polynomials h1(t), h2(t) and h3(t) as follows:

h1(t) = a3g(t) − b3f(t)

= (a3b2)t2 + (a3b1)t + (a3b0)

where (aibj) ≡ (aibj − ajbi) and

h2(t) = (a3t + a2)g(t) − (b3t + b2)f(t)

= (a3b1)t2 + [(a3b0) + (a2b1)]t + (a2b0)

h3(t) = (a3t
2 + a2t + a1)g(t) − (b3t

2 + b2t + b1)f(t)

= (a3b0)t2 + (a2b0)t + (a1b0)

Note that if there exists a value α such that f(α) = g(α) = 0, then h1(α) = h2(α) = h3(α) = 0.
We can therefore say that f(t) and g(t) have a common root if and only if the set of equations (a3b2) (a3b1) (a3b0)

(a3b1) (a3b0) + (a2b1) (a2b0)
(a3b0) (a2b0) (a1b0)

 t2

t
1

 = 0

has a solution. 1 However, we know from linear algebra that this set of homogeneous linear equations
can have a solution if and only if∣∣∣∣∣∣

(a3b2) (a3b1) (a3b0)
(a3b1) (a3b0) + (a2b1) (a2b0)
(a3b0) (a2b0) (a1b0)

∣∣∣∣∣∣ = 0

and therefore,

R(f, g) =

∣∣∣∣∣∣
(a3b2) (a3b1) (a3b0)
(a3b1) (a3b0) + (a2b1) (a2b0)
(a3b0) (a2b0) (a1b0)

∣∣∣∣∣∣
This same approach can be used to construct the resultant of polynomials of any degree.

Let’s try this resultant on a couple of examples. First, let f(t) = t3 − 2t2 + 3t + 1 and
g(t) = 2t3 + 3t2 − t + 4. For this case,

R(f, g) =

∣∣∣∣∣∣
7 −7 2
−7 −5 −11
2 −11 13

∣∣∣∣∣∣ = − 1611

1Actually, we have only shown that this is a necessary condition. The proof that it is also sufficient can be found
in [GSA84].
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Determining the Common Root 193

We aren’t so much interested in the actual numerical value of the resultant, just whether it equals
zero or not. In this case, R(f, g) = − 1611 6= 0, so we conclude that f(t) and g(t) do not have a
common root.

Consider next the pair of polynomials f(t) = t3 − t2 − 11t − 4 and g(t) = 2t3 − 7t2 − 5t+
4. In this case,

R(f, g) =

∣∣∣∣∣∣
−5 17 12
17 −60 −32
12 −32 −64

∣∣∣∣∣∣ = 0

Since R(f, g) = 0, f(t) and g(t) do have a common root. Note that the resultant simply determines
the existence or non-existence of a common root, but it does not directly reveal the value of a
common root, if one exists. In fact, if the resultant is zero, there may actually be several common
roots. Section 17.4 discusses how to compute the common root(s).

17.3.5 Resultants of Higher Degree Polynomials

The formulation of the resultant that we have presented is known as Bezout’s resultant. For two
polynomials of equal degree, Bezout’s resultant is the determinant of an n× n matrix. The pattern
you can observe in the resultants of degree two and degree three polynomials extends to any degree.
Resultants for two polynomials of different degree also exist.

Another formulation for resultants, called Sylvester’s resultant, is the determinant of a square
matrix of size 2n×2n. The pattern for Sylvester’s resultant is even easier to see. For two degree-three
polynomials, Sylvester’s resultant is

R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣

a3 a2 a1 a0 0 0
0 a3 a2 a1 a0 0
0 0 a3 a2 a1 a0
b3 b2 b1 b0 0 0
0 b3 b2 b1 b0 0
0 0 b3 b2 b1 b0

∣∣∣∣∣∣∣∣∣∣∣∣
Sylvester’s resultant is equivalent to Bezout’s resultant. Clearly, Bezout’s resultant is more simple
to expand.

17.4 Determining the Common Root

We present two basic approaches to finding the common root of two polynomials: by solving a set
of linear equations, or by using Euclid’s algorithm.

Linear Equation Approach Our intuitive development of the resultant of two cubic polynomials
led us to a set of three linear equations in three “unknowns”: t2, t and 1. In general, we could create
the resultant of two degree n polynomials f(t) = ant

n + an−1t
n−1 + · · · + a1t + a0, g(t) = bnt

n +
bn−1t

n−1 + · · · + b1t + b0, as the determinant of the coefficient matrix of n homogeneous linear
equations: 

(anbn−1) . . . (anb0)
. . . . .
. . . . .
. . . . .

(anb0) . . . (a1b0)





tn−1

tn−2

.

.
t
1


= 0
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194 Determining the Common Root

It may be a bit confusing at first to view this as a set of homogeneous linear equations, since the
unknowns are all powers of t. Let us temporarily switch to homogeneous variables T and U :


(anbn−1) . . . (anb0)

. . . . .

. . . . .

. . . . .
(anb0) . . . (a1b0)





Tn−1

Tn−2U
.
.

TUn−2

Un−1


= 0

where t = T/U . After solving for any two adjacent terms Tn−iU i−1, the common root of f(t) and

g(t) can be obtained as t = Tn−i+1Ui−2

Tn−iUi−1 .

