
© 2012, IJARCSSE All Rights Reserved Page | 206

 Volume 2, Issue 4, April 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Analyzing Test Case Selection using Proposed Hybrid

Technique based on BCO and Genetic Algorithm and a

Comparison with ACO
Bharti Suri

Associate Professor

University School of Information Technology

Guru Gobind Singh Indraprastha University,

Dwarka,Delhi,India

Isha Mangal
Research Student

University School of Information Technology

Guru Gobind Singh Indraprastha University,

Dwarka,Delhi,India
ishamangal2006@yahoo.com

Abstract- Regression Testing is primarily a maintenance activity that is performed to ensure the validity of modified software. But due

to time and cost constraint entire test suite can’t be executed. Thus, it becomes a necessity to reduce the test case suite and select a

subset of test cases from test suite that can be executed in minimum time and has the ability to cover all the faults. A new hybrid

approach based on bee colony optimization and genetic algorithm was proposed to reduce the test suite. This paper presents a tool

named HBG_TCS that implements the proposed approach and the study is done to evaluate the correctness and efficiency of the

proposed tool and a comparison of the proposed approach is made with the ant colony optimization.

Keywords: Regression Testing, Test Case Selection, Genetic Algorithm (GA), Bee Colony Optimization (BCO), Ant Colony

Optimization (ACO).

I. INTRODUCTION

Regression Testing is an activity to make sure that

modifications performed in the specific part of the software

can be tested and do not incorporate other unexpected

behavior [1-3]. In order to test for ambiguities in the software,

we need to execute all the test cases that are prepared in the

development phase, although this activity may be too time

consuming and expensive.

Many techniques are proposed by researchers for reducing

both time and cost. They include techniques regression test

selection [4-14], regression test prioritization [15-17] and

hybrid approaches [1, 2] etc. In the paper [18], the authors

proposed a hybrid technique of test case selection using BCO

and GA. In this paper, the above proposed technique is

implemented and a comparison is provided with the regression

test case selection using ACO technique [19].

Regression testing is generally done in a time constraint

environment where the testing is done for a predetermined

amount of time. Walcott et al [20] gave one such technique for

time aware test case prioritization. Time aware prioritization

intelligently schedules the test suite in terms of both the

execution time and potential fault detection information.

Singh et al in 2010, also proposed a time constraint

prioritization using Ant Colony Optimization (ACO) and

automated in [19]. In this paper a tool called HBG_TCS was

developed for the proposed hybrid technique [18]. The

outcomes of the execution provides near optimum results and

further motivates to test the tool on various programs, to

confirm the efficiency and correctness of the tool.

The paper is organized as follows. Section II discusses how

the genetic algorithm works. Section III talks about the

artificial bee colony optimization. Section IV illustrates the

ACO technique. The proposed hybrid technique has been

discussed in Section V. The experimental design of proposed

approach is detailed in Section VI.

II. GENETIC ALGORITHM (GA)

Genetic algorithm, a adaptive search procedure is introduced

by John Holland [21], broadly studied by Goldberg [22] and

De Jong [23]. It is an optimization technique which provides

near optimal solution to NP-hard problems. GA is applied to

solve many problems like travelling salesman

problem[24],knapsack problem[25],etc.

Genetic Algorithm is based on the idea on the natural

evolution. The foundation of GA lies on the concept of the

survival of fittest into a solution space. Each cycle of GA

process includes initialization (encoding), selection based on

fitness function, reproduction using crossover or mutation.

http://www.ijarcsse.com/
mailto:ishamangal2006@yahoo.com

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 207

The cycle is repeated till a solution is found that satisfies the

minimum criteria or a fixed number of generations has been

reached.

III. BEE COLONY OPTIMIZATION (BCO)

Bee Colony Optimization is a swarm based metaheuristic

algorithm introduced by Karaboga in 2005 [26-28].It is based

on the foraging behavior of the honey bees.

BCO is an optimization technique which provides a

population based search procedure, where the artificial bees

modify the food positions with time [29]. The main aim of the

bees‟ is to locate the food source positions with high nectar

amount [30]. The colony of bees comprises of three groups of

bees: employed bees, onlookers and scouts [29]. Employed

bees forage in search of their food source and return to hive

and perform a dance on this area. The employed bee who find

abandoned food source becomes a scout and find a new food

source again. Onlookers decided their food source depending

upon the dance of employed bees.

