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. INTRODUCTION therefore harder to predict. In a way, this represents real

This article describes part of our contribution to the “Beli'équirements for a collaborative filtering (CF) system, abhi
Kor's Pragmatic Chaos” final solution, which won the Netfl1€€ds to predict new ratings from older ones, and to equally
Grand Prize. The other portion of the contribution was eeat2ddress all users, not just the heavy raters.
while working at AT&T with Robert Bell and Chris Volinsky, Ve reserve special indexing letters to distinguish users fr
as reported in our 2008 Progress Prize report [3]. The fif#@ovies: for users, v, and for movies, j. A ratingry; indicates
solution includes all the predictors described there. lis ththe preference by userof moviei. Values are ranging from
article we describe only the newer predictors. 1 (star) |nd|cat.|ng no interest to 5 (stf':lrs) indicating arsgy

So what is new over last year's solution? First we further ini0terest. We distinguish predicted ratings from known ones
proved the baseline predictors (Sec. IIl). This in turn ioyas PY using the notatiom,; for the predicted value afyi.
our other models, which incorporate those predictors, tiie ~ 1he scalattyi denotes the time of rating,i. Here, time is
matrix factorization model (Sec. IV). In addition, an exsmm Measured in days, sig; counts the number of days elapsed
of the neighborhood model that addresses temporal dynanf#3c€ Some early time point. About 99% of the possible rating
was introduced (Sec. V). On the Restricted Boltzmann M&I€ missing, because a user typically rates only a smaloport
chines (RBM) front, we use a new RBM model with superio?f the movies. Theu,i) pairs for whlchrui is knowr_1 are stored
accuracy by conditioning the visible units (Sec. VI). Theafin In thetraining set.7” = {(u,i) | rui is known}. Notice thatz"
addition is the introduction of a new blending algorithm,jigih includes also the Probe set. Each usés associated with a

is based on gradient boosted decision trees (GBDT) (Se. Vet of items denoted by (R), which contains all the items
for which ratings byu are available. Likewise, ) denotes

the set of users who rated item Sometimes, we also use

. . . a set denoted by (W), which contains all items for which
The Netflix dataset contains more than 100 million dat%- provided a rating, even if the rating value is unknown.

stamped movie ratings performed by anonymous Netflix CUBRys, Nu) extends Ru) by also considering the ratings in
tomers between Dec 31, 1999 and Dec 31, 2005 [4]. Thjs

) . e Qualifying set.
dataset gives ratings abomt= 480,189 users and=17,770  y4els for the rating data are learned by fitting the pre-
movies (aka, items).

. , . viously observed ratings (training set). However, our geal
The contest was designed in a training-test set format. s yeneralize those in a way that allows us to predict future,

Hold-out set qf about{l.Z million ratings was created CAm&S |\ninown ratings (Qualifying set). Thus, caution should e e

of the last nine movies rated by each user (or fewer if G jseq to avoid overfitting the observed data. We achiege th

user had not rated at least 18 movies over the entire penogi. regularizing the learned parameters, whose magnituges a

The remaining data made up the training set. The Hold-0jL\5jizeq. The extent of regularization is controlled hyaile

set was randomly split three ways, into subsets called Probgsiants. Unless otherwise stated, we use L2 regulamizati

Quiz, and Test. The Rrobe set was attached to the.tramlngl-hiS is a good place to add some words on the constants

set, and labels (the rating that the user gave the movie) W%%trolling our algorithms (including step sizes, regization,

attached. The Quiz and Test sets made up an evaluation S8H nymber of iterations). Exact values of these constants
which is known as the Qualifying set, that competitors werg getermined by validation on the Probe set. In all cases

required to predict ratings for. Once a competitor SUbMi&S p ¢ gne (to be mentioned below), such validation is done in

dictions, the.prizemaster ret.urns the _root_ mean squarex el manual greedy manner. That is, when a newly introduced
(RMSE) achieved on the Quiz set, which is posted on a publigngtant needs to get tuned, we execute multiple runs of the

leaderboardwww. net f i xpri ze. coni | eaderboard). 4 gqrithms and pick the value that yields the best RMSE on
RMSE values mentioned in this article correspond to the Quize Netflix Probe set [4]. This scheme does not result in
set. Ultimately, the winner of the prize is the one that S80r@ i) settings for several reasons. First, once a cohigan

best on the Test set, and those scores were never disclosed¥ye 4o not revisit its value, even though future introiuct

Netflix. This precludes clever systems which might “game’ thys Jiher constants may require modifying earlier settings.

competition by learning about the Quiz set through repeated g we use the same constants under multiple variants

submissions. . - _of the same algorithm (e.g., multiple dimensionalities of a
Compared with the training data, the Hold-out set contaig.yyrization model), whereas a more delicate tuning would

many more ratings by users that do not rate much and Qg ire 4 different setting for each variant. We chose this

Y. Koren is with Yahoo! Research. Haifa ISRAEL. Email:CONvenient, but less accurate method, because our experien
yehuda@ahoo-i nc. com showed that over tuning the accuracy of a single predictesdo
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not deliver a real contribution after being incorporatedhivi  be solved fairly efficiently by the method of stochastic gead
the overall blend. descent. In practice, we were using more comprehensive
versions of (4), to which we turn now.
I1l. BASELINE PREDICTORS

Collaborative filtering models try to capture the interant A. Time changing baseline predictors
between users and items that produce the different ratingMuch of the temporal variability in the data is included
values. However, many of the observed rating values are duighin the baseline predictors, through two major temporal
to effects associated with either users or items, indepelyde effects. The first addresses the fact that an item’s popyilari
of their interaction. A prime example is that typical CF dateay change over time. For example, movies can go in and
exhibit large user and item biases — i.e., systematic tesie&n out of popularity as triggered by external events such as the
for some users to give higher ratings than others, and foesoeppearance of an actor in a new movie. This is manifested in
items to receive higher ratings than others. our models by treating the item biésas a function of time.

