
© 2012, IJARCSSE All Rights Reserved Page | 297

297

 Volume 2, Issue 4, April 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Optimization of Data Streaming Inputs Using Miner

Algorithms

 Ms. Pallavi Umap*

Student, Department of Information Technology,

Prof.Ram Meghe Institute of Technology Reasearch,

Anjangaon Bari Road, Badnera(Amravati), India.

E-mail Id: - ppt888@rediffmail.com

Dr.G.R.Bamnote

Professor & Head

Department of Computer Sci.& Engg,

Prof.Ram Meghe Institute of Technology & Research

Anjangaon Bari Road, Badnera (Amravati), India

Abstract –It focuses on quality improvement on join. It takes shorter time for joining two or more fields and

performance comparison between traditional and recent techniques. Also, evaluate the performance of DINER as

well as MINER. Adaptive join algorithms have recently attracted a lot of attention in emerging applications where

data is provided by autonomous data sources through heterogeneous network environments. In traditional join

techniques, they can start producing join results as soon as the first input tuples are available, thus improving

pipelining by smoothing join result production and by masking source or network delays. In propose work,

Evaluate the performance of Double Index Nested loops Reactive join (DINER), and Multiple Index Nested loop

Reactive join(MINER) These both algorithms are a adaptive join algorithm for result rate maximization. DINER

and MINER outperforms in comparison with the previous adaptive join algorithms in producing result tuples at a

significantly higher rate, while making better use of the available memory.

Keywords: Query processing; join Streams; DINER and MINER.

 I. INTRODUCTION

Real systems rarely stored all their data in one large table.

To do so would require maintaining several duplicate

copies of the same values and could threaten the integrity

of the data Instead, IT department everywhere almost

always divide their data among several different tables.

Because of this, a method is needed to simultaneously

access two or more tables by using join operation. Here,

main focus is to show how join operators work in

databases

Joins are one of the basic constructions of SQL and

Databases as they combine records from two or more

databases tables into one row source, one set of rows with

the same columns and these columns can originate from

either of joined tables as well as be formed using

expression or built in or user defined functions.

 II. EXISTING WORK

There are three basic join algorithms: Hash based join,

Sort Merge based join, Nested loop based join algorithm

A .Nested loop based join algorithm: In this, Nested loop

join compares each row from one table (i.e. outer table) to

each row from the other table (i.e. inner table) looking for

rows that satisfy the join predicate. Inner join and outer

join are the logical operations. The cost of this algorithm is

proportional to the size of outer table multiplied by size of

the inner table.

Pseudocode for algorithm:-

for each row R1 in the outer table

for each row R2 in the inner table

if R1 joins with R2

returns (R1,R2)

For Example, consider schema of two tables

„Customers‟and „Sales‟.

Create First table „Customers‟,

Create Table Customers(Cust_Id int, Cust_Name

varchar(10))

Another table is „Sales‟,

Create Table Sales (Cust_Id int,Item varchar(10))

 Query is written as:-

Select * from Sales S inner join Customers C on S.Cust_Id

= C.Cust_Id

http://www.ijarcsse.com/
mailto:ppt888@rediffmail.com

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 298

298

B. Hash based join algorithm: Hash joins [12] are used

when the joining large tables. The optimizer uses smaller

of the two tables to build a hash table in memory and the

scans the large tables and compares the hash value (of

rows from large table) with this hash table to find the

joined rows.

The algorithm of hash join is divided in two parts:

1. Build: - In-memory hash table on smaller of the two

tables.

2. Probe: - This hash table with hash value for each row

second table

For Example:-

Consider schema of two tables Emp_Master and Emp_Info

Create Table Emp_Master (Id int, Name varchar (10),

Designation varchar (10), Dept varchar (10))

Another table is,

Create Table Emp_Info (Id int, Dt_of_Joining Date Time)

Query is written as:-

Select Id int, Name varchar (10), Designation varchar (10),

Dept varchar (10) From Emp_Master inner join Emp_Info

on Emp_Master.Id = EmP_Info. Id Order by Emp_Info.

Dt_of_Joining desc

C. Sort based join algorithm: It is also known as sort

merge join [3] algorithm. Sort merge join is used to join

two independent data sources. They perform better than

nested loop when the volume of data is big in tables but

not as good as hash joins in general. They perform better

than hash join when the join condition columns are already

sorted or there is no sorting required.

Existing work on adaptive join algorithms can be classified

in two groups:-hash based join and sort based join.

Examples of hash based algorithms are XJoin, MJoin,

Hash Merge join, and Progressive Merge join.

