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Abstract –It focuses on quality improvement on join. It takes shorter time for joining two or more fields and 

performance comparison between traditional and recent techniques. Also, evaluate the performance of DINER as 

well as MINER. Adaptive join algorithms have recently attracted a lot of attention in emerging applications where 

data is provided by autonomous data sources through heterogeneous network environments. In traditional join 

techniques, they can start producing join results as soon as the first input tuples are available, thus improving 

pipelining by smoothing join result production and by masking source or network delays. In  propose work, 

Evaluate the performance of Double Index Nested loops Reactive join (DINER), and Multiple Index Nested loop 

Reactive join(MINER) These both algorithms are  a adaptive join algorithm for result rate maximization.  DINER 

and MINER outperforms in comparison with the previous adaptive join algorithms in producing result tuples at a 

significantly higher rate, while making better use of the available memory. 
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                                      I. INTRODUCTION 

Real systems rarely stored all their data in one large table. 

To do so would require maintaining several duplicate 

copies of the same values and could threaten the integrity 

of the data Instead, IT department everywhere almost 

always divide their data among several different tables. 

Because of this, a method is needed to simultaneously 

access two or more tables by using join operation. Here, 

main focus is to show how join operators work in 

databases 

  

Joins are one of the basic constructions of SQL and 

Databases as they combine records from two or more 

databases tables into one row source, one set of rows with 

the same columns and these columns can originate from 

either of joined tables as well as be formed using 

expression or built in or user defined functions. 

                     II. EXISTING WORK 

There are three basic join algorithms: Hash based join, 

Sort Merge based join, Nested loop based join algorithm 

A .Nested loop based join algorithm: In this, Nested loop 

join compares each row from one table ( i.e. outer table) to 

each row from the other table (i.e. inner table) looking for 

rows that satisfy the join predicate. Inner join and outer 

join are the logical operations. The cost of this algorithm is 

proportional to the size of outer table multiplied by size of 

the inner table. 

Pseudocode for algorithm:- 

for each row R1 in the outer table 

for each row R2 in the inner table 

if R1 joins with R2 

returns (R1,R2) 

For Example, consider schema of two tables 

„Customers‟and „Sales‟. 

Create First table „Customers‟, 

Create Table Customers(Cust_Id  int, Cust_Name 

varchar(10)) 

Another table is „Sales‟, 

Create Table Sales (Cust_Id  int,Item varchar(10)) 

 Query is written as:- 

Select * from Sales S inner join Customers C on S.Cust_Id 

= C.Cust_Id 
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B. Hash based join algorithm:  Hash joins [12] are used 

when the joining large tables. The optimizer uses smaller 

of the two  tables to build a hash table in memory and the 

scans the large tables and compares the hash value (of 

rows from large table) with this hash table to find the 

joined rows. 

The algorithm of hash join is divided in two parts: 

1. Build: -   In-memory hash table on smaller of the two 

tables. 

2. Probe: - This hash table with hash value for each row 

second table 

For Example:-  

Consider schema of two tables Emp_Master and Emp_Info 

Create Table Emp_Master (Id int, Name varchar (10), 

Designation varchar (10), Dept varchar (10)) 

Another table is, 

Create Table Emp_Info (Id int, Dt_of_Joining Date Time) 

Query is written as:- 

Select Id int, Name varchar (10), Designation varchar (10), 

Dept varchar (10) From Emp_Master inner join Emp_Info 

on Emp_Master.Id = EmP_Info. Id Order by Emp_Info. 

Dt_of_Joining desc 

C. Sort based join algorithm:  It is also known as sort 

merge join [3] algorithm. Sort merge join is used to join 

two independent data sources. They perform better than 

nested loop when the volume of data is big in tables but 

not as good as hash joins in general. They perform better 

than hash join when the join condition columns are already 

sorted or there is no sorting required. 

Existing work on adaptive join algorithms can be classified 

in two groups:-hash based join and sort based join. 