Cramer’s Rule There are several well known methods for solving for the Tn−iU i−1. One
way is to apply Cramer’s rule. A non-trivial solution exists (that is, a solution other than all
Tn−iU i−1 = 0) only if the determinant of the matrix is zero. But, that implies that the n equations
are linearly dependent and we can discard one of them without losing any information. We discard
the last equation, and can then solve for n− 1 homogeneous equations in n homogeneous unknowns
using Cramer’s rule. It turns out that occasionally we run into trouble if we discard an equation
other than the last one. We illustrate Cramer’s rule for the case f(t) = t3 − t2 − 11t − 4 and
g(t) = 2t3 − 7t2 − 5t + 4. Recall that this is the pair for which we earlier found that R(f, g) = 0.
We have the set of equations  −5 17 12

17 −60 −32
12 −32 −64

 T 2

TU
U2

 = 0

Discarding the last equation, we obtain

[
−5 17 12
17 −60 −32

] T 2

TU
U2

 = 0

from which we find the common root using Cramer’s rule:

t =
TU

U2
= −

∣∣∣∣ −5 12
17 −32

∣∣∣∣∣∣∣∣ −5 17
17 −60

∣∣∣∣ = 4

Gauss Elimination A numerically superior algorithm for solving this set of equations is to
perform Gauss elimination. Two other advantages of Gauss elimination are that it can be used to
determine whether the determinant is zero to begin with, and also it reveals how many common
roots there are. We will illustrate this approach with three examples, using integer preserving Gauss
elimination. We choose the integer preserving Gauss elimination because then the lower right hand
element of the upper triangular matrix is the value of the determinant of the matrix.

Example 1
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Our first example is one we considered earlier: f(t) = t3 − 2t2 + 3t + 1 and g(t) = 2t3

+ 3t2 − t + 4. We set up the following set of linear equations, and triangularize the matrix using
integer preserving Gauss elimination: 7 −7 2

−7 −5 −11
2 −11 13

 T 2

TU
U2

 =

 7 −7 2
0 −84 0
0 0 −1611

 T 2

TU
U2

 = 0

We observe that the only solution to this set of equations is T = U = 0, and conclude that f(t)
and g(t) do not have a common root. Note that the lower right element −1611 is the determinant
of the original matrix, or the resultant.

Example 2

We next examine the pair of polynomials f(t) = t3 − t2 − 11t − 4 and g(t) = 2t3 − 7t2 − 5t + 4.
In this case, we have  −5 17 12

17 −60 −32
12 −32 −64

 T 2

TU
U2

 =

 −5 17 12
0 11 −44
0 0 0

 T 2

TU
U2

 = 0

Again, the bottom right element is the value of the determinant, which verifies that the resultant
is zero. It is now simple to compute the solution: TU = 4U2, T 2 = 4TU . Since t = T/U , the
common root is t = 4.

Example 3

For our final example we analyze the polynomials f(t) = t3 − 6t2 + 11t− 6 and g(t) = t3 − 7t2 + 14t− 8.
Our linear equations now are: −1 3 −2

3 −9 6
−2 6 −4

 T 2

TU
U2

 =

 −1 3 −2
0 0 0
0 0 0

 T 2

TU
U2

 = 0

In this case, not only is the resultant zero, but the matrix is rank 1. This means that there are two
common roots, and they can be found as the solution to the quadratic equation −t2 + 3t − 2,
which is t = 1 and t = 2. Another way of saying this is that −t2 + 3t − 2 is the Greatest
Common Divisor of f(t) and g(t).

Euclid’s GCD Algorithm An alternative approach to finding the common root(s) of two poly-
nomials is to use Euclid’s algorithm. This ancient algorithm can be used to find the Greatest
Common Divisor of two integers or two polynomials. A clear proof of Euclid’s algorithm can be
found in [Kur80]. Our presentation consists of a series of examples. This algorithm works beautifully
in exact integer arithmetic but we have experienced numerical instability in floating point.
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Integer Example

We illustrate first on a pair of integers: 42 and 30. For the first step, we assign the larger to be the
numerator, and the other to be the denominator:

Step 1: 42
30 = 1 remainder 12.

We now take the remainder of the first step and divide it into the denominator of the first step:

Step 2: 30
12 = 2 remainder 6.

We continue dividing the remainder of the preceding step into the denominator of the preceding
step until we obtain a zero remainder. This happens to occur in the third step for this problem:

Step 3: 12
6 = 2 exactly.

According to Euclid’s algorithm, the second to last remainder is the GCD. In this case, the second
to last remainder is 6, which is clearly the largest integer that evenly divides 30 and 42.

Polynomial Example 1
We illustrate how Euclid’s algorithm works for polynomials by using the same three exam-

ples we used in the previous section. For the polynomials f(t) = t3 − 2t2 + 3t + 1 and
g(t) = 2t3 + 3t2 − t + 4, we have:

• Step 1: 2t3 + 3t2 − t + 4
t3 − 2t2 + 3t + 1 = 2 remainder 7t2 − 7t + 2.

• Step 2: t3 − 2t2 + 3t + 1
7t2 − 7t + 2 = t − 1

7 remainder 12t+9
7

• Step 3: 7t2 − 7t + 2
(12t + 9)/7 = 196t − 343

48 remainder 1253
16

• Step 4: (12t + 9)/7
1253/16 = 192t

8771 + 144
8771 remainder 0.

In this case, the GCD is 1253
16 , which is merely a constant, and so f(t) and g(t) do not have a common

root.

Polynomial Example 2
We next analyze the polynomials f(t) = t3 − t2 − 11t − 4 and g(t) = 2t3 − 7t2 − 5t + 4:

• Step 1: 2t3 − 7t2 − 5t + 4
t3 − t2 − 11t − 4 = 2 remainder −5t2 + 17t + 12.

