
© 2012, IJARCSSE All Rights Reserved Page | 337

 Volume 2, Issue 4, April 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Processing and Evaluation of Broad Fragments of XPath
 B.Kiran Kumar Mr. Shaik Salam

 *

 \

 Department of CSE Department of CSE

 Sree Vidyanikethan Engineering college Sree Vidyanikethan Engineering College

 bkiran1351@gmail.com Shaiksalam17@yahoo.com

Abstract— XML queries typically specify patterns of selection predicates on multiple elements that have some specified tree

structured relationships. The primitive tree structured relationships are parent-child and ancestor-descendant, and finding

all occurrences of these relationships in an XML database is a core operation for XML query processing. In this paper, we

develop two families of structural join algorithms for this task: tree-merge and stack-tree. The tree-merge algorithms are a

natural extension of traditional merge joins and the recently proposed multi-predicate merge joins, while the stack-tree

algorithms have no counterpart in traditional relational join processing. We present experimental results on a range of data

and queries using the TIMBER native XML query engine built on top of SHORE. We show that while, in some cases, tree-

merge algorithms can have performance comparable to stack-tree algorithms, in many cases they are considerably worse.

This behavior is explained by analytical results that demonstrate that, on sorted inputs, the stack-tree algorithms have worst-

case I/O and CPU complexities linear in the sum of the sizes of inputs and output, while the tree-merge algorithms do not

have the same guarantee

Keywords— XML query processing, XPath query evaluation, tree-pattern query, partial tree-pattern query.

I. INTRODUCTION

XML employs a tree-structured model for representing data.

Quite naturally, queries in XML query languages typically

specify patterns of selection predicates on multiple elements

that have some specified tree structured relationships. For

example, the XQuery path expression: book[title

„XML‟]//author[. = „jane‟] matches author elements that (i)

have as content the string value “jane”, and (ii) are

descendants of book elements that have a child title element

whose content is the string value “XML”. This XQuery path

expression can be represented as a node-labeled tree pattern

with elements and string values as node labels. Such a

complex query tree pattern can be naturally decomposed into

a set of basic parent-child and ancestor-descendant

relationships between pairs of nodes. For example, the basic

structural relationships corresponding to the above query are

the ancestor descendant relationship (book, author) and the

parent-child relationships (book, title), (title, XML) and

(author, jane). The query pattern can then be matched by (i)

matching each of the binary structural relationships against the

XML database, and (ii) “stitching” together these basic

matches. Finding all occurrences of these basic structural

relationships in an XML database is clearly a core operation in

XML query processing, both in relational implementations of

XML databases, and in native XML databases. There has been

a great deal of work done on how to find occurrences of such

structural relationships (as well as the query tree patterns in

which they are embedded) using relational database systems,

as well as using native XML query engines. These works

typically use some combination of indexes on elements and

string values, tree traversal algorithms, and join algorithms on

the edge relationships between nodes in the XML data tree.

More recently, Zhang et al. proposed a variation of the

traditional merge join algorithm, called the multi-predicate

merge join (MPMGJN) algorithm, for finding all occurrences

of the basic structural relationships (they refer to them as

containment queries). They compared the implementation of

containment queries using native support in two commercial

database systems, and a special purpose inverted list engine

based on the MPMGJN algorithm. Their results showed that

the MPMGJN algorithm could outperform standard RDBMS

join algorithms by more than an order of magnitude on

containment queries. The key to the efficiency of the

MPMGJN algorithm is the (DocId, StartPos : EndPos, Leve

lNum) representation of positions of XML elements, and the

(DocId, StartPos, LevelNum) representation of positions of

string values, that succinctly capture the structural

relationships between elements (and string values) in the

XML database. Checking that structural relationships in the

XML tree, like ancestor-descendant and parent-child

(corresponding to containment and direct containment

relationships, respectively.