We will encapsulate those effects, which do not involv&he second major temporal effect allows users to change thei
user-item interaction, within thbaseline predictorsBecause baseline ratings over time. For example, a user who tended to
these predictors tend to capture much of the observed sigmate an average movie “4 stars”, may now rate such a movie
it is vital to model them accurately. This enables isolatimg “3 stars”. This may reflect several factors including a naitur
part of the signal that truly represents user-item intésact drift in a user’s rating scale, the fact that ratings are iire
and subjecting it to more appropriate user preference rsodehe context of other ratings that were given recently and als

Denote byu the overall average rating. A baseline predicthe fact that the identity of the rater within a household can
tion for an unknown ratingy; is denoted byby; and accounts change over time. Hence, in our models we take the parameter

for the user and item effects: b, as a function of time. This induces a template for a time
bui = 1+ by -+ by 1) sensitive baseline predictor fois rating ofi at dayty;:
byi = u+hby (tui) + by (tui) (5)

The parameterb, andb; indicate the observed deviations of
useru and itemi, respectively, from the average. For exampleere,b,(-) andb;(-) are real valued functions that change over
suppose that we want a baseline estimate for the rating of tiree. The exact way to build these functions should reflect
movie Titanic by user Joe. Now, say that the average ratiagreasonable way to parameterize the involving temporal
over all movies,u, is 3.7 stars. Furthermore, Titanic is bettechanges.
than an average movie, so it tends to be rated 0.5 stars abovA major distinction is between temporal effects that span
the average. On the other hand, Joe is a critical user, whis teextended periods of time and more transient effects. We do
to rate 0.3 stars lower than the average. Thus, the baselivtd expect movie likeability to fluctuate on a daily basist bu
estimate for Titanic's rating by Joe would be 3.9 stars hyther to change over more extended periods. On the other
calculating 37 — 0.3+ 0.5. hand, we observe that user effects can change on a daily
A way to estimate the parameters is by decoupling thmsis, reflecting inconsistencies natural to customerbeha
calculation of thebj's from the calculation of thdo,’s. First, This requires finer time resolution when modeling userdsas

for each itemi we set compared with a lower resolution that suffices for capturing
S werqi) (Fui — 1) item-related time effects.
b — ueR(i)\lui (2) . . . . . .
=T MARG) We start with our choice of time-changing item biabgs).
! We found it adequate to split the item biases into time-based
Then, for each usen we set bins, using a constant item bias for each time period. The
. (roi — p—by) decision of how to split the timeline into bins should bakanc
ZeR(u) ui—H ( i X X . ..
by = ot R (3) the desire to achieve finer resolution (hence, smaller Iifts)

) . the need for enough ratings per bin (hence, larger bins). In
Averages are shrunk towards zero by using the regularizatic there is a wide variety of bin sizes that yield about the

parametersds, Az, which are determined by validation on thesgme accuracy. In our implementation, each bin corresponds
Probe set. We were usindy = 25 A2 = 10. Whenever this 4 rqyghly ten consecutive weeks of data, leading to 30 bins
work refers to baseline predictors estimated in this dem“pspanning all days in the dataset. A daig associated with an

fashion, they are denoted Iy;. , integer Bir(t) (a number between 1 and 30 in our data), such
A more accurate estimation df, and b will treat them ¢ the movie bias is split into a stationary part and a time
symmetrically, by solving the least squares problem changing part:
min Z (ri—p—by—0)?+A3(Y i+ 3 b7).  (4) bi(t) = bi + by gin(t) (6)
" uhexr ! ' While binning the parameters works well on the items,

Hereinafter,b, denotes all user and item biasdg,q and it is more of a challenge on the users’ side. On the one
bis). The first termz(u,i)g{(rui — U+ by +bj)? strives to hand, we would like a finer resolution for users to detect
find by’s and by’s that fit the given ratings. The regularizingvery short lived temporal effects. On the other hand, we
term, A3(y b2+ 5;b?), avoids overfitting by penalizing thedo not expect enough ratings per user to produce reliable
magnitudes of the parameters. This least square problem eatimates for isolated bins. Different functional forms dzse



considered for parameterizing temporal user behavioh widll discussed ways to implemert,(t) would be valid for

varying complexity and accuracy. implementingcy(t) as well. We chose to dedicate a separate
One simple modeling choice uses a linear function fearameter per day, resulting in;(t) = cy + cyt. As usual,cy

capture a possible gradual drift of user bias. For each useithe stable part ofy(t), whereascy: represents day-specific

u, we denote the mean date of rating tay Now, if u rated variability.

a movie on dayt, then the associated time deviation of this Adding the multiplicative factorc,(t) to the baseline pre-

rating is defined as dictor (as per (10)) lowers RMSE to 0.9555. Interestindtis t
, B basic model, which captures just main effects disregarding
dev(t) = sign(t —tu) - [t —tu[". user-item interactions, can explain almost as much of the da

Here [t —t,| measures the number of days between dagesl variability as the commercial Netflix Cinematch recommende

t,. We set the value g8 by validation on the Probe set; in ourSyStém, whose published RMSE on the same Quiz set is
implementation3 = 0.4. We introduce a single new parametep-9514 [4].

for each user calledy so that we get our first definition of a

time-dependent user-bias: B. Frequencies

bel)(t) = by + 0y - dewy(t) ) It was brought to our attention by our colleagues at the

Pragmatic Theory team (PT) that the number of ratings a user

This simple linear model for approximating a drifting beleav gave on a specific day explains a significant portion of the
requires learning two parameters per usgrand ay. variability of the data during that day. Formally, denote by