• Step 2: t3 − t2 − 11t − 4
−5t2 + 17t + 12 = − 1

5 t −
12
25 remainder −11t + 44

25

• Step 3: −5t
2 + 17t + 12

(−11t + 44)/25 = 125t + 75
11 remainder 0.

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes August 18, 2016



Implicitization and Inversion 197

In this case, the GCD is −11t + 44
25 , and the common root is t = 4.

Polynomial Example 3
Finally, consider f(t) = t3 − 6t2 + 11t − 6 and g(t) = t3 − 7t2 + 14t − 8:

• Step 1: t
3 − 6t2 + 11t − 6
t3 − 7t2 + 14t − 8 = 1 remainder t2 − 3t + 2

• Step 2: t3 − 7t2 + 14t − 8
t2 − 3t + 2 = t − 4 remainder 0.

The GCD is t2 − 3t + 2, and the common roots are the roots of the equation t2 − 3t + 2 = 0
which are t = 1 and t = 2.

You may have realized that there is a close connection between Euclid’s algorithm and resultants,
and obviously Euclid’s algorithm does everything for us that resultants do.

We are now prepared to apply these tools to the problems of implicitizing and inverting curves.

17.5 Implicitization and Inversion

We discussed in the previous section a tool for determining whether two polynomials have a common

root. We want to apply that tool to converting the parametric equation of a curve given by x = x(t)
w(t) ,

y = y(t)
w(t) into an implicit equation of the form f(x, y) = 0. We proceed by forming two auxiliary

polynomials:

p(x, t) = w(t)x − x(t) q(y, t) = w(t)y − y(t)

Note that p(x, t) = q(y, t) = 0 only for values of x, y, and t which satisfy the relationships

x = x(t)
w(t) and y = y(t)

w(t) . View p(x, t) as a polynomial in t whose coefficients are linear in x, and

view q(y, t) as a polynomial in t whose coefficients are linear in y. If

x(t) =

n∑
i = 0

ait
i, y(t) =

n∑
i = 0

bit
i, w(t) =

n∑
i = 0

dit
i

then

p(x, t) = (dnx − an)tn + (dn−1x − an−1)tn−1 + · · ·

+ (d1x − a1)t + (d0x − a0)

q(y, t) = (dny − bn)tn + (dn−1y − bn−1)tn−1 + · · ·

+ (d1y − b1)t + (d0y − b0)

If we now compute the resultant of p(x, t) and q(y, t), we do not arrive at a numerical value, but rather
a polynomial in x and y which we shall call f(x, y). Clearly, any (x, y) pair for which f(x, y) = 0
causes the resultant of p and q to be zero. But, if the resultant is zero, then we know that there
exists a value of t for which p(x, t) = q(y, t) = 0. In other words, all (x, y) for which f(x, y) = 0
lie on the parametric curve and therefore f(x, y) = 0 is the implicit equation of that curve. This
should be clarified by the following examples.

Implicitization Example 1
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Let’s begin by applying this technique to the parabola we implicitized earlier using a brute force
method:

x = t2 + 1 y = t2 + 2t − 2.

We begin by forming p(x, t) = − t2 + (x− 1) and q(y, t) = − t2 − 2t + (y+ 2). The resultant
of two quadratic polynomials a2t

2 + a1t + a0 and b2t
2 + b1t + b0 is∣∣∣∣ (a2b1) (a2b0)

(a2b0) (a1b0)

∣∣∣∣
and so the resultant of p(x, t) and q(y, t) is

R(p, q) =

∣∣∣∣ 2 x− y − 3
x− y − 3 2x− 2

∣∣∣∣ =

−x2 + 2xy − y2 + 10x − 6y − 13

which is the implicit equation we arrived at earlier.
We can write an inversion equation for this curve – something which eluded us in our ad hoc

approach: [
2 x− y − 3

x− y − 3 2x− 2

]{
t
1

}
= 0

From which t = −x + y + 3
2 or t = −2x + 2

x−y−3 .

Implicitization Example 2
We now implicitize the cubic curve for which

x =
2t3 − 18t2 + 18t + 4

−3t2 + 3t + 1

y =
39t3 − 69t2 + 33t + 1

−3t2 + 3t + 1

We begin by forming p(x, t) and q(y, t):

p(x, t) = − 2t3 + (−3x + 18)t2 + (3x − 18)t + (x − 4)

q(y, t) = − 39t3 + (−3y + 69)t2 + (3y − 33)t + (y − 1)

Recalling from Section 17.3 that the resultant of two cubic polynomials a3t
3 + a2t

2 + a1t + a0
and b3t

3 + b2t
2 + b1t + b0 is∣∣∣∣∣∣

(a3b2) (a3b1) (a3b0)
(a3b1) (a3b0) + (a2b1) (a2b0)
(a3b0) (a2b0) (a1b0)

∣∣∣∣∣∣ ,
we have

R(p, q) = f(x, y) =∣∣∣∣∣∣
−117x + 6y + 564 117x − 6y − 636 39x − 2y − 154
117x − 6y − 636 −69x − 2y + 494 −66x + 6y + 258
39x − 2y − 154 −66x +− 6y + 258 30x − 6y − 114

∣∣∣∣∣∣ .
T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes August 18, 2016



Implicitization in Bézier Form 199

We can expand the determinant to get

f(x, y) = − 156195x3 + 60426x2y − 7056xy2 + 224y3 +

2188998x2 − 562500xy + 33168y2 − 10175796x + 1322088y +

15631624

We can obtain an inversion equation using Cramer’s rule:

t =
T 2

TU
= −

∣∣∣∣ (117x − 6y − 636) (39x − 2y − 154)
(−69x − 2y + 494) (−66x + 6y + 258)

∣∣∣∣∣∣∣∣ (−117x + 69y + 564) (39x − 2y − 154)
(117x − 6y − 636) (−66x + 6y + 258)

∣∣∣∣
Alternately, we could use Gauss elimination to compute the parameter of a point on the curve.