http://www.ijarcsse.com/

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 338

1.1 Outline and Contributions

We begin by presenting background material in Section 2. Our

main contributions are as follows: _ We develop two families

of join algorithms to perform matching of the parent-child and

ancestor-descendant structural relationships efficiently: tree-

merge and stack-tree Given two input lists of tree nodes, each

sorted by (DocId, StartPos), the algorithms compute an output

list of sorted results joined according to the desired structural

relationship. The tree-merge algorithms are a natural

extension of merge joins and the recently proposed MPMGJN

algorithm, while the stack-tree algorithms have no counterpart

in traditional relational join processing. _ We present an

analysis of the tree-merge and the stack-tree algorithms. The

stack-tree algorithms are I/O and CPU optimal (in an

asymptotic sense), and have worst case I/O and CPU

complexities linear in the sum of sizes of the two input lists

and the output list for both ancestor descendant (or,

containment) and parent-child (or, direct containment)

structural relationships. The tree-merge algorithms have

worst-case quadratic I/O and CPU complexities, but on some

natural classes of structural relationships and XML data, they

have linear complexity as well.

II. DATA MODEL AND QUERY PATTERNS

An XML database is a forest of rooted, ordered, labeled trees,

each node corresponding to an element and the edges

representing (direct) element-sub element relationships. Node

labels consist of a set of (attribute, value) pairs, which suffices

to model tags, PCDATA content, etc. its tree representation.

Queries in XML query languages like XQuery , Quilt and

XML-QL make fundamental use of (node labeled) tree

patterns for matching relevant portions of data in the XML

database. The query pattern node labels include element tags,

attribute-value comparisons, and string values, and the query

pattern edges are either parent-child edges (depicted using

single line) or ancestor-descendant edges (depicted using a

double line). For example, the XQuery path expression in the

introduction can be represented as the rooted tree pattern .

This query pattern would match the document In general, at

each node in the query tree pattern, there is a node predicate

that specifies some predicate on the attributes of the node in

question. For the purposes of this paper, exactly what is

permitted in this predicate is not material. It suffices for our

purposes that there be the possibility of constructing efficient

access mechanisms to identify the nodes in the XML database

that satisfy any given node predicate.

2.1 Matching Basic Structural Relationships

A complex query tree pattern can be decomposed into a set

of basic binary structural relationships such as parent-child

and ancestor-descendant between pairs of nodes. The query

pattern can then be matched by (i) matching each of the binary

structural relationships against the XML database, and (ii)

“stitching” together these basic matches. For example, the

basic structural relationships corresponding to the query tree

pattern . A straightforward approach to matching structural

relationships against an XML database is to use traversal-style

algorithms by using child-pointers or parent-pointers. Such

“tuple-at-a-time” processing strategies are known to be

inefficient compared to the set-at-a-time strategies used in

database systems. Pointer-based joins have been suggested as a

solution to this problem in object-oriented databases, and shown to

be quite efficient.

Figure 1. (a) A sample XML document fragment,

 (b) Tree representation

2.2 Representing Positions of Elements and String

Values in an XML Database

The key to an efficient, uniform mechanism for set-at-a-time

(join-based) matching of structural relationships is a positional

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 339

representation of occurrences of XML elements and string

values in the XML database, which extends the classic

inverted index data structure in information retrieval. The

position of an element occurrence in the XML database can be

represented as the 3-tuple (DocId, StartPos : EndPos,

LevelNum), and the position of a string occurrence in the

XML database can be represented as the 3-tuple (DocId,

StartPos, LevelNum), where (i) DocId is the identifier of the

document; (ii) StartPos and EndPos can be generated by

counting word numbers from the beginning of the document

with identifier DocId until the start of the element and end of

the element, respectively; and (iii) LevelNum is the nesting

depth of the element (or string value) in the document.

depicts a 3- tuple with each tree node, based on this

representation of position. (The DocId for each of these nodes

is chosen to be 1.) Structural relationships between tree nodes

(elements or string values) whose positions are recorded in

this fashion can be determined easily: (i) ancestor-descendant:

a tree node n2 whose position in the XML database is encoded

as (D2; S2 : E2;L2) is a descendant of a tree node n1 whose

position is encoded as (D1; S1 : E1;L1) iff D1 = D2; S1 < S2

and E2 < E1;1 (ii) parent-child: a tree node n2 whose position

in the XML database is encoded as (D2; S2 : E2;L2) is a child

of a tree node n1 whose position is encoded as (D1; S1 : E1;