Examples of hash based algorithms are XJoin, MJoin, 

Hash Merge join, and Progressive Merge join. 

D. Double Pipelined Hash Join (DPHJ): The double 

Pipelined Hash Join (DPHJ) [7] is another extension of the 

symmetric hash join algorithm. DPHJ has two stages. The 

first stage is similar to the in-memory join in the 

symmetric hash join and XJoin. In the second stage, pairs 

that are not joined together in the first phase are marked 

and are joined in disk. DPHJ is suitable for moderate size 

data, but does not scale well for large data sizes.                                                                                                        

 E. XJoin: It is a non-blocking join operator, called 

XJoin[4] which has a small memory footprint, allowing 

many such operators to be active in parallel. XJoin is 

optimized to produce initial results quickly and can hide 

intermittent delays in data arrival by reactively scheduling 

background processing. We show that XJoin is an effective 

solution for providing fast query responses to user even in 

the presence of slow and bursty remote sources. 

    In previous work [9] of Xjoin, we identified 

three classes of delays that can affect the responsiveness of 

query processing: 1) initial delay [11], in which there is a 

longer than expected wait until the first tuple arrives from 

a remote source 2) slow delivery, in which data arrive at a 

fairly constant but slower than expected rate and 3) bursty 

arrival [10] ,in which data arrive in a fluctuating manner. 

F. Hash Merge Join:  HMJ [5] is a hybrid query 

processing algorithm combining ideas from XJoin and 

Progressive Merge Join. This introduces the hash-merge 

join algorithm (HMJ), for the join operator occasionally 

gets blocked. The HMJ algorithm has two phases: The 

hashing phase and the merging phase. The hashing phase 

employs an in-memory hash-based join algorithm that 

produces join results as quickly as data in data arrives. The 

merging phase is responsible for producing join results if 

the two sources are blocked. 

G. MJoin: The basic idea of the MJoin[8] algorithm is 

simple: generalize the symmetric binary hash join and the 

XJoin algorithms to work for more than two inputs. our 

primary goal is to maximize the output rate during the 

memory-to-memory phase of the MJoin. As with the 

binary XJoin, in MJoin, the disk to-memory phase is 

intended to allow the system to generate outputs while its 

inputs are blocked, while the disk to-disk phase is intended 

to generate any final answers after the inputs have 

terminated. Interestingly, for the MJoin, how we handle 

memory overflow determines the output rate of the 

memory-to-memory phase. 

H. Progressive Merge Join:  PMJ [3] is the adaptive non-

blocking version of the sort merge join algorithm. It splits 

the memory into two partitions. As tuples arrive, they are 

inserted in their memory partition. When the memory gets 

full, the partitions are sorted on the join attribute and are 

joined using any memory join algorithm. Thus, output 

tuples are obtained each time the memory gets exhausted. 

Next, the partition pair (i.e., the bucket pairs that were 

simultaneously flushed each time the memory was full) is 

copied on disk. After the data from both sources 

completely arrives, the merging phase begins. The 

algorithm defines a parameter F, the maximal fan-in, 

which represents the maximum number of disk partitions 

that can be merged in a single “turn”. F/2 groups of sorted 

partition pairs are merged in the same fashion as in sort 

merge. In order to avoid duplicates in the merging phase, a 

tuple joins with the matching tuples of the opposite 

relation only if they belong to a different partition pair 

arrives. The merging phase is responsible for producing 

join results if the two sources are blocked. 

I. Rate based Progressive Join: RPJ [6] is the most recent 

and advanced adaptive join algorithm. It is the first 

algorithm that tries to understand and exploit the 

connection between the memory content and the algorithm 

output rate. During the online phase it performs as HMJ. 

When memory is full, it tries to estimate which tuples have 

the smallest chance to participate in joins. 