Cramer’s rule has the appeal that it actually generates an equation.
We have intentionally carried out all computations in exact integer arithmetic to emphasize the

rational, non-iterative nature of implicitization and inversion. Since the coefficients of the implicit
equation are obtained from the coefficients of the parametric equations using only multiplication,
addition and subtraction, it is possible to obtain an implicit equation which precisely defines the
same point set as is defined by the parametric equations.

17.6 Implicitization in Bézier Form

From the paper [SP86a], a Bézier curve can be implicitized as follows. (Note that the value lij in
these notes is equivalent to the value Lj,k+1 in the paper).

A degree 2 Bézier curve can be implicitized:

f(x, y) =

∣∣∣∣ l21(x, y) l20(x, y)
l20(x, y) l10(x, y)

∣∣∣∣
and a degree 3 Bézier curve can be implicitized

f(x, y) =

∣∣∣∣∣∣
l32(x, y) l31(x, y) l30(x, y)
l31(x, y) l30(x, y) + l21(x, y) l20(x, y)
l30(x, y) l20(x, y) l10(x, y)

∣∣∣∣∣∣
where

lij(x, y) =

(
n

i

)(
n

j

)
wiwj

∣∣∣∣∣∣
x y 1
xi yi 1
xj yj 1

∣∣∣∣∣∣
with n the degree of the curve, and xi, yi, wi the coordinates and weight of the ith control point.

For a general degree n curve, the implicit equation is

f(x, y) =

∣∣∣∣∣∣
Ln−1,n−1(x, y) · · · L0,n−1(x, y)

· · · · ·
Ln−1,0(x, y) · · · L0,0(x, y)

∣∣∣∣∣∣
where

Li,j =
∑

m≤min(i,j)
k+m=i+j+1

lkm.
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17.6.1 Inversion of Bézier Curves

Inversion is accomplished by solving a set of equations. For the degree-two case, we solve[
l21(x, y) l20(x, y)
l20(x, y) l10(x, y)

]{
t

(1− t)

}
= 0. (17.10)

For example, using the top and bottom rows of the matrix, we can compute two different inversion
equations:

t =
l20

l20 − l21
, and t =

l10
l10 − l20

. (17.11)

For the degree-three case, we have l32(x, y) l31(x, y) l30(x, y)
l31(x, y) l30(x, y) + l21(x, y) l20(x, y)
l30(x, y) l20(x, y) l10(x, y)

 t2

t(1− t)
(1− t)2

 = 0 (17.12)

from which we seek an inversion equation

t =
f(x, y)

g(x, y)
.

where f(x, y) and g(x, y) are degree-two polynomials in x and y. It turns out that we can obtain an
inversion equation for which f(x, y) and g(x, y) are linear in x and y, as follows. If P1, P2, and P3

are not collinear, there exist constants c1 and c2,

c1 =

w0

∣∣∣∣∣∣
x0 y0 1
x1 y1 1
x3 y3 1

∣∣∣∣∣∣
3w2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
, c2 = −

w0

∣∣∣∣∣∣
x0 y0 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
3w1

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
such that if we multiple the first row of the matrix in (17.12) by c1 and the second row by c2 and
add them to the third row, we obtain l32(x, y) l31(x, y) l30(x, y)

l31(x, y) l30(x, y) + l21(x, y) l20(x, y)
0 la(x, y) lb(x, y)

 t2

t(1− t)
(1− t)2

 = 0 (17.13)

where
la(x, y) = c1l31(x, y) + c2[l30(x, y) + l21(x, y)] + l20(x, y)

and
lb(x, y) = c1l30(x, y) + c2l20(x, y) + l10(x, y).

The bottom row of (17.12.a) expresses the equation

la(x, y)t(1− t) + lb(x, y)(1− t)2 = 0→ la(x, y)t+ lb(x, y)(1− t) = 0

from which we can obtain an inversion equation

t =
lb(x, y)

lb(x, y)− la(x, y)
. (17.14)
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Example
Find an inversion equation for a polynomial Bézier curve with control points

P0 = (1, 0), P1 = (5, 0), P2 = (5, 2), P3 = (4, 3).

Solution

l32 = 3

∣∣∣∣∣∣
x y 1
4 3 1
5 2 1

∣∣∣∣∣∣ = 3x+ 3y − 21, l31 = 3

∣∣∣∣∣∣
x y 1
4 3 1
5 0 1

∣∣∣∣∣∣ = 9x+ 3y − 45,

l30 =

∣∣∣∣∣∣
x y 1
4 3 1
1 0 1

∣∣∣∣∣∣ = 3x− 3y − 3, l21 = 9

∣∣∣∣∣∣
x y 1
5 2 1
5 0 1

∣∣∣∣∣∣ = 18x− 90,

l20 = 3

∣∣∣∣∣∣
x y 1
5 2 1
1 0 1

∣∣∣∣∣∣ = 6x− 12y − 6, l10 = 3

∣∣∣∣∣∣
x y 1
5 0 1
1 0 1

∣∣∣∣∣∣ = −12y.

c1 =

∣∣∣∣∣∣
1 0 1
5 0 1
4 3 1

∣∣∣∣∣∣
3

∣∣∣∣∣∣
5 0 1
5 2 1
4 3 1

∣∣∣∣∣∣
= 2, c2 = −

∣∣∣∣∣∣
1 0 1
5 2 1
4 3 1

∣∣∣∣∣∣
3

∣∣∣∣∣∣
5 0 1
5 2 1
4 3 1

∣∣∣∣∣∣
= −1

la(x, y) = c1l31(x, y) + c2[l30(x, y) + l21(x, y)] + l20(x, y) = 3x− 3y − 3

lb(x, y) = c1l30(x, y) + c2l20(x, y) + l10(x, y) = −6y

So,

t =
lb(x, y)

lb(x, y)− la(x, y)
=

−6y

−3x− 3y + 3
=

2y

x+ y − 1
.