L1) iff D1 = D2; S1 < S2;E2 < E1,and L1 +1 = L2. For

example, in Figure 1(b), the author node with position

(1;6 : 8; 3) is a descendant of the book node with position

(1;1 : 70; 1), and the string “jane” with position (1; 7; 4) is a

child of the author node with position (1;6 : 8; 3). A key point

worth noting about this representation of node positions in the

XML data tree is that checking an ancestor descendant

structural relationship is as easy as checking a parent child

structural relationship. The reason is that one can check for an

ancestor-descendant structural relationship without knowledge

of the intermediate nodes on the path. Also worth noting is

that this representation of positions of elements and string

values allow for checking order and proximity relationships

between elements and/or string values; this issue is not

explored further in our paper.

III. STRUCTURAL JOIN ALGORITHMS

In this section, we develop two families of join algorithms for

matching parent-child and ancestor-descendant structural

relationships efficiently: tree-merge and stack-tree, and

present an analysis of these algorithms. Consider an ancestor-

descendant (or, parent-child) structural relationship (e1; e2),

for example, (book, author) (or, (author, jane)) in our running

example. Let AList = [a1; a2; : : :] and DList = [d1; d2; : : :]

be the lists of tree nodes that match the node predicates e1 and

e2, respectively, each list sorted by the (DocId, StartPos)

values of its elements. There are a number of ways in which

the AList and the DList could be generated from the database

that stores the XML data. For example, a native XML

database system could store each element node in the XML

data tree as an object with the attributes: ElementTag, DocId,

StartPos, EndPos, and LevelNum. An index could be built

across all the element tags, which could then be used to find

the set of nodes that match a given element tag. The set of

nodes could then be sorted by (DocId, StartPos) to produce

the lists that serve as input to our join algorithms. Given these

two input lists, AList of potential ancestors (or parents) and

DList of potential descendants (resp., children), the algorithms

in each family can output a list OutputList = [(ai; dj)] of join

results, sorted either by(DocId, ai.StartPos, dj.StartPos) or by

(DocId, dj.StartPos, ai.StartPos). Both variants are useful, and

the variant chosen may depend on the order in which an

optimizer chooses to compose the structural joins to match the

complex XML query pattern.

3.1 Tree-Merge Join Algorithms

The algorithms in the tree-merge family are a natural

extension of traditional relational merge joins (which use an

equality join condition) to deal with the multiple inequality

conditions that characterize the ancestor-descendant or the

parent-child structural relationships, based on the (DocId,

StartPos : EndPos, LevelNum) representation. The recently

proposed multi-predicate merge join (MPMGJN) algorithm

[29] is also a member of this family. The basic idea here is to

perform a modified merge-join, possibly performing multiple

scans through the “inner” join operand to the extent necessary.

Either AList or DList can be used as the inner (resp., outer)

operand for the join: the results are produced sorted(primarily)

by the outer operand. we present the tree-merge algorithm for

the case when the outer join operand is the ancestor; this is

similar to the MPMGJN algorithm. Similarly,deals with the

case when the outer join operand is the descendant. For ease

of understanding, both algorithms assume that all nodes in the

two lists have the same value of DocId, their primary sort

attribute. Dealing with nodes from multiple documents is

straightforward, requiring the comparison of DocId values and

the advancement of node pointers as in the traditional merge

join.

3.2 Stack-Tree Join Algorithms

We observe that a depth-first traversal of a tree can be

performed in linear time using a stack of size as large as the

height of the tree. In the course of this traversal, every

ancestor-descendant relationship in the tree is manifested by

the descendant node appearing somewhere higher on the stack

than the ancestor node. We use this observation to motivate

our search for a family of stack based structural join

algorithms, with better worst-case I/O and CPU complexity

than the tree-merge family, for both parent-child and ancestor-

descendant structural relationships. Unfortunately, the depth-

first traversal idea, even though appealing at first glance,

cannot be used directly since it requires traversal of the whole

database. We would like to traverse only the candidate nodes

provided to us as part of the input lists. We now describe our

stack-tree family of structural join algorithms; these

algorithms have no counterpart in traditional join processing.