            In this work, we used RPJ (Rate-based Progressive 

Join), which continuously adapts its execution according to 

the data properties (e.g., their distribution, arrival pattern, 

etc.). RPJ utilizes a novel flushing algorithm which is op-

timal among all possible alternatives (based on the same 

statistics about data distributions, arrival patterns, etc.), 

and significantly enhances the efficiency of the memory-
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memory stage. Furthermore, RPJ maximizes the output 

rate by invoking the memory-disk and disk-disk in a 

strategic order, i.e., the next stage selected for execution is 

the one expected to produce the highest output rate. 

   

                             III PROPOSED WORK 

A. DINER (Double Index Nested loop reactive join): In 

proposed work, we will shown a new adaptive join 

algorithm for output rate maximization called Double 

Index Nested Loop Reactive Join (DINER)[2]. The 

important feature of this algorithm is, it is completely 

unblocking join techniques that support range join 

conditions. Range join queries are a very common class of 

joins in a variety of applications, traditional business data 

processing to financial analysis applications and spatial 

data processing. Progressive Merge Join [3] (PMJ), one of 

the early adaptive algorithms, also supports range 

conditions, but its blocking behavior makes it a poor 

solution given the requirements of current data integration 

scenarios. 

Its operation based on the following points: 

                  Point 1.  ReactiveNL initially selects one 

relation to behave as the outer relation of the nested loop 

algorithm, while the other relation initially behaves as the 

inner relation. Notice that the “inner relation” (and the 

“outer”) for the purposes of ReactiveNL consists of the 

blocks of the corresponding relation that currently reside 

on disk, because they were flushed during the Arriving 

phase. 

                Point 2.  ReactiveNL tries to join successive 

batches of  OuterMem blocks of the outer relation with all 

of the inner relation, until the outer relation is exhausted . 

The value of OuterMem is determined based on the 

maximum number of blocks the algorithm can use (input 

parameter MaxOuterMem) and the size of the outer 

relation. However, as DINER enters and exits the Reactive 

phase, the size of that inner relation may change, as more 

blocks of that relation may be flushed to disk. To make it 

easier to keep track of joined blocks, we need to join each 

batch of OuterMem blocks of the outer relation with the 

same, fixed number of blocks of the inner relation – even 

if over time the total number of disk blocks of the inner 

relation increases. One of the key ideas of ReactiveNL is 

the following: at the first invocation of the algorithm, we 

record the number of blocks of the inner relation in 

JoinedInner. From then on, all successive batches of 

OuterMem blocks of the outer relation will only join with 

the first JoinedInner blocks of the inner relation, until all 

the available outer blocks are exhausted. 

               Point 3.  When the outer relation is exhausted, 

there may be more than JoinedInner blocks of the inner 

relation on disk (those that arrived after the first round of 

the nested loop join, when DINER goes back to the 

Arriving phase). If that is the case, then these new blocks 

of the inner relation need to join with all the blocks of the 

outer relation. To achieve this with the minimum amount 

of book keeping, it is easier to simply switch roles  

between relations, so that the inner relation (that currently 

has new, unprocessed disk blocks on disk) becomes the 

outer relation and vice versa (all the counters change roles 

also, hence JoinedInner takes thevalue of JoinedOuter etc, 

while CurrInner is set to point to the first block of the new 

inner relation). Thus, an invariant of the algorithm is that 

the tuples in the first JoinedOuter blocks of the outer 

relation have joined with all the tuples in the first 

JoinedInner blocks of the inner relation. 

 

Fig. status of the algorithm during Reactive phase 

 

 

Fig. status of the algorithm after swapping the roles of two 

relations 

 

                  Point 4. To ensure prompt response to 

incoming tuples, and to avoid overflowing the input buffer, 

after each block of the inner relation is joined with the in-

memory OuterMem blocks of the outer relation, 

ReactiveNL examines the input buffer and returns to the 

Arriving phase if more than MaxNewArr tuples have 

arrived. (We do not want to switch between operations for 

a single tuple, as this is costly). The input buffer size is 

compared, and if the algorithm exits, the variables 

JoinedOuter, JoinedInner and CurrInner keep the state of 

the algorithm for its next re-entry. At the next invocation 

of the algorithm, the join continues by loading the outer 

blocks with ids in the range 



Volume 2, Issue 4, April 2012                                                                                                                    www.ijarcsse.com 

         

© 2012, IJARCSSE All Rights Reserved                                                                                                         Page | 300 

 

300 

[JoinedOuter+1,JoinedOuter+OuterMem] and by joining 

them with inner block CurrInner.   