The linear function for modeling the user bias meshes wedl; the overall number of ratings that usergave on dayty;.
with gradual drifts in the user behavior. However, we alsorhe value ofF, will be henceforth dubbed a “frequency”,
observesudden driftsemerging as “spikes” associated wittfollowing PT’s notation. In practice we work with a rounded
a single day or session. For example, we have found thegarithm of F;, denoted byfy; = |log, Fyi|.t
multiple ratings a user gives in a single day, tend to comeéat  Interestingly, even thoughy; is solely driven by usew,
around a single value. Such an effect need not span more titawill influence the item-biases, rather than the userdsas
a single day. This may reflect the mood of the user that daygccordingly, for each itenh we introduce a terrb;¢, capturing
the impact of ratings given in a single day on each other, fe bias specific for the iterm at log-frequencyf. Baseline
changes in the actual rater in multi-person accounts. Teeadd predictor (10) is extended to be
such short lived effects, we assign a single parameter @er us
and day, absorbing the day-specific variability. This paen Pui = H+0u+ - devu(tui) +But; + (01 +0; gin(t,;) ) - Cultui) +bi. 1, -
is denoted byby. ] ) ) (11)

In the Netflix data, a user rates on 40 different days offé note that it would be sensible to multiplty r,; by cu(tui),
average. Thus, working withy requires, on average, 40Putwe have not experimented with this. o
parameters to describe each user bias. It is expectedbghat The effect of adding the frequency term to the movie bias is
is inadequate as a standalone for capturing the user biag, sfuite dramatic. RMSE drops from 0.9555 to 0.9278. Notably,
it misses all sorts of signals that span more than a single dyShows a baseline predictor with a prediction accuracy
Thus, it serves as an additive component within the pre16-,0us';|gn|f|cantly better than that of the original Netflix Cinettia

described schemes. The user bias model (7) becomes ~ agorithm. _ _ _
Here, it is important to remind that a baseline predictor, no

bt (t) = by + ay - devy(t) + by (8) matter how accurate, cannot yield personalized recommenda
tions on its own, as it misses all interactions between ue®ils
items. In a sense, it is capturing the portion of the dataithat
bui = H +bu+ au-dew(tu) + bugy +bi +biging,) - (9) less relevant for establishing recommendations and ingdoin
so enables deriving accurate recommendations by sulgectin
If used as a standalone predictor, its resulting RMSE wouliher models to cleaner data. Nonetheless, we included two o
be 0.9605. the more accurate baseline predictors in our blend.
Another effect within the scope of baseline predictors is Why frequencies work?in order to grasp the source of
related to the changing scale of user ratings. Whilg) is  frequencies contribution, we make two empirical obseoveti
a user-independent measure for the merit of iteat time First, we could see that frequencies are extremely powerful
t, users tend to respond to such a measure differently. For a standalone baseline predictor, but as we will see, they
example, different users employ different rating scal@sl @ contribute much less within a full method, where most oftthei
single user can change his rating scale over time. Accoldingbenefit disappears when adding the user-movie interaction
the raw value of the movie bias is not completely useterms (matrix factorization or neighborhood). Second is th
independent. To address this, we add a time-dependentgcafict that frequencies seem to be much more helpful when used

feature to the baseline predictors, denoteccliy). Thus, the with movie biases, but not so when used with user-related
baseline predictor (9) becomes parameters.

The discussion so far leads to the baseline predictor

bui = H + by + ay - dev, (tui) + buyg, + (bi + bi7Bin(tui)) ~Cu(tui) - INotice thatF,; is strictly positive whenever it is used, so the logarithm is
(10)  well defined.



Frequencies help in distinguishing days when users rateeraduring signal. This allows our model to better capture the
lot in a bulk. Typically, such ratings are given not closealy tlong-term characteristics of the data, while letting datéd
the actual watching day. Our theory is that when rating iparameters absorb short term fluctuations. For example, if
a bulk, users still reflect their normal preferences. Howevea user gave many higher than usual ratings on a particular
certain movies exhibit an asymmetric attitude towards themingle day, our models discount those by accounting for a
Some people like them, and will remember them for longossible day-specific good mood, which does not reflects
as their all-time favorites. On the other hand, some people longer term behavior of this user. This way, the day-
dislike them and just tend to forget them. Thus, when givingpecific parameters accomplish a kind of data cleaning,twhic
bulk ratings, only those with the positive approach will knarimproves prediction of future dates.
them as their favorites, while those disliking them will not
mention them. Such a behavior is expected towards most .
popular movies, which can be either remembered as very chd What's in the blend?
or just be forgotten. A similar phenomenon can also happenThe RMSE=0.9555 result of model (10) is included
with a negative approach. Some movies are notoriously béd, the blend. To Ilearn the involved parameters,
and people who did not like them always give them as negatigg oy, but, bi, bjgint), Cu, andcy one should minimize
examples, indicating what they do not want to watch. Howevehe regularized squared error on the training set. Learning
for the other part of the population, who liked those moviess done by a stochastic gradient descent algorithm running
they are not going to be remembered long as salient positiee 30 iterations. We use separate learning rate (step size)
examples. Thus, when rating in bulk, long after watching thend regularization (weight decay) on each kind of learned

movie, only those who disliked the movie will rate it. parameter, by minimizing the cost function
This explains why such biases should be associated with
movies, not with users. This also explains why most ofmin % (rui— 1 —bu—ay - dew(tui) — bug,; — (12)
the effect disappears when adding the interaction terms,  (WHEA
which already “understand” that the user is of the type that (bi + b gin(t,)) - (cu+cu,tui))2+)\abﬁ+/\baf+

likes/dislikes the movie. In other words, we hypothesizat th b2 Aub? 4+ Ab2.. A 12 £ A2
high frequencies (or bulk ratings) do not represent much Dl - Adbl + Aebiging,) + A1 (G =17+ AgCu -

change in people’s taste, but mostly a biased selection ofactual values of the learning rates and regularization con-
movies to be rated — some movies are natural candidatessggts Ra, b, - .., Ag) are as follows:

“bad examples”, while others are natural “good examplesg. W by  but oy b bigny G Cu
believe that further validating our hypothesis bears pratt rate <1 | 3 25e-1 1e-2 2  5e.2 38 2
implications. If, indeed, frequencies represent biaséstten, reg x 107 3 5e-1 5000 3 10 1 5e-1

they should be treated as capturing noise, which needs to ﬁle . that larizati hrink : ¢ q
isolated out when making recommendations. otice at reguianzation SNrinks —parameters towards

Finally, we should comment that a movie renter such §10, with one ex_ception. T2he multiplieg iszshryn_k towards
Netflix, might have additional data sources that complement .e., we penalizg(c, —1)%, rather thanc;. Similarly, all

frequencies. For example, data on time pased since acﬂﬁ%r;‘iezde dpztacr)a?eters are Initialized to zero, exaspthat Is

watching date, or on whether ratings were entered in respor"@ i

to a given questionnaire or initiated by the user. Thg blend glso includes the re'sullt of the more accurate
baseline predictor (11). In fact, this is the only case where

C. Predicting future days we resorted to an automatic parameter tuner (APT) to find the

ﬁst constants (learning rates, regularization, and I@jsha

Our models include day-specific parameters. We are oft Plecifically, we were using APT1, which is described in [13].

asked how these models can be used for predicting rating : . . .
the future, on new dates for which we cannot train the dasTlhe reason we used APT here is twofold. First, this baseline

specific parameters? The simple answer is that for thoseefut redictor component is embedded in our more comprehensive

(untrained) dates, the day-specific parameters shouldhele mode_ls ((_jescribed Iate_r)._Therefore, it_is worthwhile tgrtly
default value. In particular for (11)u(ty) is set tocy, and optimize it. Second, this is a small quickly-trained modsb.

but, is set to zero. Yet, one wonders, if we cannot use e C(.)UId ea;ily afford. many hyndre_ds of automatiq egecstion

day-specific parameters for predicting the future, why heg t seekmg optimal settings. Still, it IS worth mentioning the

good at all? After all, prediction is interesting only whernisi bengfl_t_of APT was an RMSE reduction of (only) 0.0016 over
about the future. To further sharpen the question, we shodt" initial manual settings.

mention the fact that the Netflix Qualifying set includes man he parameters of the_ RMSE:Q'927.8 result O.f
ratings on dates for which we have no other rating by the sam@d.el (11) were learmed W't.h a 40—|terat|9n stochastic
user and hence day-specific parameters cannot be exploiteQ:{adIent descent process, with the following constants

To answer this, notice that our temporal modeling mak&9Verning the learning of eacvh_ kind of parameter:
by oyt dy by b|_B|n(l) Cu Cut bl;fui

no attempt to capture future changes. All it is trying to do iSirate x1o° | 2.67 257 3.11e-3 .488  .115 564 103 236
to capture transient temporal effects, which had a sigmifica_re9x1% | 255 231 395 255 929 476 190 110e6
influence on past user feedback. When such effects are ideftie log basis,a, is set to 6.76. Later, we refer to this
fied they must be tuned down, so that we can model the manedel as [PQ1].




IV. MATRIX FACTORIZATION WITH TEMPORAL DYNAMICS learned from the data. Constants (learning rates and regu-
Matrix factorization with temporal dynamics was alread rization to be specified shortly) are tuned to reach lowest

described in last year's Progress Report [3], or with motaitle MSE after_40 it_eration_s. (Practically,_one can give_ or take
in a KDD'09 paper [8]. The major enhancement for this year ground ten iterations without a meaningful RMSE impact).

the incorporation of the improved baseline predictorsdeed HOWever, for blending we have found that over-training is
in Sec. IIl. helpful. That is, we often let the algorithm run far more than

The full model, which is known as timeSVD++ [8] is based0 lterations, thereby overfitting the train data, whichgeps
on the prediction rule to be b_enef|C|aI When blendlng_wnh other predictors. _
The first model is the one using rule (13), together with the
> (13) more memory efficient user-factors (15). The settings abntr
ling the learning of bias-related parameters are as destiib
Sec. llI-D. As for learning the factors themselve, (b, and
Here, the exact definition of the time-dependent baseligg), we are using a learning rate of 0.008 and regularization
predictor, by, follows (10). of 0.0015, where the learning rate decays by a multiplieativ
As is typical for a SVD++ model [7], we employ two factor of 0.9 after each iteration. Finally, for, the learning
sets of static movie factorsy,yi € Rf. The first set (the rate is 1e-5 and the regularization is 50. These same setting
gis) is common to all factor models. The second set (themain the same throughout this section. The three variants
yis) facilitates approximating a user factor through the sgfithin our blend are:
of movies rated by the same user, using the normalizedl) f — 20, #iterations=40, RMSE=0.8914

! , N
sum|N(u)|~2 ¥ jenqu) Yj- Different normalizations of the form 2) f =200, #iterations=40, RMSE=0.8814

IN(u)|~@ could be employed. Our choice af= % attempts at  3) f =500, #iterations=50, RMSE=0.8815
fixing the variance of the sum (see also [7] for more intuition

on this choice. . .
User factors)p (t) € R' are time-dependent. We modeled’;\ccurate user-factor representation (14). This adds queedly
each of the cor’n;onents pﬁ(t)T — (pu(t) p. (t)) in the parameterpyt, Which is learned with a learning rate of 0.004
ul®)s- - Ut and regularization of 0.01. The two variants within the blen

same way that we treated user biases. In particular we have ) : ) - )
. ; . were both heavily over-trained to overfit the training data:
found modeling after (8) effective, leading to