D. Double Pipelined Hash Join (DPHJ): The double

Pipelined Hash Join (DPHJ) [7] is another extension of the

symmetric hash join algorithm. DPHJ has two stages. The

first stage is similar to the in-memory join in the

symmetric hash join and XJoin. In the second stage, pairs

that are not joined together in the first phase are marked

and are joined in disk. DPHJ is suitable for moderate size

data, but does not scale well for large data sizes.

 E. XJoin: It is a non-blocking join operator, called

XJoin[4] which has a small memory footprint, allowing

many such operators to be active in parallel. XJoin is

optimized to produce initial results quickly and can hide

intermittent delays in data arrival by reactively scheduling

background processing. We show that XJoin is an effective

solution for providing fast query responses to user even in

the presence of slow and bursty remote sources.

 In previous work [9] of Xjoin, we identified

three classes of delays that can affect the responsiveness of

query processing: 1) initial delay [11], in which there is a

longer than expected wait until the first tuple arrives from

a remote source 2) slow delivery, in which data arrive at a

fairly constant but slower than expected rate and 3) bursty

arrival [10] ,in which data arrive in a fluctuating manner.

F. Hash Merge Join: HMJ [5] is a hybrid query

processing algorithm combining ideas from XJoin and

Progressive Merge Join. This introduces the hash-merge

join algorithm (HMJ), for the join operator occasionally

gets blocked. The HMJ algorithm has two phases: The

hashing phase and the merging phase. The hashing phase

employs an in-memory hash-based join algorithm that

produces join results as quickly as data in data arrives. The

merging phase is responsible for producing join results if

the two sources are blocked.

G. MJoin: The basic idea of the MJoin[8] algorithm is

simple: generalize the symmetric binary hash join and the

XJoin algorithms to work for more than two inputs. our

primary goal is to maximize the output rate during the

memory-to-memory phase of the MJoin. As with the

binary XJoin, in MJoin, the disk to-memory phase is

intended to allow the system to generate outputs while its

inputs are blocked, while the disk to-disk phase is intended

to generate any final answers after the inputs have

terminated. Interestingly, for the MJoin, how we handle

memory overflow determines the output rate of the

memory-to-memory phase.

H. Progressive Merge Join: PMJ [3] is the adaptive non-

blocking version of the sort merge join algorithm. It splits

the memory into two partitions. As tuples arrive, they are

inserted in their memory partition. When the memory gets

full, the partitions are sorted on the join attribute and are

joined using any memory join algorithm. Thus, output

tuples are obtained each time the memory gets exhausted.

Next, the partition pair (i.e., the bucket pairs that were

simultaneously flushed each time the memory was full) is

copied on disk. After the data from both sources

completely arrives, the merging phase begins. The

algorithm defines a parameter F, the maximal fan-in,

which represents the maximum number of disk partitions

that can be merged in a single “turn”. F/2 groups of sorted

partition pairs are merged in the same fashion as in sort

merge. In order to avoid duplicates in the merging phase, a

tuple joins with the matching tuples of the opposite

relation only if they belong to a different partition pair

arrives. The merging phase is responsible for producing

join results if the two sources are blocked.

I. Rate based Progressive Join: RPJ [6] is the most recent

and advanced adaptive join algorithm. It is the first

algorithm that tries to understand and exploit the

connection between the memory content and the algorithm

output rate. During the online phase it performs as HMJ.

When memory is full, it tries to estimate which tuples have

the smallest chance to participate in joins.

 In this work, we used RPJ (Rate-based Progressive

Join), which continuously adapts its execution according to

the data properties (e.g., their distribution, arrival pattern,

etc.). RPJ utilizes a novel flushing algorithm which is op-

timal among all possible alternatives (based on the same

statistics about data distributions, arrival patterns, etc.),

and significantly enhances the efficiency of the memory-

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 299

299

memory stage. Furthermore, RPJ maximizes the output

rate by invoking the memory-disk and disk-disk in a

strategic order, i.e., the next stage selected for execution is

the one expected to produce the highest output rate.

 III PROPOSED WORK

A. DINER (Double Index Nested loop reactive join): In

proposed work, we will shown a new adaptive join

algorithm for output rate maximization called Double

Index Nested Loop Reactive Join (DINER)[2]. The

important feature of this algorithm is, it is completely

unblocking join techniques that support range join

conditions. Range join queries are a very common class of

joins in a variety of applications, traditional business data

processing to financial analysis applications and spatial

data processing. Progressive Merge Join [3] (PMJ), one of

the early adaptive algorithms, also supports range

conditions, but its blocking behavior makes it a poor

solution given the requirements of current data integration

scenarios.

Its operation based on the following points:

 Point 1. ReactiveNL initially selects one

relation to behave as the outer relation of the nested loop

algorithm, while the other relation initially behaves as the

inner relation. Notice that the “inner relation” (and the

“outer”) for the purposes of ReactiveNL consists of the

blocks of the corresponding relation that currently reside

on disk, because they were flushed during the Arriving

phase.