                  Point 5.  In earlier work, the flushing policy of 

DINER spills on disk full blocks with their tuples sorted 

on the join attribute. The ReactiveNL algorithm takes 

advantage of this data property and speeds up processing 

by performing an in-memory sort merge join between the 

blocks. During this process, it is important that we do not 

generate duplicate join between tuples touter and tinner 

that have already joined during the Arriving phase. This is 

achieved by proper use of the ATS and DTS time 

stamps[4]. If the time intervals [touter.ATS, touter.DTS] 

and [tinner.ATS, tinner.DTS] overlap, this means that the 

two tuples coexisted in memory during the Arriving phase 

and their join is already obtained. Thus, such pairs of 

tuples are ignored by ReactiveNL algorithm. 

  

 B. Difference between DINER and Existing algorithm: 

1. DINER supports equi-joins and range queries.PMJ also 

supports range queries but it has some limitation due to its 

poor blocking behavior. 

2. DINER will introduce flushing policy, is used to create 

and maintained three overlapping value regions. 

3. DINER will introduce a more responsive reactive phase 

that allows the algorithm to quickly move into processing 

tuples when both data sources block. 

4. In Leaner Algorithm, DINER improves its relative 

performance compared to the existing algorithm in terms 

of produced tuples during online phase in more 

constrained memory environment. 

 

 

Fig. use case diagram for system 

 

 

 

C. MINER (Multiple Index Nested loop reactive join): 

MINER [1] extends DINER to multiway joins and it 

maintains all the distinctive and efficiency generating 

properties of DINER. MINER maximizes the output rate 

by: 1) adopting an efficient probing sequence for new 

incoming tuples which aims to reduce the processing 

overhead by interrupting index lookups early for those 

tuples that do not participate in the overall result; 2) 

applying an effective flushing policy that keeps in memory 

the tuples that produce results, in a manner similar to 

DINER; and 3) activating a Reactive phase when all inputs 

will  blocked, which joins on-disk tuples while keeping the 

result correct and being able to promptly hand over in the 

presence of new input.  

           Compared to DINER, additional challenges in 

MINER namely: 1) updating and synchronizing the 

statistics for each join attribute during the online phase 2) 

more complicated book keeping in order being able to 

guarantee correctness and prompt handover during reactive 

phase. We are able to generalize the reactive phase of 

DINER for multiple inputs using a novel scheme that 

dynamically changes the roles between relations. 

 

                                        IV.CONCLUSION 

In proposed work, the comparison between 

existing algorithm and DINER with their superiority will 

be shown. Its advantages are 1) its intuitive flushing policy 

that maximizes the overlap among the join attribute values 

between the two relations, while flushing to disk tuples 

that do not contribute to the result and 2) a novel re-entrant 

algorithm for joining disk-resident tuples that were 

previously flushed to disk. Moreover, DINER can 

efficiently handle join predicates with range conditions, a 

feature unique to our technique. It will also present a 

significant extension to our framework in order to handle 

multiple inputs. The resulting algorithm, MINER 

addresses additional challenges, such as determining the 

proper order in which to probe the in-memory tuples of the 

relations, and a more complicated book keeping process 

during the Reactive phase of the join. Through 

experimental evaluation, it will be demonstrate the 

advantages of both algorithms on a variety of real and 

synthetic data sets, their resilience in the presence of 

varied data and network characteristics and their 

robustness to parameter changes. 
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