Note that if we plug (1, 0) into the inversion equation, we obtain 0/0. That is because (1, 0) is a
double point on the curve, i.e., a point of self-intersection. There are actually two t values on the
curve that map to (1, 0): t = 0 and t = 2, as you can verify. At a double point, an inversion equation
will always give 0/0.

17.7 Curve Inversion Using Linear Algebra

We now present a simple approach to curve inversion that does not involve resultants. For a rational
curve of degree n, we can generally write the inversion equation in the form:

t =
f(x, y)

g(x, y)
(17.15)

where f(x, y) and g(x, y) are polynomials of degree n − 2 if n > 2, and degree one if n = 2. Since
we are mainly interested in curves of degree two and three, f(x, y) and g(x, y) are just degree one
in those cases.
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Suppose we want to find the inversion equation for a rational cubic curve (in homogeneous form)

x(t) = x0 + x1t+ x2t
2 + x3t

3

y(t) = y0 + y1t+ y2t
2 + y3t

3

w(t) = w0 + w1t+ w2t
2 + w3t

3

Denote
f(x, y, w) = a2x+ b2y + c2w; g(x, y, w) = a1x+ b1y + c1w. (17.16)

To find an inversion equation for a cubic curve, we need just determine the coefficients a1, a2, b1, b2, c1, c2
such that

f(x(t), y(t), w(t))

g(x(t), y(t), w(t))
≡ t (17.17)

or
t · g(x(t), y(t), w(t))− f(x(t), y(t), w(t)) ≡ 0 (17.18)

or

t · [a1(x0 + x1t+ x2t
2 + x3t

3) + b1(y0 + y1t+ y2t
2 + y3t

3) + c1(w0 + w1t+ w2t
2 + w3t

3)]

−[a2(x0 + x1t+ x2t
2 + x3t

3) + b2(y0 + y1t+ y2t
2 + y3t

3) + c2(w0 + w1t+ w2t
2 + w3t

3)] ≡ 0

or

t4 [a1x3 + b1y3 + c1w3]

+t3 [a1x2 + b1y2 + c1w2 − a2x3 − b2y3 − c2w3]

+t2 [a1x1 + b1y1 + c1w1 − a2x2 − b2y2 − c2w2]

+t1 [a1x0 + b1y0 + c1w0 − a2x1 − b2y1 − c2w1]

+ [a2x0 + b2y0 + c2w0] ≡ 0. (17.19)

This equation will be identically equal to zero if and only if all of the coefficients of the power of t
are all zero. Thus, we can solve for the ai, bi, and ci from the set of linear equations:

x3 y3 w3 0 0 0
x2 y2 w2 −x3 −y3 −w3

x1 y1 w1 −x2 −y2 −w2

x0 y0 w0 −x1 −y1 −w1

0 0 0 −x0 −y0 −w0




a1
b1
c1
a2
b2
c2

 =


0
0
0
0
0
0

 (17.20)

Of course, degree two curves are even more simple. Note that we can also find inversion equations
for 3D curves using this method.

17.8 Curve-Curve Intersections

Given one curve defined by the implicit equation f(x, y) = 0 and a second curve defined by the
parametric equations x = x(t), y = y(t), we replace all occurrences of x in the implicit equation
by x(t), and replace all occurrences of y in the implicit equation by y(t). These substitutions create
a polynomial f(x(t), y(t)) = g(t) whose roots are the parameter values of the points of intersection.
Of course, if we start off with two parametric curves, we can first implicitize one of them.
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1

2
3 4
5

6 7

8
9

Figure 17.1: Two cubic curves intersecting nine times

We illustrate this process by intersecting the curve

x =
2t31 − 18t21 + 18t1 + 4

−3t21 + 3t1 + 1

y =
39t31 − 69t21 + 33t1 + 1

−3t21 + 3t1 + 1

with the curve

x =
−52t32 + 63t22 − 15t2 + 7

−37t22 + 3t2 + 1

y =
4

−37t22 + 3t2 + 1

The two curves intersect nine times, which is the most that two cubic curves can intersect. 2 We
already implicitized the first curve (in Section 17.3), so our intersection problem requires us to make

the substitutions x =
−52t32 + 63t22 − 15t2 + 7

−37t22 + 3t2 + 1
and y = 4

−37t22 + 3t2 + 1
into the implicit equation of

curve 1:
f(x, y) = − 156195x3 + 60426x2y − 7056xy2 + 224y3 +

2188998x2 − 562500xy + 33168y2 − 10175796x + 1322088y +

15631624.

After multiplying through by (−37t22 + 3t2 + 1)3, we arrive at the intersection equation:

984100t92 − 458200t82 + 8868537t72 − 9420593t62 + 5949408t52

2 Bezout’s theorem states that two curves of degree m and n respectively, intersect in mn points, if we include
complex points, points at infinity, and multiple intersections.
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− 2282850t42 + 522890t32 − 67572t22 + 4401t2 − 109 = 0.