1) f =200, #iterations=80, RMSE=0.8825
Puk(t) = Puk+ auk-devu(t) + pue k=1,....,f.  (14)  2) f =500, #iterations=110, RMSE=0.8841

Here pu captures the stationary portion of the factary - Finally we ha\{e our .most accurate .factor model, which
dew,(t) approximates a possible portion that changes lineafgllows (16). While main novelty of this model (over the
over time, andpuq absorbs the very local, day-specific variPrevious one) is in the bias term, we also added the frequency

Fui = b+ (pu<tm>+N<u>|-% S v
JEN(u)

The next model still employs rule (13), but with the more

ability. specific movie-factorsy ;. Their respective learning rate is
We were occasionally also using a more memory efficieR€-5, With regularization of 0.02. The blend includes six
version, without the day-specific portion: variants:
1) f =200, #iterations=40, RMSE=0.8777
Puk(t) = Puct Auic dew(t) k=1,....f (A5 5 ¢ _ 500, siterations=60, RMSE=0.8787

The same model was also extended with the aforementioned) f =500, #iterations=40, RMSE=0.8769
frequencies. Since frequency affects the perception ofiespy ~ 4) f =500, #iterations=60, RMSE=0.8784
we tried to inject frequency awareness into the movie factor 5) f = 1000, #iterations=80, RMSE=0.8792
To this end we created another copy of the movie factors, for6) f = 2000, #iterations=40, RMSE=0.8762
each possible frequency value. This leads to the model  Later, we refer to the model withh = 200 and #iterations=40
as [PQ2].
fui = bui + (o +a'¢,) (Pu(tui)+ IN(u)| 2 > -Yj> (16)
u)

jeN
Nt V. NEIGHBORHOOD MODELS WITH TEMPORAL DYNAMICS

Here the definition oby; is frequency-aware following (11).
Notice that while the transition to frequency-aware biasas
measurably effective, the introduction of frequency-defsant
movie factors was barely beneficial.

The most common approach to CF is based on neigh-
borhood models. While typically less accurate than their
factorization counterparts, neighborhood methods enmy p
ularity thanks to some of their merits, such as explainirg th
] reasoning behind computed recommendations, and seaynlessl
A. What's in the blend? accounting for new entered ratings. The method described in

We included multiple variations of the matrix factorizatio this section is based on Sec. 5 of our KDD'09 paper [8].
models in the blend. All models are learned by stochastic Recently, we suggested an item-item model based on global
gradient descent applied directly on the raw data, no pre- @ptimization [7], which will enable us here to capture time
post-processing are involved. In other words, all pararsetelynamics in a principled manner. The static model, without
(biases, user-factors and movie-factors) are simultasigoutemporal dynamics, is centered on the following prediction



rule: of bias-related parameters is governed by the same cosstant
R 1 - B discussed in Sec. Ill. As for the movie-movie weights (both
fui = bui +|R(u)| 2 . > (ruj—buj)wij + [N(u)| . > G wi; and ¢;j), their learning rate is 0.005 with regularization
JER(Y) JEN(‘”(N) constant of 0.002. Finally, the update of the expongnt
Here, then? item-item weightsw;; and G; represent the uses a particulgrly small step size of 1e-7, with reguléiona
adjustments we need to make to the predicted rating of iitemconstant equahn-g 0.01. ) )
given a rating of itenj. It was proven greatly beneficial to use Ve @lso experimented with othtirldecqy forms, like the more
two sets of item-item weights: one (the;s) is related to the computationally-friendly(1+ BuAt)" ", which resulted in the
values of the ratings, and the other disregards the ratihgya S&Me accuracy, with an improved running time. (No need to
considering only which items were rated (tigs). These Change meta-parameters.) o
weights are automatically learned from the data togethér wi AS in the factor case, properly considering temporal dy-
the biases. The constarlts; are precomputed according toh@mics improves the accuracy of the neighborhood model.
2)—(3). The RMSE decreases from 0.9002 [7] to 0.8870 (see next
When adapting rule (17) to address temporal dynamiciPsection). To our best knowledge, this is significantiee
two components should be considered separately. Firdigis than previously known results by neighborhood methods. To
baseline predictor portiorhy =  + b; + by, which explains PUt this in some perspective, this result is even better than
most of the observed signal. Second, is the part that captuf@0se reported [1,2,11, 15] by using hybrid approaches such
the more informative signal, dealing with user-item inttien @S @pplying a neighborhood approach on residuals of other
|R(u)|*% S jer) (fuj — BUJ)W” + \N(u)|*% S jen() Gi - For the algorithms. A lesson is that _adq_ressm_g temporal dynanmcs i
baseline part, nothing changes from the factor model, aHif data can have a more significant impact on accuracy than
we make it time-aware, according to either (10), or (11§/€Signing more complex learning algorithms.
The latter one adds frequencies and is generally preferred.
However, capturing temporal dynamics within the intei@cti L
part requires a different strategy. A. What's in the blend?

ltem-item weights\; andc;;) reflect inherent item charac-  we ran the time-aware neighborhood model, with biases
teristics and are not expected to drift over time. The le®ni following (10) for 20, 25, and 30 iterations of stochastic
process should make sure that they capture unbiased lgjpgdient descent. The resulting RMSEs were 0.8887, 0.8885
term values, without being too affected from drifting aspec and 0.8887, respectively. The results with 20 and 30 imati
Indeed, the time-changing nature of the data can mask mugh in the blend.
of the longer term item-item relationships if not treated ad \\e also tried extending (18) with a non-normalized term.

equately. For instance, a user rating both itanaid j high  This involved adding a third set of movie-movie weighs,
in a short time period, is a good indicator for relating thenys foliows:

thereby pushing higher the value wf;. On the other hand, if
those two ratings are given five years apart, while the user’s

