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Abstract—  XML queries typically specify patterns of selection predicates on multiple elements that have some specified tree 

structured relationships. The primitive tree structured relationships are parent-child and ancestor-descendant, and finding 

all occurrences of these relationships in an XML database is a core operation for XML query processing. In this paper, we 

develop two families of structural join algorithms for this task: tree-merge and stack-tree. The tree-merge algorithms are a 

natural extension of traditional merge joins and the recently proposed multi-predicate merge joins, while the stack-tree 

algorithms have no counterpart in traditional relational join processing. We present experimental results on a range of data 

and queries using the TIMBER native XML query engine built on top of SHORE. We show that while, in some cases, tree-

merge algorithms can have performance comparable to stack-tree algorithms, in many cases they are considerably worse. 

This behavior is explained by analytical results that demonstrate that, on sorted inputs, the stack-tree algorithms have worst-

case I/O and CPU complexities linear in the sum of the sizes of inputs and output, while the tree-merge algorithms do not 

have the same guarantee 
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I. INTRODUCTION 

XML employs a tree-structured model for representing data. 

Quite naturally, queries in XML query languages  typically 

specify patterns of selection predicates on multiple elements 

that have some specified tree structured relationships. For 

example, the XQuery path expression: book[title 

„XML‟]//author[. = „jane‟] matches author elements that (i) 

have as content the string value “jane”, and (ii) are 

descendants of book elements that have a child title element 

whose content is the string value “XML”. This XQuery path 

expression can be represented as a node-labeled tree pattern 

with elements and string values as node labels. Such a 

complex query tree pattern can be naturally decomposed into 

a set of basic parent-child and ancestor-descendant 

relationships between pairs of nodes. For example, the basic 

structural relationships corresponding to the above query are 

the ancestor descendant relationship (book, author) and the 

parent-child relationships (book, title), (title, XML) and 

(author, jane). The query pattern can then be matched by (i) 

matching each of the binary structural relationships against the 

XML database, and (ii) “stitching” together these basic 

matches. Finding all occurrences of these basic structural 

relationships in an XML database is clearly a core operation in 

XML query processing, both in relational implementations of 

XML databases, and in native XML databases. There has been 

a great deal of work done on how to find occurrences of such 

structural relationships (as well as the query tree patterns in  

 

 

which they are embedded) using relational database systems, 

as well as using native XML query engines. These works 

typically use some combination of indexes on elements and  

string values, tree traversal algorithms, and join algorithms on 

the edge relationships between nodes in the XML data tree. 

More recently, Zhang et al. proposed a variation of the 

traditional merge join algorithm, called the multi-predicate 

merge join (MPMGJN) algorithm, for finding all occurrences 

of the basic structural relationships (they refer to them as 

containment queries). They compared the implementation of 

containment queries using native support in two commercial 

database systems, and a special purpose inverted list engine 

based on the MPMGJN algorithm. Their results showed that 

the MPMGJN algorithm could outperform standard RDBMS 

join algorithms by more than an order of magnitude on 

containment queries. The key to the efficiency of the 

MPMGJN algorithm is the (DocId, StartPos : EndPos, Leve 

lNum) representation of positions of XML elements, and the 

(DocId, StartPos, LevelNum) representation of positions of 

string values, that succinctly capture the structural 

relationships between elements (and string values) in the 

XML database. Checking that structural relationships in the 

XML tree, like ancestor-descendant and parent-child 

(corresponding to containment and direct containment 

relationships, respectively. 
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1.1 Outline and Contributions 
 

We begin by presenting background material in Section 2. Our 

main contributions are as follows: _ We develop two families 

of join algorithms to perform matching of the parent-child and 

ancestor-descendant structural relationships efficiently: tree-

merge and stack-tree Given two input lists of tree nodes, each 

sorted by (DocId, StartPos), the algorithms compute an output 

list of sorted results joined according to the desired structural 

relationship. The tree-merge algorithms are a natural 

extension of merge joins and the recently proposed MPMGJN 

algorithm, while the stack-tree algorithms have no counterpart 

in traditional relational join processing. _ We present an 

analysis of the tree-merge and the stack-tree algorithms. The 

stack-tree algorithms are I/O and CPU optimal (in an 

asymptotic sense), and have worst case I/O and CPU 

complexities linear in the sum of sizes of the two input lists 

and the output list for both ancestor descendant (or, 

containment) and parent-child (or, direct containment) 

structural relationships. The tree-merge algorithms have 

worst-case quadratic I/O and CPU complexities, but on some 

natural classes of structural relationships and XML data, they 

have linear complexity as well. 