A nectar source is selected by each bee by following a nest

mate whose food source has already discovered. The bees

dance on the floor area (hive), on discovery of nectar sources.

This is how the onlooker bees convinced their nest mates to

follow them. To get nectar ,rest of the bees follow the dancers

to one of the nectar areas. On collecting the nectar they return

back to their hive, relinquish the nectar to a food store. After

relinquishing the food, the bee opts for one of the alternatives

with a certain probability (a) abandon the food source and act

as a uncommitted follower, (b) without enlisting the nest

mates, continue to forage at the food source or (c) enlist the

nest mates by dancing before returning to the food source.

Different food areas are advertised by bee dancers within the

dance area. The procedure by which the bee decides to follow

a specific dancer, is not well understood but it is considered

that “the recruitment among bees is always a function of the

quality of the food source.”

IV. ANT COLONY OPTIMIZATION (ACO)

Ant colony optimization algorithm (ACO) is a probabilistic

technique for solving computational problems which can be

reduced to finding good paths through graphs. Marco Dorigo

proposed ant colony Optimization in 2005[31]. ACO has its

real strength in the overwhelming behavior of ants looking for

a path between their colony and a source of food.

Ants are blind and they communicate with their colony by a

chemical substance called pheromone. Ants while moving

yields pheromone along the path traversed. This pheromone

trail is sensed by other ants through which other ants follow

the path with maximum pheromone trail. The process is

repeated till sufficient amount of food has been gathered. This

substance evaporates with time with some amount of

percentage.

ACO technique has been already used in solving various

combinatorial problem such as knapsack problem, travelling

salesman problem, distributed network, telecommunication

network, vehicle routing, test data generation.

The paper provides a comparison with the tool ACO_TCSP

developed in Suri et al [19] with the tool HBG_TCS.

V. DESCRIPTION OF THE TECHNIQUE

In [18], a new approach to reduce the cost of regression

testing by test case suite reduction was proposed. The

proposed technique is based on concepts of BCO and GA. The

technique selects the set of test case from the available test

suite that will cover all the faults detected earlier in minimum

execution time. Here bees are used as agents who explore the

minimum set of test cases. Half of the bees will initially start

foraging with randomly selected test cases. Now bees will add

new test cases on her explored path if adding of a test case

increases its fault detection capacity. After adding one more

test case, the bees return to their hive, and exchange the

information based on GA. The crossover operation is used to

exchange the information. The new set of test case produced

after crossover is used by new bees to forage. The process is

repeated till any of the bees has discovered a set of test cases

that covers all faults detection and starts to perform waggle

dance.Initially the „n/2‟bees starts foraging. Each bee that

have started forage will choose the test case randomly. The

bees will select test case on the basis that adding test case will

increase the fault detection capacity. The foraged bees will

return to their hive and genetically exchange information by

crossover method. Crossover will be performed between the

bees whose total execution time is minimum and the bees with

the next minimum execution time.If the resulted test cases

total execution time is less than the maximum execution time

available subset of test cases, the new bees will forage using

those subset of test cases as its initial path. If the results

produced after crossover does not produce new test cases or

test cases which are superfluous, will not be considered. If

both test sets produced after crossover will not produce new

set, no new bee will forage. Now again the bees will choose

the test case. Repeat The whole process is repeated till any of

the bee has explored a set of test cases that can cover all the

test faults. As soon as the minimum set of test case are

produced, bee started to perform a waggle dance announcing

her victory. So the other bees can follow this test case path.

VI. EXPERIMENTAL DESIGN

HBG_TCS is a tool developed in C++ language to implement

the proposed algorithm that takes as input the test cases, their

faults and their execution time and the time constraint and

results in the minimum set of test cases.

A. Programs

For our analysis we used seven C++ programs and one java

program. We engendered five to ten modified versions and

black box test cases using fault based technique. Brief details

about the programs , their sizes, versions, and test suits are

provided in Table 1.