NI

taste (if not her identity) could considerably change, thigss fui =byi + |N(u)|‘% z e—ﬁu-‘tui—tuj‘cij+
evidence of any relation between the items. On top of this, we jeN(u)
would argue that those considerations are pretty much user- 1 ~Bultui—tuil ~
dependent — some users are more consistent than others and R(u)[ 2 'eg(u)e I((rug = bup)wij )+
allow relating their longer term actions. 7yju.‘t | -

Our goal here is to distill accurate values for the item- > e Wl il((ryj — byj)di).

item weights, despite the interfering temporal effectssthive JER(Y)

need to parameterize the decaying rel_ations between tws it9—|ere, we also tried to emphasize the very adjacent ratings
rated by useo. We adopt an exponential decay formed by the,, e py the user. Therefore, the new decay-controlling con-

. _3,-At e
functione P, wheref, > 0 controls the user specific decay, tants, they,s, were initialized with a relatively high value
rate and should be learned from the data. This leads to the ¢ (compared to initializing3, with zero.) In addition,

prediction rule for dij we used a slower learning rate of 1le-5. Learning was
done by 25 iterations of stochastic gradient descent. Tédtre

fui =bui + \N(u)l*% e*ﬁu“tuiftuj\cij_i_ (18) with RMSE=0.8881 i; ipcluded in the bIend.. In retrospeqt, we
i) believe that such a miniscule RMSE reduction does not justif

1 Beltitil (1 B adding a third set of movie-movie weights.
IR(W)] jeg(u) ((ruj —buj)wij). Finally, we ran the time-aware neighborhood model, with

biases following (11) for 20 iterations of stochastic geadi
The involved parameters are learned by minimizing the adescent. (The third set of movie-movie weights was not )sed.
sociated regularized squared error. Minimization is penfed  The result of RMSE=0.8870 is included in the blend. Note that
by stochastic gradient descent for 20-30 iterations. Theeinothe RMSE reduction from 0.8885 to 0.8870 is solely attridute
is applied directly to the raw data, so all parameters (lsiasel to the frequency bias term. Later, we refer to this model as
movie-movie weights) are learned simultaneously. LeanifPQ3].



V1. EXTENSIONS TORESTRICTEDBOLTZMANN team. Instead of using the original weingQ?, we will use
MACHINES frequency-dependent Weighﬁi{'j‘f, which are factored as

. . - : ‘ ‘
A. RBMs with conditional visible units WK =W (14Cfj).

We extended the Restricted Boltzmann Machines (RB : . .
model suggested by [12]. The original work showed asign:\fﬁl/-)le use online leaming for the new paramet€rg, with

X . . 2 "learning rate of le-5.
cant pt_erformar_me boost by making the hidden units condition s it turned out, this extension of the weights barely
on which movies the current user has rated. We have fou

that imilarlv sianificant perf booSt | hieved roves performance when frequency-biases are already
at a simiarly signiticant performance boost 1S achievy resent, while being somewhat onerous in terms of running
conditioning the visible units.

. ) . . time. Thus, we are unlikely to recommend it. Still, it is part
Intuitively spea.k.mg, ea_lch of the RBM visible units COMmeLt our frequency-aware RBM implementation.
sponds to a specific movie. Thus their biases represent movie
biases. However, we know that other kinds of biases are more ) o .
significant in the data. Namely, user-bias, single-day bies, B- RBMs with day-specific hidden units
and frequency-based movie bias. Therefore, we add thoséMotivated by the day-specific user factor (14), we also
biases to the visible units through conditional connedtiontried to create day-specific RBM hidden units. On top of the
which depend on the currently shown user and date. F hidden units, we also ad@ day-specific units. For a user
Let us borrow the original notation [12], which uses #hat rated orr different days, we create parallel copies of
conditional multinomial distribution for modeling eachlemn the G day-specific units. All those parallel copies share the
of the observed visible binary rating matik same hidden-visible weights, hidden biases, and condition
K <F . connections. Also, each parallel copy is connected onlj¢o t
_ exp(b+ 31 hJ'Wij) (19) visible units corresponding to the ratings given in its exdjye
S-g exp(bl + 3 W) day.
To put this formally, for a day-specific hidden unit indexed

current instance refer to userand datet. We add a user/date yector rt € {0,1}" to denote which movies the current user

bias term: rated on date. Then, the Bernoulli distribution for modeling
exp(bﬁt+bﬁ+bik+zf:1hjw,k) hidden user features becomes

(20) n s n
p(hj = 1V,r)) = a(b; +i;k;fitvﬁ‘w.‘f+ i;'ﬁtDij ). (22)

PV = 1h)

p(V:( =1lhut) =

g exp(bly + bl + bl + Z'j:=1 thin )

whereb is a user-specific parameter, abffj is a usex date-

specific variable. The learning rule is In our implementation we used this model together with

the frequency-biased RBM. All parameters associated Wih t
AbK = &1 (V) gata— (V)T), AbK = £2((W) gata— (V)T). day-specific units were learned in mini-batches, as their no
day-specific counterparts, but with a learning rate of 0.005
We have found it convenient here to deviate from the minand a weight decay of 0.01. Results were not encouraging,
batch learning scheme suggested in [12], and to ld#m and further refinement is still needed. Still a single vatriain
and bf; in a fully online manner. That is, we update eacthis scheme contributes to the blend.
immediately after observing a corresponding traininganse.
The_ used learning rates .arei = 0.0025 andé& = 0.008. C. What's in the blend?
Notice that unless otherwise stated, we use the same weight o .
decay suggested in the original paper, which is 0.001. First a note on over-training. Our parameter setting made
Considering the significant effect of frequencies, we cdf€ RBM typically converge at lowest Quiz RMSE with 60-90
further condition on them here. Let the current instancerrefterations. However, for the overall blend it was benefitl

to useru and date with associated frequendy. The resulting continue overfitting the training set, and let the RBM run for
conditional distribution is as follows: many additional iterations, as will be seen in the following

