
© 2012, IJARCSSE All Rights Reserved Page | 366

 Volume 2, Issue 4, April 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Exploring the two faces of Software Reverse Engineering
1
Dr. Oladipo Onaolapo Francisca,

2
Dr. Odoh McChester Onyemaechi,

3
Dr Onyesolu Moses Okechukwu

Department of Computer Science

Nnamdi Azikiwe University, Awka, Nigeria

Nigeria
of.oladipo@unizik.edu.ng

Abstract— The original concerns of Software Reverse Engineering was with the problem of understanding the architecture

of a software application for the purpose of maintenance and re-engineering; it was conceived as a process of examination

to unearth the technological principles of a software through the analysis of its structures, functions and operations in order

to recreate and not necessarily copying from the original. However, attackers have leveraged on the openness of the concept

to explore the vulnerabilities of a software system thereby making the technology an open-ended research area, This paper

examined the concept and limitations of software reverse engineering as it related to applications security. The authors

presented the good (deployment for maintenance, ensuring code consistency during migration, etc) and evils of software

reverse engineering, that is how the process can be adopted for software tampering and how an attacker can explore the

vulnerabilities of a software system through the analysis of the dynamic behaviour of the software system, and so on. The

paper also presented some the use of structural error-based techniques such as watermarking, obfuscation and mutation

analysis to increase the chances of detecting code related security breaches. Based on the facts presented in this work, we

recommended engineering software systems with credible technical defenses against code-level breaches, while still adhering

to the virtue of openness in the research community.

Keywords: Analysis, Reverse engineering software, Software tampering, obfuscation.

I. INTRODUCTION

Software is a set of instructions that determines what a

general-purpose computer will do. Thus, in some sense, a

software program is an instantiation of a particular machine

(made up of the computer and its instructions). Machines

like this obviously have explicit rules and well-defined

behavior. Although we can watch this behavior unfold as we

run a program on a machine, looking at the code and coming

to an understanding of the inner workings of a program

sometimes takes more effort. In some cases the source code

for a program is available for us to examine; other times, it

is not. Therefore, attack techniques must not always rely on

having source code. In fact, some attack techniques are

valuable regardless of the availability of source code. Other

techniques can actually reconstruct the source code from the

machine instructions [1]. Research results had revealed that

92% of exploitable vulnerabilities are in software [2].

Business software is more accessible than ever. Even

legacy and in-house applications are now available from the

web, in the cloud, and on mobile devices. As a consequence,

today‟s applications can extend far beyond the reach of the

best perimeter defenses, leaving them and the sensitive

information at the core of your enterprise wholly

unprotected. Hackers, organized crime cartels, and rogue

governments are highly skilled at exploiting vulnerabilities

in software to:

 Steal data, customer identities, intellectual property,

and cash

 Disrupt business operations

 Inflict brand damage

 Place employees, customers, and the public at risk

[2]

A March 2011 study by the Panemon Institute California,

USA revealed an average organizational cost per security

breach of $7.2M in the US [3] A similar study conducted

earlier in 2009 and released in 2010 presented the

consolidated analysis of five national cost of data breach

studies: United States, United Kingdom, Germany, France

and Australia (all converted into US dollars); showed

alarming figures for these countries [4]. The Symantec

Internet Security Threat Report, April 2011 revealed a 93%

increase in web attacks from 2009 to 2010 [5] and the

Juniper Networks study, May 2011presented a 250%

increase in mobile malware from 2009 to 2010 [6][7]

believed that any software can be cracked and defined

reverse engineering (RE) software as the process of analysis

of its structure, function and operation This paper examined

the original research intention of software reverse

engineering and the malicious deployments of the concept.

We presented the concept as an open-ended research area

and describe a number of structural techniques to prevent

security breaches while still preserving the noble intentions

of the researchers in this area. This paper is divided into six

main sections. Section I provided the introduction to the

research work and an empirical support for vulnerabilities in

software systems. Section II described the technology of

reverse engineering of software system and an exploration

of the research intentions of the field was described in

section III. The malicious deployments of the techniques of

software reverse engineering were analysed in section IV

and the structural threat mitigating techniques were

described in section V. The conclusion and

recommendations were presented in section VI.