Progra

m No

Program

Name

Languag

e Used

Size

(LOC
)

No.of

Version
s

No.

of
Test

Case

s

Total

suite
Executio

n Time

(sec)

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Ant_colony

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 208

P1 Coll

Admission

C++ 281 5 9 105.32

P2 Hotel
mangaemen

t

C++ 666 5 5 49.84

P3 Triangle C++ 37 6 19 382

P4 Quatratic C++ 38 8 19 441

P5 Cost_of_Pu

b

C++ 31 8 19 382

P6 Calculator C++ 101 9 25 82.5

P7 Prev_day C++ 87 7 19 468

P8 Raiway_boo
k

Java 129 10 26 177

Table 1: Details of the selected 8 Test Programs

B. Variables

The independent variables manipulated by the experiment are:

1. Programs with five to ten faults each.

2. Various Time Constraints.

The analysis of the tool is done by calculating the ratio of the

total execution time of the test suite to the reduced proposed

algorithm execution time.

Execution of each program may lead to different path and is

determined graphically by showing percentage reduction in

test suit size and percentage reduction in execution time.

C. Design

For the correctness and efficiency of the proposed algorithm,

we run each programs with same test suite for seven different

time constraint values. Each run may yield a path or may not

yield the path. If the test case selected covers all the faults,

then our algorithm stops returning the subset of test cases

chosen. The time constraint chosen is the other finishing

criteria of the algorithm.

D. Data Analysis

For our testing the tool, out of the whole test pool, we

randomly chose a test suite for programs P1 to P8 in which the

number of test cases vary from five to twenty six test cases.

The execution of each test case is recorded and is used as an

input to the HBG_TCS tool.

E. Execution of HBG_TCS tool on Example

The output of HBG_TCS tool has been shown on the

example[18].The test cases and their respective faults has

been shown in Table 2 amd their execution time in Table 3.

Test

Case
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

T1 X X X X

T2 X X

T3 X X X

T4 X X X X

T5 X X X

T6 X X X

T7 X X X

T8 X X

Table 2: Sample data

Test Case No. of faults

covered

Execution

Time(ET)

T1 4 7

T2 2 3

T3 3 5

T4 4 5

T5 3 3

T6 3 6

T7 3 3

T8 2 2

Table 3: Test cases, no. of faults covered, their execution time

The output screen looks like as shown in Fig 1:

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 209

Fig1: Screenshots

Initially four bees started to forage. The time constraint is

taken as 20 in above example. The test cases selected by each

bee is shown in Table 4.

BEES B0 B1 B2 B3

Test Case Selected T3 T3 T7 T3

Total Execution

Time

5 4 5 4

Table 4:Initial Selection of Test Cases

In II iteration, the bees chose the following test cases as in

Table 5.

BEES B0 B1 B2 B3

Test Case

Selected

T3,T1 T3,T4 T7,T8 T3,T5

Total Execution

Time

12 9 6 9

Table 5: Selection of Test Cases in Iteration II

Now Bees B1 and B2 perform crossing over of test cases so

that new set of test cases generated will be followed by new

bees as in Table 6.

BEES B0 B1 B2 B3 B4 B5

Test Case Selected T3,T

1

T3,T

4

T7,T

8

T3,T

5

T7,T

4

T3,

T8

Total Execution

Time

12 9 6 9 8 7

Table 6: Selection of Test Cases in Iteration III

In Iteration 3,we found in Table 7 that B1 has detected one

path in 3 sec that can cover all the faults.

BEES B0 B1 B2 B3 B4 B5

Test Case

Selected

T3,T

1,T7

T3,T

4,T5

T7,T

8,T4

T3,T

5,T8

T7,T

4,T5

T3,T

8,T1

Total Execution

Time

16 13 10 11 12 14

Table 7: Selection of Test Cases in Iteration IV

F. Time Analysis and Comparison

The execution time of each program is shown in Fig 2. using

HBG_TCS tool.

Fig2:Graph showing Execution Time of each program using HBG_TCS Tool

From Fig 3, it is clear that HBG_TCS tool based on the hybrid

technique based on BCO and Genetic Algorithm of test case

selection is much faster than ACO_TCSP tool for ACO. The

same set of programs run on each tool. The execution time is

tremendously reduced.

Fig3:Comparison between HBG_TCS Tool and ACO_TCSP

The amount of reduction in execution time by using

HBG_Tool is shown in Fig 4 .