- We include in the blend four variants of the RBM model
exp(blf -+ b+ b+ b+ 3 T_ W) following (20):
Siqexpbl; +blg+bl+b+ 55 W) 1) F =200, #iterations=52, RMSE=0.8951
(21) 2) F =400, #iterations=62, RMSE=0.8942
wherebikf is a moviexfrequency-specific variable. Its learning 3) F =400, #iterations=82, RMSE=0.8944

PV =1hut, f)=

rule will be 4) F =400, #iterations=100, RMSE=0.8952
AbY = £3((V)gata— (V7). There are also two variants of the RBM with frequencies
_ o (21):
where ez = 0.0002. Online learning is used as well. 1) F = 200, #iterations=90, RMSE=0.8928

When using frequencies we also employed the following 2) F = 200, #iterations=140, RMSE=0.8949
modification to the visible-hidden weights, which was brioug ' '

to our attention by our colleagues at the Pragmatic Theory’An idea developed together with Martin Piotte



Later, we refer to these two models as [PQ4] and [PQ5]. GBDT combine a few advantages, including an ability

Interestingly, the RMSE=0.8928 result is the best we knots find non-linear transformations, ability to handle skdwe
by using a pure RBM. If our good experience with postprosariables without requiring transformations, computadiloro-
cessing RBM by kNN [2] is repeatable, one can achieve lmstness (e.g., highly collinear variables are not an )ssue
further significant RMSE reduction by applying kNN to theand high scalability. They also naturally lend themseh@s t
residuals. However, we have not experimented with this. parallelization. This has made them a good choice for skvera

Finally, there is a single predictor RBM with 50 hidderlarge scale practical problems such as ranking results of a
units and 50 day-specific hidden units, which ran 70 iterastio search engine [9, 17], or query-biased summarization athea
to produce RMSE=0.9060. Later, we refer to this model assults [10]. In practice we had found them, indeed, very
[PQS]. flexible and convenient. However, their accuracy lags khin

that of Neural Network regressors described in [13].
VIl. GBDT BLENDING There are four parameters controlling GBDT, which are:

A key to achieving highly competitive results on the Net(l) number of trees, (2) size of each tree, (3) shrinkage (or,
flix data is usage of sophisticated blending schemes, whidfarning rate”), and (4) sampling rate. Our experiments di
combine the multiple individual predictors into a singleafin N0t Show much sensitivity to any of these parameters (exact
solutior®. This significant component was managed by o@hoices are described later.) .
colleagues at the Big Chaos team [14]. Still, we were produc-Sincé GBDT can handle very skewed variables, we added
ing a few blended solutions, which were later incorporated § the list of predictors four additional features: userpp
individual predictors in the final blend. (number of rated movies), movie support (number of rating

Our blending techniques were applied to three distinct sét§ers), frequency and date of rating (number of days passed
of predictors. First is a set of 454 predictors, which repnes Since earliest rating in the dataset). .
all predictors of the BellKor's Pragmatic Chaos team forathi Ve applied GBDT leaming on the aforementioned sets
we have matching Probe and Qualifying results [14]. Secorff, 454 and 75 predictors. The Probe set is used for train-
is a set of 75 predictors, which the BigChaos team picked oty the GBDT, which is then applied on the Qualifying
of the 454 predictors by forward selection [14]. Finally,&t s S€t: Parameter settings are: #trees=200, tree-sae;ﬂﬁk-sh _
of 24 BellKor predictors for which we had matching Prob@9€=0-18, and sampling-rate=0.9. The results, which are in

and Qualifying results. Details of this set are given at the e ¢luded in the blend, are of RMSE=0.8603 (454 predictors)
of this section. and RMSE=0.8606 (75 predictors).

When working with the much smaller set of 24 BellKor pre-
dictors, we used the settings: #trees=150, tree-size+2itks

. ] . . age=0.2, and sampling-rate=1.0. The result of RMSE=0.8664
While major breakthroughs in the competition werg,as included in the blend.

achieved by uncovering new features underlying the data,; js also beneficial to introduce a clustering of users
those became rare and very hard to get. As we entered H?emovies, which will allow GBDT to treat all users (or
final 30 days of the competition (“last call for grand prizenoyies) of a certain kind similarly. In the past [2], we todite
period”), we realized that individual predictors, even @vel  gpjitting users into bins based on their support, and apglyi
and accurate, are unlikely to make a difference to the ble_"éi equal blending strategy for all users in the same bin. This
We speculated that the most impact during a short perigda\ready addressed in the GBDT implementation described
of 30 days would be achieved by exploring new blendingpoye, thanks to adding the user support variable to the
techniques or improving the existing ones. Blending oferspjenged features. However we can introduce additionalskind
lower risk path to improvement in a short time. First, unlikgy ,ser relationships to the scheme. For example, a matrix
individual predictors, better blending is directly cont@tto  factorization model computes a short vector charactegizin
the final result. Second, blending simultaneously touch&sym each yser (a user factor). Like-minded users are expected to
predictors, rather than improving one at a time. This lech® t ;¢ mapped to similar vectors. Hence, adding such vectors to
idea of employing Gradient Boosted Decision Trees, whiGRe plended feature sets will effectively allow GBDT to slic
was raised together with Michael Jahrer and Andreaschier. ang dice the user base into subsets of similar users on which

Eventually, it did indeed make a contribution to the blendhe same blending rules should be applied. The same can be
though we hoped for a more significant impact. done with movies.