 Point 2. ReactiveNL tries to join successive

batches of OuterMem blocks of the outer relation with all

of the inner relation, until the outer relation is exhausted .

The value of OuterMem is determined based on the

maximum number of blocks the algorithm can use (input

parameter MaxOuterMem) and the size of the outer

relation. However, as DINER enters and exits the Reactive

phase, the size of that inner relation may change, as more

blocks of that relation may be flushed to disk. To make it

easier to keep track of joined blocks, we need to join each

batch of OuterMem blocks of the outer relation with the

same, fixed number of blocks of the inner relation – even

if over time the total number of disk blocks of the inner

relation increases. One of the key ideas of ReactiveNL is

the following: at the first invocation of the algorithm, we

record the number of blocks of the inner relation in

JoinedInner. From then on, all successive batches of

OuterMem blocks of the outer relation will only join with

the first JoinedInner blocks of the inner relation, until all

the available outer blocks are exhausted.

 Point 3. When the outer relation is exhausted,

there may be more than JoinedInner blocks of the inner

relation on disk (those that arrived after the first round of

the nested loop join, when DINER goes back to the

Arriving phase). If that is the case, then these new blocks

of the inner relation need to join with all the blocks of the

outer relation. To achieve this with the minimum amount

of book keeping, it is easier to simply switch roles

between relations, so that the inner relation (that currently

has new, unprocessed disk blocks on disk) becomes the

outer relation and vice versa (all the counters change roles

also, hence JoinedInner takes thevalue of JoinedOuter etc,

while CurrInner is set to point to the first block of the new

inner relation). Thus, an invariant of the algorithm is that

the tuples in the first JoinedOuter blocks of the outer

relation have joined with all the tuples in the first

JoinedInner blocks of the inner relation.

Fig. status of the algorithm during Reactive phase

Fig. status of the algorithm after swapping the roles of two

relations

 Point 4. To ensure prompt response to

incoming tuples, and to avoid overflowing the input buffer,

after each block of the inner relation is joined with the in-

memory OuterMem blocks of the outer relation,

ReactiveNL examines the input buffer and returns to the

Arriving phase if more than MaxNewArr tuples have

arrived. (We do not want to switch between operations for

a single tuple, as this is costly). The input buffer size is

compared, and if the algorithm exits, the variables

JoinedOuter, JoinedInner and CurrInner keep the state of

the algorithm for its next re-entry. At the next invocation

of the algorithm, the join continues by loading the outer

blocks with ids in the range

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 300

300

[JoinedOuter+1,JoinedOuter+OuterMem] and by joining

them with inner block CurrInner.

 Point 5. In earlier work, the flushing policy of

DINER spills on disk full blocks with their tuples sorted

on the join attribute. The ReactiveNL algorithm takes

advantage of this data property and speeds up processing

by performing an in-memory sort merge join between the

blocks. During this process, it is important that we do not

generate duplicate join between tuples touter and tinner

that have already joined during the Arriving phase. This is

achieved by proper use of the ATS and DTS time

stamps[4]. If the time intervals [touter.ATS, touter.DTS]

and [tinner.ATS, tinner.DTS] overlap, this means that the

two tuples coexisted in memory during the Arriving phase

and their join is already obtained. Thus, such pairs of

tuples are ignored by ReactiveNL algorithm.

 B. Difference between DINER and Existing algorithm:

1. DINER supports equi-joins and range queries.PMJ also

supports range queries but it has some limitation due to its

poor blocking behavior.

2. DINER will introduce flushing policy, is used to create

and maintained three overlapping value regions.

3. DINER will introduce a more responsive reactive phase

that allows the algorithm to quickly move into processing

tuples when both data sources block.

4. In Leaner Algorithm, DINER improves its relative

performance compared to the existing algorithm in terms

of produced tuples during online phase in more

constrained memory environment.

Fig. use case diagram for system

C. MINER (Multiple Index Nested loop reactive join):

MINER [1] extends DINER to multiway joins and it

maintains all the distinctive and efficiency generating

properties of DINER. MINER maximizes the output rate

by: 1) adopting an efficient probing sequence for new

incoming tuples which aims to reduce the processing

overhead by interrupting index lookups early for those

tuples that do not participate in the overall result; 2)

applying an effective flushing policy that keeps in memory

the tuples that produce results, in a manner similar to

DINER; and 3) activating a Reactive phase when all inputs

will blocked, which joins on-disk tuples while keeping the

result correct and being able to promptly hand over in the

presence of new input.