Again, we have carried out this process in exact integer arithmetic to emphasize that this equation
is an exact representation of the intersection points.

We now compute the roots of this degree 9 polynomial. Those roots are the parameter values
of the points of intersection. The (x, y) coordinates of those intersection points can be easily found
from the parametric equation of the second curve, and the parameter values on the first curve for
the intersection points can be found from the inversion equations. The results are tabulated below.

Intersection t1 Coordinates t2
Number Parameter of Point Parameter

of Curve 1 of Curve 2

1 0.0621 (4.2982,2.3787) 0.3489
2 0.1098 (4.4556,2.9718) 0.1330
3 0.1785 (4.6190,3.4127) 0.9389
4 0.3397 (4.9113,3.2894) 0.9219
5 0.4212 (4.9312,3.2186) 0.0889
6 0.6838 (5.1737,2.2902) 0.5339
7 0.8610 (5.4676,2.3212) 0.5944
8 0.9342 (5.6883,2.8773) 0.8463
9 0.9823 (5.9010,3.6148) 0.0369

The most common curve intersection algorithms are currently based on subdivision. Tests indicate
that this implicitization algorithm is faster than subdivision methods for curves of degree two and
three, and subdivision methods are faster for curves of degree five and greater [Sederberg et al ’86].

17.9 Surfaces

Implicitization and inversion algorithms exist for surfaces, also (see [Sederberg ’83] or [Sederberg et
al. ’84b]). But, whereas curve implicitization yields implicit equations of the same degree as the
parametric equations, surface implicitization experiences a degree explosion. A triangular surface
patch, whose parametric equations are of the form

x =

∑
i+j≤n xijs

itj∑
i+j≤n wijs

itj
y =

∑
i+j≤n yijs

itj∑
i+j≤n wijs

itj

z =

∑
i+j≤n zijs

itj∑
i+j≤n wijs

itj
i, j ≥ 0,

generally has an implicit equation of degree n2. A tensor product surface patch, whose parametric
equations are of the form

x =

∑n
i = 0

∑m
j = 0 xijs

itj∑n
i = 0

∑m
j = 0 wijs

itj
y =

∑n
i = 0

∑m
j = 0 yijs

itj∑n
i = 0

∑m
j = 0 wijs

itj

z =

∑n
i = 0

∑m
j = 0 zijs

itj∑n
i = 0

∑m
j = 0 wijs

itj
,
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generally has an implicit equation of degree 2mn. Thus, a bicubic patch generally has an implicit
equation f(x, y, z) = 0 of degree 18. Such an equation has 1330 terms!

Algebraic geometry shares important information on the nature of intersections of parametric
surfaces. Recall that Bezout’s theorem states that two surfaces of degree m and n respectively
intersect in a curve of degree mn. Thus, two bicubic patches generally intersect in a curve of degree
324.

We have noted that bilinear patches have an implicit equation of degree 2; quadratic patches
have an implicit equation of degree 4; biquadratic patches have an implicit equation of degree 8,
etc. It seems highly curious that there are gaps in this sequence of degrees. Are there no parametric
surfaces whose implicit equation is degree 3 or 5 for example? It turns out that parametric surfaces
of degree n only generally have implicit equations of degree n2 and that under certain conditions
that degree will decrease. To understand the nature of those conditions, we must understand why
the implicit equation of a parametric surface is generally n2. The degree of a surface can be thought
of either as the degree of its implicit equation, or as the number of times it is intersected by a line.
Thus, the degree of the implicit equation of a parametric surface can be found by determining the
number of times it is intersected by a line. Consider a parametric surface given by

x =
x(s, t)

w(s, t)
y =

y(s, t)

w(s, t)
z =

z(s, t)

w(s, t)
,

where the polynomials are of degree n. One way we can compute the points at which a line intersects
the surface is by intersecting the surface with two planes which contain the line. If one plane is
Ax + By + Cz + Dw = 0, its intersection with the surface is a curve of degree n in s, t space:
Ax(s, t) + By(s, t) + Cz(s, t) + Dw(s, t) = 0. The second plane will also intersect the surface in
a degree n curve in parameter space. The points at which these two section curves intersect will be
the points at which the line intersects the surface. According the Bezout’s theorem, two curves of
degree n intersect in n2 points. Thus, the surface is generally of degree n2.

17.10 Base Points

It may happen that there are values of s, t for which x(s, t) = y(s, t) = z(s, t) = w(s, t) = 0. These
are known as base points in contemporary algebraic geometry. If a base point exists, any plane
section curve will contain it. Therefore, it will belong to the set of intersection points of any pair of
section curves. However, since a base point maps to something that is undefined in x, y, z space, it
does not represent a point at which the straight line intersects the surface, and thus the existence
of a base point diminishes the degree of the implicit equation by one. Thus, if there happen to be r
base points on a degree n parametric surface, the degree of its implicit equation is n2 − r.

For example, it is well known that any quadric surface can be expressed in terms of degree 2
parametric equations. However, in general, a degree 2 parametric surface has an implicit equation
of degree 4, and we conclude that there must be two base points. Consider the parametric equations
of a sphere of radius r centered at the origin:

x = 2rsu

y = 2rtu

z = r(u2 − s2 − t2)

w = s2 + t2 + u2

Homogeneous parameters s, t, u are used to enable us to verify the existence of the two base points:
s = 1, t = i, u = 0 and s = 1, t = −i, u = 0.
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17.11 Ideals and Varieties

This section presents a brief overview of ideals and varieties and suggests some ways how these topics
fit into CAGD. An excellent treatment of ideals and varieties and their application to CAGD can
be found in [CLO92].