Gradient Boosted Decision Trees (GBDT) are an additive e included in the blend three forms of this idea, all applied
regression model consisting of an ensemble of trees, fitteddyy the set of 24 BellKor predictors. First we added to the
current residuals in a forward step-wise manner. In the tgrended predictors features from the timeSVD++ model (16)
ditional boosting framework, the weak learners are geherahy gimensionalityf = 20. This way, all individual bias terms

shallow decision trees consisting of a few leaf nodes. GBQ{Jere added as features. In addition, for each movie-user pai
ensembles are found to work well when there are hundregls j we added the 20-D movie factdg; + gt ), and the
’ stui

of such decision trees. Standard references are [5, 6], angqu user factorp
known implementation is Treenet [16]. RMSE=0.8661. !

A. Gradient Boosted Decision Trees

(tui) + \R(u)\*% Y icr@) Yj- This resulted in

SWhile we use here the generic term “blending”, the more acettetm Second, we used th_e 20_ h'@'de” units Qf an RBM as a
would be “stacked generalization”. 20-D user representation (in lieu of the timeSVD++ user



representation). The movie representation is still bagsethe 23) Predictor #83
timeSVD++ model. The resulting RMSE is also 0.8661. 24) Predictor #106

Finally, we added k-NN features on top of the timeSVD++ One last predictor with RMSE=0.8713 is in the final blend.
features. That is, for each—i pair, we found the top 20 It is based on the blending technique described in page 12 of
movies most similar td, which were rated by. We added the [3]. The technique was applied to the four predictors indexe
movie scores, each multiplied by their respective sintiesi above by: 2, 9, 12, and 13.
as additional features. Similarities here were shrunk $ear
correlations [1]. This slightly reduces the RMSE to 0.8660. VIII. CONCLUDING REMARKS

Another usage of GBDT is for solving a regression problem Granting the grand prize celebrates the conclusion of the
per movie. For each user we computed a 50-D characterigietflix Prize competition. Wide participation, extensiveegs
vector formed by the values of the 50 hidden units of overage and many publications all reflect the immense suc-
respective RBM. Then, for each movie we used GBDT fafess of the competition. Dealing with movies, a subjectelos
solving the regression problem of linking the 50-D use the hearts of many, was definitely a good start. Yet, much
vectors to the true user ratings of the movie. The resulty witould go wrong, but did not, thanks to several enabling facto
RMSE=0.9248, will be denoted as [PQ7] in the followingrhe first success factor is on the organizational side — Metfli

description. They did a great service to the field by releasing a precious
dataset, an act which is so rare, yet courageous and importan
B. List of BellKor's Probe-Qualifying pairs to the progress of science. Beyond this, both design and

We list the 24 BellKor predictors which participated in thgonduct of the .competition were fla_wless and non-trivialt Fo
GBDT blending. Notice that many more of our predictor§<ample, the size of the data was right on target. Much larger
are in the final blend of Qualifying results (as mentione@Nd more representative tha_n Comparaple datasets, yeit .smal
earlier in this article). However, only for those listed dgl €nough to make the competition accessible to anyone with a
we possess corresponding Probe results, which requira egmmodity PC. As another example, | would mention the split
computational resources to fully re-train the model whil@f the test set into three parts: Probe, Quiz, and Test, which

excluding the Probe set from the training set. was essential to ensure the fairness of the competitiorpif@es
being planned well ahead, it proved to be a decisive factor at
Post Progress Prize 2008 predictors the very last minute of the competition, three years later.
Those were mentioned earlier in this document: The second success factor is the wide engagement of many
1) PQ1 competitors. This created positive buz_z, Ieading to furthe
2) PQ2 enrollment of many more. Much was said and written on the

collaborative spirit of the competitors, which openly pabéd

2; Egz an_d di_s_cusseq the_:ir innovations_on the web forl_Jm and thro_ugh
5) PQ5 scientific publications. The_ feeling was pf a big comm_umty

6) PQ6 progres.s.ing together, !'n.akmg the experience more enjeyabl
7) PQ7 and efficient to all participants. In fact, this facilitatdte na-

ture of the competition, which proceeded like a long manatho
rather than a series of short sprints.
Another helpful factor was some touch of luck. The most

Progress Prize 2008 predictors
The following is based on our notation in [3]:

8) SVD++Y (f =200) prominent one is the choice of the 10% improvement goal.

9) Integrated { = 100, k= 300) Any small deviation from this number, would have made the

10) S_\/D*'*ia)_(f = 500) competition either too easy or impossibly difficult. In atitok,

11) First neighborhood model of Sec. 2.2 of [3lhe goddess of luck ensured most suspenseful finish lines in

(RMSE:O.9002) ) both 2007 Progress Prize and 2009 Grand Prize, matching best

12) A neighborhood model mentioned towards the end Qﬁorts events.

Sec. 2.2 of [3] (RMSE=0.8914) The science of recommender systems is a prime beneficiary
Progress Prize 2007 predictors of the contest. Many new people became involved in the
The following is based on our notation in [2]: field and made their contributions. There is a clear spike

13) Predictor #40 in related publications, and the Netflix dataset is the direc
14) Predictor #35 catalyst to developing some of the better algorithms knawn i
15) Predictor #67 the field. Out of the numerous new algorithmic contributidns
16) Predictor #75 would like to highlight one — those humble baseline predito
17) NNMF (60 factors) with adaptive user factors (or biases), which capture main effects in the data. While
18) Predictor #381 the literature mostly concentrates on the more sophisticat
19) Predictor #73 algorithmic aspects, we have learned that an accuratenesat
20) 100 neighbors User-kNN on residuals of all globaf main effects is probably at least as significant as coming
effects but the last 4 up with modeling breakthroughs.
21) Predictor #85 Finally, we were lucky to win this competition, but recog-

22) Predictor #45 nize the important contributions of the many other contasta



from which we have learned so much. We would like to thank
all those who published their results, those who partieigat
in the web forum, and those who emailed us with questions
and ideas. We got our best intuitions this way.
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