 

II. DATA MODEL AND QUERY PATTERNS 

  

 

An XML database is a forest of rooted, ordered, labeled trees, 

each node corresponding to an element and the edges 

representing (direct) element-sub element relationships. Node 

labels consist of a set of (attribute, value) pairs, which suffices 

to model tags, PCDATA content, etc. its tree representation. 

Queries in XML query languages like XQuery , Quilt and 

XML-QL  make fundamental use of (node labeled) tree 

patterns for matching relevant portions of data in the XML 

database. The query pattern node labels include element tags, 

attribute-value comparisons, and string values, and the query 

pattern edges are either parent-child edges (depicted using 

single line) or ancestor-descendant edges (depicted using a 

double line). For example, the XQuery path expression in the 

introduction can be represented as the rooted tree pattern . 

This query pattern would match the document  In general, at 

each node in the query tree pattern, there is a node predicate 

that specifies some predicate on the attributes of the node in 

question. For the purposes of this paper, exactly what is 

permitted in this predicate is not material. It suffices for our 

purposes that there be the possibility of constructing efficient 

access mechanisms  to identify the nodes in the XML database 

that satisfy any given node predicate. 

 

2.1 Matching Basic Structural Relationships 

 
A complex query tree pattern can be decomposed into a set 

of basic binary structural relationships such as parent-child 

and ancestor-descendant between pairs of nodes. The query 

pattern can then be matched by (i) matching each of the binary 

structural relationships against the XML database, and (ii) 

“stitching” together these basic matches. For example, the 

basic structural relationships corresponding to the query tree 

pattern . A straightforward approach to matching structural 

relationships against an XML database is to use traversal-style 

algorithms by using child-pointers or parent-pointers. Such 

“tuple-at-a-time” processing strategies are known to be 

inefficient compared to the set-at-a-time strategies used in 

database systems. Pointer-based joins have been suggested as a 

solution to this problem in object-oriented databases, and shown to 

be quite efficient. 
 

 

 
Figure 1. (a) A sample XML document fragment, 

 (b) Tree representation 

2.2 Representing Positions of Elements and String 

Values in an XML Database 

 
The key to an efficient, uniform mechanism for set-at-a-time 

(join-based) matching of structural relationships is a positional 
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representation of occurrences of XML elements and string 

values in the XML database, which extends the classic 

inverted index data structure in information retrieval. The 

position of an element occurrence in the XML database can be 

represented as the 3-tuple (DocId, StartPos : EndPos, 

LevelNum), and the position of a string occurrence in the 

XML database can be represented as the 3-tuple (DocId, 

StartPos, LevelNum), where (i) DocId is the identifier of the 

document; (ii) StartPos and EndPos can be generated by 

counting word numbers from the beginning of the document 

with identifier DocId until the start of the element and end of 

the element, respectively; and (iii) LevelNum is the nesting 

depth of the element (or string value) in the document.  

depicts a 3- tuple with each tree node, based on this 

representation of position. (The DocId for each of these nodes 

is chosen to be 1.) Structural relationships between tree nodes 

(elements or string values) whose positions are recorded in 

this fashion can be determined easily: (i) ancestor-descendant: 

a tree node n2 whose position in the XML database is encoded 

as (D2; S2 : E2;L2) is a descendant of a tree node n1 whose 

position is encoded as (D1; S1 : E1;L1) iff D1 = D2; S1 < S2 

and E2 < E1;1 (ii) parent-child: a tree node n2 whose position 

in the XML database is encoded as (D2; S2 : E2;L2) is a child 

of a tree node n1 whose position is encoded as (D1; S1 : E1; 

L1) iff D1 = D2; S1 < S2;E2 < E1,and L1 +1 = L2. For 

example, in Figure 1(b), the author node with position 

(1;6 : 8; 3) is a descendant of the book node with position 

(1;1 : 70; 1), and the string “jane” with position (1; 7; 4) is a 

child of the author node with position (1;6 : 8; 3). A key point 

worth noting about this representation of node positions in the 

XML data tree is that checking an ancestor descendant 

structural relationship is as easy as checking a parent child 

structural relationship. The reason is that one can check for an 

ancestor-descendant structural relationship without knowledge 

of the intermediate nodes on the path. Also worth noting is 

that this representation of positions of elements and string 

values allow for checking order and proximity relationships 

between elements and/or string values; this issue is not 

explored further in our paper. 