 Compared to DINER, additional challenges in

MINER namely: 1) updating and synchronizing the

statistics for each join attribute during the online phase 2)

more complicated book keeping in order being able to

guarantee correctness and prompt handover during reactive

phase. We are able to generalize the reactive phase of

DINER for multiple inputs using a novel scheme that

dynamically changes the roles between relations.

 IV.CONCLUSION

In proposed work, the comparison between

existing algorithm and DINER with their superiority will

be shown. Its advantages are 1) its intuitive flushing policy

that maximizes the overlap among the join attribute values

between the two relations, while flushing to disk tuples

that do not contribute to the result and 2) a novel re-entrant

algorithm for joining disk-resident tuples that were

previously flushed to disk. Moreover, DINER can

efficiently handle join predicates with range conditions, a

feature unique to our technique. It will also present a

significant extension to our framework in order to handle

multiple inputs. The resulting algorithm, MINER

addresses additional challenges, such as determining the

proper order in which to probe the in-memory tuples of the

relations, and a more complicated book keeping process

during the Reactive phase of the join. Through

experimental evaluation, it will be demonstrate the

advantages of both algorithms on a variety of real and

synthetic data sets, their resilience in the presence of

varied data and network characteristics and their

robustness to parameter changes.

REFERENCES:

 [1] Mihaela A.Bornea, Vasilis Vassalos, Yannis

Kotidis, Antonios Deligiannakis: Adaptive Join Operators

for Result Rate Optimization on Streaming Inputs. IEEE

Trans. Knowl. Data Eng. 22(8): 1110-1125 (2010)

[2] M. A. Bornea, V. Vassalos, Y. Kotidis, and A.

Deligiannakis. DoubleIndex Nested-loop Reactive Join for

Result Rate Optimization. In ICDEConf., 2009.

[3] J. Dittrich, B. Seeger, and D. Taylor. Progressive

merge join: A generic and non-blocking sort-based join

algorithm. In Proceedings of VLDB, 2002.

[4] T.Urhan and M.J.Franklin.Xjoin: A Relatively

scheduled pipilined join operator.IEEE Data

Eng.Bull,23920,2000

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/v/Vassalos:Vasilis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kotidis:Yannis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kotidis:Yannis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kotidis:Yannis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Deligiannakis:Antonios.html
http://www.informatik.uni-trier.de/~ley/db/journals/tkde/tkde22.html#BorneaVKD10
http://www.informatik.uni-trier.de/~ley/db/journals/tkde/tkde22.html#BorneaVKD10
http://www.informatik.uni-trier.de/~ley/db/journals/tkde/tkde22.html#BorneaVKD10

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 301

301

[5] M. F. Mokbel, M. Lu, and W. G. Aref. Hash-Merge

Join: A Non blocking Join Algorithm for Producing Fast

and Early Join Results. In ICDE Conf., 2004.nal

conference on very large databases 2003.

 [6] Y. Tao, M. L. Yiu, D. Papadias, M. Hadjieleftheriou,

and N. Mamoulis. RPJ: Producing Fast Join Results on

Streams Through Rate-based Optimization. In Proceedings

of ACM SIGMOD Conference, 2005.

[7] Z. G. Ives, D. Florescu, and et al. An Adaptive Query

Execution System for Data Integration.In SIGMOD, 1999.

[8] S.D Viglas,J.F.Naughton and J.Burger.Maximizing the

output rate of multiway join queries over streaming

information sources.In VLDB 2003: proceeding of the 29th

international

[9] L. Amsaleg, M. J. .Franklin, A. Tomasic, and T. Urhan.

Scrambling Query Plans to Cope With Unexpected Delays.

PDIS Conf., Miami, USA, 1996

[10] L. Amsaleg, M. J. .Franklin, and A. Tomasic.

Dynamic Query Operator Scheduling for Wide-Area

Remote Access. Journal of Distributed and Parallel

Databases, Vol. 6, No. 3, July 1998.

[11] T. Urhan, M. J. .Franklin, and L. Amsaleg. Cost

Based Query Scrambling for Initial Delays. ACM

SIGMOD Conf., Seattle, WA, 1998.

 [12] A. N. Wilschut and P. M. G. Apers. Dataflow Query

Execution in a Parallel Main-Memory Environment. In

Proceedings of the First International Conference on

Parallel and Distributed Information Systems, PDIS,

pages 68–77,Miami, Florida, Dec. 1991.

[13] J.-P. Dittrich, B. Seeger, D. S. Taylor, and P.

Widmayer. On Producing Join Results Early. In

Proceedings of the ACM Symposium on Principles of

Database Systems, PODS, pages 134–142, San Diego, CA,

June 2003.

[14] P. J. Haas and J. M. Hellerstein. Ripple Joins for

Online Aggregation. In Proceedings of the ACM

International Conference on Management of Data,

SIGMOD, pages 287–298, Philadelphia, PA, June 1999.