Fig4:% reduction in Execution time by HBG_TCS Tool

G. Cost Benefit Analysis

The results obtained in previous sections were further

reviewed to find the cost benefits analysis of the technique.

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 210

The cost of running the HBG_Tool in addition to cost of

running the selected test cases is compared with the cost of

executing the complete test suite.

The percentage reduction in the size was of selected test suite

using HGB_TCS Tool was calculated and is shown pictorially

in Fig 5 .

If „n‟ is size of a test suite and „s‟ be the selected test suite

using hybrid approach,then he value for percentage reduction

in test suite has been calculated using:

Fig 5: % Reduction in Test suite size using HBG_TCS Tool

The hybrid approach provides very high reduction in the size

of test suite.

Similarly, we can calculate the percentage reduction in

execution time of selected test suite .Let „T‟ be the total

execution time of the original test suite, ‟Tb‟ be the running

time of HBG_Tool and „Ts‟ be the total time foe executing the

selected test suite .The percentage reduction in execution time

using hybrid approach is computed as:

And is depicted in Fig 6.

Fig 6: % Reduction in Execution Time using HBG_TCS Tool

6.8 Conclusion

In this paper, we implemented the technique proposed in [18].

The results achieved depicts that a huge amount of reduction

in test suite takes place. Reduction in test suite reduces time as

well as cost.

The proposed hybrid approach proves much faster than ACO

technique. The tool developed runs much faster to provide the

minimum subset of test cases. The tool can provide different

results in each run.

REFERENCES

[1] G.Duggal, B.Suri,”Understanding Regression Testing

Techniques”, COIT, 2008, India.

[2] W. E.Wong, J. R. Horgan, S. London and H.Agrawal, “A study

of effective regression testing in practice,” In Proceedings of the 8th

IEEE International Symposium on Software Reliability Engineering

(ISSRE' 97), pages 264-274, November 1997.

[3] K.K.Aggarwal & Yogesh Singh, “Software Engineering Programs

Documentation, Operating Procedures,” New Age International

Publishers, Revised Second Edition – 2005.

[4] R.Rothermel , “Efficient Effective Regression Testing Using Safe

Test Selection Techniques,” Ph.D Thesis, Clemson University, May,

1996.

[5] Y.Singh, A. Kaur, B.Suri, “A new technique for version-specific

test case selection and prioritization for regression testing,” Journal

of the CSI ,Vol. 36 No.4, pages 23-32, October-December 2006.

[6] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold,

“Prioritizing Test Cases for Regression Testing,” IEEE Trans.

Software Eng., vol. 27, no. 10, pages 929-948, Oct. 2001.

[7] Y. Chen, D. Rosenblum, and K. Vo. TestTube, “A system for

selective regression testing,” In Proceedings of the 16th International

Conference on Software Engineering, pages 211-220, May 1994.

[8] K. Fischer, F. Raji, and A. Chruscicki, “A methodology for

retesting modifed software,” In Proceedings of the National

Telecommunications Conference B-6-3, pages 1-6, Nov. 1981.

[9] R. Gupta, M. J. Harrold, and M. Soffa, “An approach to

regression testing using slicing,” In Proceedings of the Conference

on Software Maintenance, pages 299-308, Nov. 1992.

[10] R. Gupta, M. J. Harrold, and M. Soffa, “An approach to

regression testing using slicing,” In Proceedings of the Conference

on Software Maintenance, pages 299-308, Nov. 1992.

[11] N.Mansour, and K. El-Faikh, “Simulating annealing and genetic

algorithms for optimal regression testing,” Journal of Software

Maintenance, Vol. 11, pages 19-34, 1999.

[12] M.J.Harrold, R.Gupta, and M.L. Soffa,“ A methodology for

controlling the size of the test suite, ” ACM Transaction on Software

Engineering and Methodology, pages 270-285, July 1993.

%reduction in test suite=(n-s)/n*100

%reduction in Execution Time=(T-

(Tb+Ts)/T*100

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 211

[13] H.Agrawal ,J.R. Horgan, and E.W. , Krauser, “Incremental

regression testing,” In: Proc. Conference on Software Maintenance,

pages 348-357,1993.