17.11.1 Ideals of Integers

An ideal I of integers is an infinite set of integers such that, if a, b ∈ I, then a+ b ∈ I and if c is any
integer, then c · a ∈ I. Ideals can be defined by a set of “generators” as follows. If {i1, . . . , in} is a
set of integers, then we denote by

I = 〈i1, i2, . . . , in〉
the ideal generated by {i1, . . . , in}. This means that I is the infinite set of all integers that can be
expressed as c1i1 +c2i2 + . . .+cnin where the cj are integers. We refer to {i1, . . . , in} as a generating
set of I.

For example, consider the ideal I = 〈6, 9〉. Obviously, all members of the generating set belong
to the ideal: in this case, 6, 9 ∈ I. Also, zero belongs to every ideal. For this ideal, we can see that
21 ∈ I, because 21 = 6 · 2 + 9 · 1, and 3 ∈ I, because 3 = 2 · 6− 1 · 9.

A powerful concept in ideal theory is that every ideal has more than one set of generators.
Theorem: Two ideals A = 〈i1, . . . , in〉 and B = 〈j1, . . . , jm〉 are equivalent if and only if

ik ∈ B, k = 1, . . . , n and jk ∈ A, k = 1, . . . ,m.

The proof is straightforward.
From this theorem, we see that 〈6, 9〉 = 〈12, 15〉 because 6, 9 ∈ 〈12, 15〉 and 12, 15 ∈ 〈6, 9〉. We

also see that 〈6, 9〉 = 〈3〉! An ideal that can be generated by a single generator is called a principal
ideal. All ideals of integers are principal ideals. Furthermore, the single generator of A = 〈i1, . . . , in〉
is the greatest common divisor of i1, . . . , in.

17.11.2 Ideals of Polynomials in One Variable

Given a set of polynomials in t with real coefficients {f1(t), f2(t), . . . fn(t)},

I = 〈f1(t), f2(t), . . . , fn(t)〉

is the ideal generated by {f1(t), f2(t), . . . fn(t)} and is defined as the infinite set of polynomials in t
that can be created as f1(t)g1(t)+f2(t)g2(t)+ . . .+fn(t)gn(t) where the gi(t) are any polynomials in
t with real coefficients. All ideals of polynomials in one variable are principle ideals, and the single
generator is the GCD of all polynomials in the ideal.

17.11.3 Polynomials in Several Variables

In general, a polynomial in n variables x1, . . . , xn is defined

f(x1, x2, . . . , xn) =

τ∑
i=1

cix
e1,i
1 x

e2,i
2 · · ·xen,i

n . (17.21)

Each summand cix
e1,i
1 x

e2,i
2 · · ·xen,i

n is called a term, x
e1,i
1 x

e2,i
2 · · ·xen,i

n is a monomial, and ci is the
coefficient of the monomial. By convention, any given monomial occurs in at most one term in a
polynomial.
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k[x1, . . . , xn] signifies the set of all polynomials in the variables x1, . . . , xn whose coefficients
belong to a field k. For example, R[x, y] is the set of all polynomials∑

cix
e1,iye2,i (17.22)

where ci ∈ R and e1,i, e2,i ∈ {0, 1, 2, . . .}. Thus, “f ∈ R[x, y, z]” means that f is a polynomial whose
variables are x, y and z and whose coefficients are real numbers. All polynomials in this chapter
have coefficients that are real numbers.

Term order

It is often useful to list the terms of a polynomial in decreasing order, beginning with the leading
term. This is done using a term order — a way to compare any two distinct terms of a polynomial
and declare which is “greater. ”

For linear polynomials, term order amounts to merely declaring an order on the variables. For
example, the terms of the polynomial

2x+ 3y − 4z

are in proper order if we declare x > y > z. If we declare y > z > x, the proper order would be
3y − 4z + 2x. For non-linear polynomials, we begin by declaring an order on the variables, and
then we must also choose one of several schemes that decide how the exponents in a polynomial
influence term order. One such scheme is called lexicographical order (nicknamed lex), defined as
follows. If the variables of a polynomial are ordered x1 > x2 > . . . > xn, then given two distinct
terms Ti = cix

e1,i
1 x

e2,i
2 · · ·xen,i

n and Tjcjx
e1,j
1 x

e2,j
2 · · ·xen,j

n , Ti > Tj if

1. e1,i > e1,j , or if

2. e1,i = e1,j and e2,i > e2,j , or, in general, if

3. ek,i = ek,j for k = 1, . . . ,m− 1 and em,i > em,j .

For example, the polynomial

3x2y2z + 4xy3z2 + 5x3z + 6y2 + 7xz3 + 8

using lex with x > y > z would be written 5x3z + 3x2y2z + 4xy3z2 + 7xz3 + 6y2 + 8 and its leading
term is 5x3z. Using lex with z > x > y it would be written 7z3x+ 4z2xy3 + 5zx3 + 3zx2y2 + 6y2 + 8
and the leading term would be 7z3x. Or using lex with y > z > x would be written 4y3z2x +
3y2zx2 + 6y2 + 7z3x+ 5zx3 + 8 and the leading term would be 4y3z2x.

Another choice for term order is the degree lexicographical order (abbreviated deglex). If the
variables are ordered x1 > x2 > . . . > xn, then using deglex, Ti > Tj if

1. e1,i + e2,i + . . .+ en,i > e1,j + e2,j + . . .+ en,j , or

2. e1,i + e2,i + . . .+ en,i = e1,j + e2,j + . . .+ en,j and Ti > Tj with respect to lex.

