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Many engineering problems can be transformed into constrained optimization problems by establishing corresponding mathematical models. 
However, different solution algorithms for a constraint optimization problem usually show a significant disparity in the performance. Therefore, 
this paper proposes a hybrid genetic algorithm for solving constrained optimization problems. By constructing a special penalty function and 
combining with the random direction method, the selection, crossover and mutation operators are improved, thus enhancing the performance of 
the algorithm. In addition, this paper theoretically verifies the global convergence of the algorithm while employing elitism strategy. 
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INTRODUCTION 
 

 
Optimization problems are frequently encountered in practical engineering and scientific experiments such as planning, 
prediction, controlling, diagnosis and process design. These problems are always under various constraint conditions and also 
have many solutions including traditional and modern ones. For the traditional solutions, there are analytic, direct and numerical 
methods that are complicated in calculation and require unimodality, derivability, continuity, etc. As to the modern ones, artificial 
neural network, simulated annealing, taboo search and intelligent evolutionary methods are included, which are intuitive, simple, 
operable, fast and efficient, in spite of some drawbacks [1-3]. In the middle of 1960s, based on the work of A.S. Fraser and H.J. 
Bremermann, John Holland from University of Michigan, the United States, proposed the bit-string encoding that is suitable for 
both crossover and mutation operations but mainly employs crossover as the genetic operator. In 1975, he published a pioneering 
work Adaptation in Natural and Artificial Systems. Afterwards, he and his students popularized and applied this algorithm in the 
optimization, machine learning, etc., and named the algorithm as genetic algorithm officially [4-7]. In University of Michigan, a 
laboratory for genetic algorithms was established. Besides, the international society of genetic algorithms was founded. It has 
convoked International Conference on Genetic Algorithms biennially since 1985 and several conference papers have been 
published from then on. Obviously, the general coding technique and simple and effective operation of the genetic algorithm have 
laid a solid foundation for its success and extensive application. Based on these achievements, numerous researchers have 
improved this algorithm into a general model with adaptive process, which has been widely adopted in neural network, pattern 
recognition, image processing, machine learning, function optimization, etc. 
 
The constrained optimization problems and the corresponding modified genetic algorithms  
 

The mathematical model for constrained optimization problems  
 

All constrained optimization problems can be transformed into the following mathematical model. 
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The processing of the constraint conditions of constrained optimization problems 
 
For constrained optimization problems, they are generally solved by penalty function, gradient projection and multiplier methods. 
Myriads of simulation experiments reveal that the genetic algorithm (especially the modified one) exhibits high efficiency and 
great adaptability for this kind of problems. Generally, the penalty function method is employed to process the constraint 
conditions while solving constrained optimization problems utilizing the genetic algorithm. This method is also adopted to 
process the constraint conditions of the algorithm described in this paper.   
 

The modified hybrid genetic algorithm with a newly constructed penalty function   
 
Firstly, the following penalty function is constructed. 
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The real number encoding method is used in the modified genetic algorithm and the initial population is generated applying the 
short interval method. The concrete algorithm steps are as follows:  
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The convergence of the algorithm  
 
There are lots of modified genetic algorithms for solving constrained optimization problems, and they have multiple merits 
comparing with the basic genetic algorithm. Nevertheless, most   findings on the convergence of algorithms are illustrated by the 
results obtained through simulation experiments, while the convergence of modified genetic algorithms is barely explored. 
Therefore, this paper researches the convergence of the algorithm utilizing random variables and the corresponding limit theory 
and verifies that a global optimal solution can be achieved through the above modified algorithm.  
 

Definition 1: Suppose that }{ n  is a sequence of random variables in the probability space },,{ Pf . If  ..VR , for 
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Where  and  are the i th components of  and , respectively.    
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diverges and the elitism strategy is applied in the algorithm, under the assumption 2, the algorithm converges to a global optimal 
solution in probability, and the convergence has no relation with the initial population.  
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Theorem 4: Under the condition of theorem 3, only if 0)(  at (t=0, 1, 2,...., and ), then the algorithm converges 
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According to the relevance theory of series of positive terms and definitions 1 and 2, the algorithm converges to a global optimal 
solution and the convergence has nothing with the initial population. Theorem 5: The hybrid genetic algorithm with elitism 
strategy is employed and it converges to a global optimal solution in probability 1. Besides, the convergence is not associated 
with the initial population.  
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global optimal solution in probability 1 and is independent on the initial population.    
 
Conclusion  
 
This paper provides general methods for constrained optimization problems employing the genetic algorithm in the beginning. 
Then, a frame structure of using the modified hybrid genetic algorithm for solving constrained optimization problems is proposed. 
Moreover, the limit theory of random variables is used to discuss the conditions for the convergence of the algorithm. It is 
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validated that under the elitism strategy, the proposed algorithm converges to a global optimal solution in probability 1, which is 
independent with the initial population.   
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