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 340

IV. CONCLUSION

In this paper, our focus has been the development of new join

algorithms for dealing with a core operation central to much

of XML query processing, both for native XML query

processor implementations as well for relational XML query

processors. In particular, the Stack-Tree family of structural

join algorithms was shown to be both I/O and CPU optimal,

and practically efficient. There is a great deal more to efficient

XML query processing than is within the scope of this paper.

For example, XML permits links across documents, and such

“pointer-based joins” are frequently useful in querying. We do

not consider such joins in this paper, since we believe that

they can be adequately addressed using traditional value-

based join methods. There are many issues yet to be explored,

and we currently have initiated efforts to address some of

these, including the piecing together of structural joins and

value-based joins to build effective query plans.

V. FUTURE WORK

 PartialTreeStack outperforms a state of- the art XQuery

engine on PTPQs.Indexing techniques were shown to speed

up substantially holistic stack-based algorithms on TPQs. An

interesting research direction involves extending the

algorithms presented in this paper for PTPQs so that they can

take advantage of these optimization techniques. Using

materialized views to optimize our PTPQ evaluation

algorithm is another useful extension of the present work.

REFERENCES

[1] M. P. Consens and T. Milo. Algebras for querying text

regions. In Proceedings of PODS, 1995.

[2] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D.

Suciu. XML-QL: A query language for XML. Submission to

theWorldWideWeb Consortium 19-August-1998.Available

from http://www.w3.org/TR/NOTE-xml-ql., 1998.

[3] D. DeWitt, J. Naughton, and D. Schneider. An evaluation

of non equijoin algorithms. Proceedings of SIGMOD, 1991.

[4] M. Fernandez and D. Suciu. SilkRoute: Trading between

relations and XML. WWW9, 2000.

[5] T. Fiebig and G. Moerkotte. Evaluating queries on

structure with access support relations. Proceedings of

WebDB, 2000.

[6] D. Florescu and D. Kossman. Storing and querying XML

data using an RDMBS. IEEE Data Engineering Bulletin,

22(3):27–34, 1999.

[7] G. Graefe. Query evaluation techniques for large

databases. ACM Computing Surveys, 25(2), 1993.

[8] G. Jacobson, B. Krishnamurthy, D. Srivastava, and D.

Suciu. Focusing search in hierarchical structures with

directory sets. In Proceedings of CIKM, 1998.

[9] H. V. Jagadish, L. V. S. Lakshmanan, T. Milo, D.

Srivastava, and D. Vista. Querying network directories. In

Proceedings of SIGMOD, 1999. Proceedings of SIGMOD,

1997.

[10] M.-L. Lo and C. V. Ravishankar. Spatial hash-joins.

Proceedings of SIGMOD, 1996.

[11] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and

J. Widom. Lore: A database management system for

semistructured data. SIGMOD Record, 26(3), 1997.

[12] J. McHugh and J. Widom. Query optimization for XML.

In Proceedings of VLDB, 1999.

[13] U. of Washington. The Tukwila system. Available from

http://data.cs.washington.edu/integration/tukwila/.

[14] U. of Wisconsin. The Niagara system. Available from

http://www.cs.wisc.edu/niagara/.

[15] J. M. Patel and D. J. DeWitt. Partition based spatial-

merge join. Proceedings of SIGMOD, 1996.

[16] G. Salton and M. J. McGill. Introduction to modern

information retrieval. McGraw-Hill, New York, 1983.

[17] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J.

Carey, B. G. Lindsay, H. Pirahesh, and B. Reinwald.

Efficiently publishing relational data as XML documents. In

Proceedings of VLDB, 2000.

[18] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J.

De- Witt, and J. F. Naughton. Relational databases for

querying XML documents: Limitations and opportunities. In

Proceedings of VLDB, 1999.

[19] E. Shekita and M. Carey. A performance evaluation of

pointer based joins. Proceedings of SIGMOD, 1990.

[20] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G.

Lohman. On supporting containment queries in relational

database management systems. In Proceedings of SIGMOD,

2001.