Using deglex with x > y > z, the terms of 3x2y2z+4xy3z2 +5x3z+6y2 +7xz3 +8 would be ordered
4xy3z2 + 3x2y2z + 5x3z + 7xz3 + 6y2 + 8.

As obverved in the lex and deglex examples, term orders ignore the coefficient of a term, so a
term order might more properly be called a monomial order.

Other term orders can also be defined, such as degree reverse lexicographical order. The precise
requirements for any term order are discussed in reference [AL94], page 18.

The n-dimensional real affine space is denoted Rn and is the set of n-tuples:

Rn = (a1, . . . , an) : a1, . . . , ak ∈ R (17.23)
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17.11.4 Polynomial Ideals and Varieties

The polynomial ideal generated by f1, ..., fs ∈ k[x1, ..., xn], denoted 〈f1, ..., fs〉, is defined

I = 〈f1, ..., fs〉 = {p1f1 + ...+ psfs : pi ∈ k[x1, ..., xn]}. (17.24)

The polynomials f1, ..., fs are called generators of this ideal. As in integer ideals, any polynomial
ideal can be defined using different generating sets.

Consider a set of polynomials f1, f2, · · · , fs ∈ k[x1, ..., xn]. Let (a1, ..., an) be a point in kn

satisfying fi(a1, ..., an) = 0, i = 1, ..., s. The set of all such points (a1, ..., an) is called the variety
defined by f1, ..., fs, and is denoted by V (f1, ..., fs):

V (f1, ..., fs) = {(a1, ..., an) ∈ kn|fi(a1, ..., an) = 0, i = 0, . . . , s}. (17.25)

A more familiar way to refer to a variety is simply the set of solutions to a set of polynomial
equations.

A variety defined by a single polynomial—called a hypersurface—is the most familiar instance of a
variety. A hypersurface in R2 is a planar curve defined using an implicit equation, and a hypersurface
in R3 is what is normally called an implicit surface in CAGD. For example, V (x2 + y2 − 1) is a
circle defined in terms of the implicit equation x2 + y2 − 1 = 0 and V (2x+ 4y − z + 1) is the plane
whose implicit equation is 2x + 4y − z + 1 = 0. A variety V (f1, . . . , fs) defined by more than one
polynomial (s > 1) is the intersection of the varieties V (f1) . . . V (fs).

An ideal is a set of polynomials that is infinite in number. The variety of an ideal is the set of all
points (a1, ..., an) that make each polynomial in the ideal vanish. It is easy to see that the variety of
an ideal is the variety of generating set for the ideal. Two generating sets for the same ideal define
the same variety.

This is a very powerful concept, because some generating sets are more useful than others. For
example, consider the ideal

I = 〈x+ y + z − 6, x− y − z, x− 2y + z − 3〉

which can also be generated by 〈x − 3, y − 1, z − 2〉. This second set of generators is much more
helpful, because we can immediately see that V (I) is x = 3, y = 1, z = 2. One method for converting
the generating set 〈x + y + z − 6, x − y − z, x − 2y + z − 3〉 into 〈x − 3, y − 1, z − 2〉 is to use the
familiar Gauss elimination method.

As another example, consider the ideal

I = 〈t4 − 3t3 + 4t2 − t− 4, t6 − 4t3 + 3〉

An alternative generator for this ideal is simply 〈t − 1〉, which can be obtained using Euclid’s
algorithm. Thus, t = 1 is the variety of this ideal, or, the common zero.

As we saw in our discussion of ideals of integers, necessary and sufficient conditions for 〈f1, . . . , fn〉 =
〈g1, . . . , gm〉 are f1, . . . , fn ∈ {g1, . . . , gm} and g1, . . . , gm ∈ {f1, . . . , fn}. This general process can
be used to prove that Gauss elimination and Euclid’s algorithm, respectively, are algorithms that
create equivalent generating sets for ideals.

17.11.5 Gröbner Bases

Gauss elimination and Euclid’s algorithm create generating sets which make it simple to compute the
variety of an ideal (or, the set of all solutions to a set of polynomial equations). These algorithms are
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special cases of a completely general method for robustly finding all solutions to a set of polynomial
equations in any number of variables. This method is based on the notion of Gröbner bases.

A Gröbner basis of an ideal I is a set of polynomials {g1, . . . , gt} such that the leading term of any
polynomial in I is divisible by the leading term of at least one of the polynomials g1, . . . , gt. This, of
course, requires that a term order be fixed for determining the leading terms: different term orders
produce different Gröbner bases. Several excellent books have been written on Gröbner bases that
do not presuppose that the reader has an advanced degree in mathematics [CLO92, AL94, BW93]

A Gröbner basis is a particularly attractive set of generators for an ideal, as illustrated by two
familiar examples. If {f1, . . . , fs} are polynomials in one variable, the Gröbner basis of 〈f1, . . . , fn〉
consists of a single polynomial: the GCD of f1, . . . , fs. If {f1, . . . , fs} are linear polynomials in several
variables, the Gröbner basis is an uppertriangular form of a set of linear equations. The Gröbner
basis of these special cases provides significant computational advantage and greater insight, and
the same is true of the Gröbner basis of a more general ideal.

Gröbner bases are the fruit of Bruno Buchberger’s Ph.D. thesis [Buc65], and are named in
honor of his thesis advisor. Buchberger devised an algorithm for computing Gröbner bases [Buc85,
CLO92]. Also, commercial software packages such as Maple and Mathematica include capabilities
for computing Gröbner bases.
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