[14] R.Bahsoon, N. Mansour, “Methods and metrics for selective

regression testing,” In Computer Systems and Applications,

ACS/IEEE International Conference, pages 463-465, 2001.

[15] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold,

“Prioritizing Test Cases for Regression Testing,” IEEE Trans.

Software Eng., vol. 27, no. 10, pages 929-948, Oct. 2001.

[16] S.Elbaum, Alexey G. Malishevsky, and G.Rothermel, “Test

case prioritization: A family of empirical studies,” IEEE Transactions

on Software Engineering, vol. 28, NO.2, pages 159-182, Feb.2002.

[17] K. K. Aggrawal, Y. Singh, A. Kaur, “ Code coverage based

technique for prioritizing test cases for regression testing ,” ACM

SIGSOFT Software Engineering Notes , vol 29 Issue 5 September

2004.

[18] B.Suri, I.Mangal, V.Srivastava,”Regression Test Suite

Reduction using a Hybrid Technique Based on BCO and Genetic

Algorithm”,Special Issue of International Journal of Computer

Science and Informatics,ISSN:2231-5292,Volume II.

[19] B.Suri, S.Singhal, “Analyzing Test Case Selection and

Prioritization using ACO”,ACM SIGSOFT Volume 36 Issue 6,

November 2011

[20] K.R.Walcott,M.L.Soa,G.M.Kapfhammer,and R.S.Roos”,”Time

aware test suite prioritization”,In Proceedings of ISSTA,pages 1-

11,2006.

[21] J.Holland, “Adaption in Natural and Artificial Systems”, Ann

Arbor, MI: University of Michigan Press,1975.

[22] D. Goldberg, “Genetic Algorithms in Search Optimization and

Machine Learning”, New York,Addision Wesely, 1989.

[23] K.A.De Jong, “ Analysis of Behaviour of a class of Genetic

Adaptive Systems” .Phd Thesis,University of Michigan,Ann

Arbor,MI, 1975.

[24] G.Vahadati, M. Yaghoubi, M.Poostchi, S.Naghibi, “A New

Approach to Solve Traveling Salesman Problem Using Genetic

Algorithm Based on Heuristic Crossover and Mutation

Operator”,IEEE 2009.

[25] P.C. Chu and J.E. Beasley, “A Genetic Algorithm for the

Multidimensional Knapsack Problem”, Springer, Journal of

Heuristics Volume 4, Number 1, 63-86, DOI:

10.1023/A:1009642405419.

 [26] D. Karaboga, B. Basturk, “A Powerful And Efficient Algorithm

for Numerical Function Optimization: Artificial Bee Colony (ABC)

Algorithm”, Journal of Global Optimization, Volume:39 , Issue:3

,pp: 459-471, Springer Netherlands, 2007.

 [27] D. Karaboga, B. Basturk, “Artificial Bee Colony (ABC)

Optimization Algorithm for Solving Constrained Optimization

Problems”, Advances in Soft Computing: Foundations of Fuzzy

Logic and Soft Computing, Vol: 4529/2007, pp: 789- 798, Springer-

Verlag, 2007, IFSA 2007.

[28] D. Karaboga, B. Basturk Akay, “Artificial Bee Colony

Algorithm on Training Artificial Neural Networks, Signal Processing

and Communications Applications”, .SIU 2007, IEEE 15th. 11–13

June 2007, Page(s):1 - 4, 2007.

[29] Wikipedia; http://en.wikipedia.org/wiki/Bee

[30] D. Karaboga, “An Idea Based on Honey Bee Swarm for

Numerical Optimization,” Technical Report-TR06, Erciyes

University, Computer Engineering Department, Turkey, 2005.

[31] M.Dorigo,”Ant Colony Optimization: Artificial Ants as

Computational Intelligence Technique”,IEEE Computaional

Intelligence Magazine,2006.

http://www.springerlink.com/content/?Author=P.C.+Chu
http://www.springerlink.com/content/?Author=J.E.+Beasley
http://www.springerlink.com/content/1381-1231/
http://www.springerlink.com/content/1381-1231/
http://www.springerlink.com/content/1381-1231/
http://www.springerlink.com/content/1381-1231/4/1/
http://en.wikipedia.org/wiki/Bee