 

III. STRUCTURAL JOIN ALGORITHMS 

 

In this section, we develop two families of join algorithms for 

matching parent-child and ancestor-descendant structural 

relationships efficiently: tree-merge and stack-tree, and 

present an analysis of these algorithms. Consider an ancestor-

descendant (or, parent-child) structural relationship (e1; e2), 

for example, (book, author) (or, (author, jane)) in our running 

example. Let AList = [a1; a2; : : :] and DList = [d1; d2; : : :] 

be the lists of tree nodes that match the node predicates e1 and 

e2, respectively, each list sorted by the (DocId, StartPos) 

values of its elements. There are a number of ways in which 

the AList and the DList could be generated from the database 

that stores the XML data. For example, a native XML 

database system could store each element node in the XML 

data tree as an object with the attributes: ElementTag, DocId, 

StartPos, EndPos, and LevelNum. An index could be built 

across all the element tags, which could then be used to find 

the set of nodes that match a given element tag. The set of 

nodes could then be sorted by (DocId, StartPos) to produce 

the lists that serve as input to our join algorithms. Given these 

two input lists, AList of potential ancestors (or parents) and 

DList of potential descendants (resp., children), the algorithms 

in each family can output a list OutputList = [(ai; dj)] of join 

results, sorted either by(DocId, ai.StartPos, dj.StartPos) or by 

(DocId, dj.StartPos, ai.StartPos). Both variants are useful, and 

the variant chosen may depend on the order in which an 

optimizer chooses to compose the structural joins to match the 

complex XML query pattern. 

 

3.1 Tree-Merge Join Algorithms 

 
The algorithms in the tree-merge family are a natural 

extension of traditional relational merge joins (which use an 

equality join condition) to deal with the multiple inequality 

conditions that characterize the ancestor-descendant or the 

parent-child structural relationships, based on the (DocId, 

StartPos : EndPos, LevelNum) representation. The recently 

proposed multi-predicate merge join (MPMGJN) algorithm 

[29] is also a member of this family. The basic idea here is to 

perform a modified merge-join, possibly performing multiple 

scans through the “inner” join operand to the extent necessary. 

Either AList or DList can be used as the inner (resp., outer) 

operand for the join: the results are produced sorted(primarily) 

by the outer operand.  we present the tree-merge algorithm for 

the case when the outer join operand is the ancestor; this is 

similar to the MPMGJN algorithm. Similarly,deals with the 

case when the outer join operand is the descendant. For ease 

of understanding, both algorithms assume that all nodes in the 

two lists have the same value of DocId, their primary sort 

attribute. Dealing with nodes from multiple documents is 

straightforward, requiring the comparison of DocId values and 

the advancement of node pointers as in the traditional merge 

join.  

 

3.2 Stack-Tree Join Algorithms 

 
We observe that a depth-first traversal of a tree can be 

performed in linear time using a stack of size as large as the 

height of the tree. In the course of this traversal, every 

ancestor-descendant relationship in the tree is manifested by 

the descendant node appearing somewhere higher on the stack 

than the ancestor node. We use this observation to motivate 

our search for a family of stack based structural join 

algorithms, with better worst-case I/O and CPU complexity 

than the tree-merge family, for both parent-child and ancestor-

descendant structural relationships. Unfortunately, the depth-

first traversal idea, even though appealing at first glance, 

cannot be used directly since it requires traversal of the whole 

database. We would like to traverse only the candidate nodes 

provided to us as part of the input lists. We now describe our 

stack-tree family of structural join algorithms; these 

algorithms have no counterpart in traditional join processing. 
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IV. CONCLUSION 

 

In this paper, our focus has been the development of new join 

algorithms for dealing with a core operation central to much 

of XML query processing, both for native XML query 

processor implementations as well for relational XML query 

processors. In particular, the Stack-Tree family of structural 

join algorithms was shown to be both I/O and CPU optimal, 

and practically efficient. There is a great deal more to efficient 

XML query processing than is within the scope of this paper. 

For example, XML permits links across documents, and such 

“pointer-based joins” are frequently useful in querying. We do 

not consider such joins in this paper, since we believe that 

they can be adequately addressed using traditional value-

based join methods. There are many issues yet to be explored, 

and we currently have initiated efforts to address some of 

these, including the piecing together of structural joins and 

value-based joins to build effective query plans.  

 

V. FUTURE WORK 

 

 PartialTreeStack outperforms a state of- the art XQuery 

engine on PTPQs.Indexing techniques were shown to speed 

up substantially holistic stack-based algorithms on TPQs. An 

interesting research direction involves extending the 

algorithms presented in this paper for PTPQs so that they can 

take advantage of these optimization techniques. Using 

materialized views to optimize our PTPQ evaluation 

algorithm is another useful extension of the present work. 
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