II. SOFTWARE REVERSE ENGINEERING

Software Reverse Engineering (RE) was defined as the

process of analyzing a subject system to create

http://www.ijarcsse.com/
mailto:of.oladipo@unizik.edu.ng

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 367

representations of the system at a higher level of abstraction

in order to unravel the complexities of target software or to

grok the assumptions made by the people who created the

system and then undermine those assumptions. It may

involve going backwards through the development cycle. It

is a process of examination to unearth the technological

principles of a software through the analysis of its structures,

functions and operations in order to recreate and not

necessarily copy from the original. The methods and

technologies play an important role in many software

engineering tasks, such as program comprehension, system

migrations, and software evolution [8].

A report by Hoglund and McGraw (2004) stated that

reverse engineering allows one to learn about a program‟s

structure and its logic thereby leading to some critical

insights regarding how a program functions. This kind of

insight is extremely useful when the aim is to exploit

software. The researchers believed that there are obvious

advantages to be had from reverse engineering. For example,

one can learn the kind of system functions a target program

is using and learn the files the target program accesses. One

can also learn the protocols the target software uses and how

it communicates with other parts of the target network [1].

The most powerful advantage to reversing is that it can be

enable one to change a program‟s structure and thus directly

affect its logical flow. Technically this activity is called

patching, because it involves placing new code patches (in a

seamless manner) over the original code, much like a patch

stitched on a blanket. Patching allows the engineer to add

commands or change the way particular function calls work.

This enables the addition of secret features, removal or

disabling functions, and fixing of security bugs without

source code. A common use of patching in the computer

underground involves removing copy protection

mechanisms. Like any skill, reverse engineering can be used

for good and for bad ends [1].

Reverse engineering of software can be accomplished by

various methods. The three main groups of software reverse

engineering are

1) Analysis through observation of information

exchange

2) Disassembly using a disassembler to read and

understand the raw machine language of the

program in its own terms.

3) Decompilation using a decompiler, a process that

tries, with varying results, to recreate the source

code in some high-level language for a program

only available in machine code or bytecode [9].

III. PURPOSES OF SOFTWARE REVERSE ENGINEERING

Software RE is necessary because there will always be

“old” otherwise called legacy applications [10]. Developers

today inherit a huge legacy of existing software. These

systems are inherently difficult to understand and maintain

because of their size and complexity as well as their

evolution history [11]. To address the problem of program

understanding, software engineers are spending an ever-

growing amount of effort on reverse engineering

technologies [8].

Originally, legacy code was used to refer to programs

written in COBOL, typically for large mainframe systems.

However, today‟s software developers predominantly use

Object Oriented languages like C++ and Java. This means

that tomorrow‟s legacy code is being written today. Klosch

1996 opined that most of the aims of reverse engineering are

closely related but not limited to software maintenance. The

author went further to define some of the purposes of the

technology of reverse engineering software as:

i. Reverse Engineering software provides a means to

recover lost information by providing proper system

documentation. Recovering lost information means both

the development of never existing design documents as

well as recovering information that has been lost during

software development or even during years of

maintenance operations. In most cases in the history of

a software system, the original designers are no longer

part of the development team, and „strangers‟ may have

to carry out the maintenance of the system [10]. In this

situation, recovery of various kinds of information

about the software system becomes very important and

reverse engineering techniques provide the means for

recovering lost information and developing alternative

representations of a system, such as generation of

structure charts, dataflow diagrams, entity-relationship

diagrams, etc [11].

ii. Reverse Engineering supports the migration to another

hardware/software platform or integration into a CASE

environment. Since the development of applications is

usually not completely independent of the underlying

hardware/software environment, changes of those

platforms also require adaptations of the particular

application [10].

iii. The techniques of reverse engineering facilitated

software reuse through providing support for the

definition, development and identification of reusable

components within existing systems [10].

iv. Reverse engineering assists with corrective and adaptive

maintenance by several techniques, such as providing

additional documentation and restructuring [10].

v. Reverse Engineering of Software or hardware systems

can be done to support undocumented file formats or

undocumented hardware peripherals thereby providing

support for interoperability and enabling the software to

run across several hardware platforms.

vi. Software Reverse Engineering can be deployed for

security audit, removal of copy protection,

circumvention of access restrictions often present in

consumer electronics, customization of embedded

systems, in-house repairs or retrofits, enabling of

additional features on low-cost hardware or can be done

for mere satisfaction of curiosity [9]. This purpose may

sound like an infringement on copyright; but for

researchers, it is may actually be a check for patent

infringement [12].

vii. Software Reverse Engineering provides the techniques

for ethical hacking; a term for the practice, by those

with sufficient skills and with the advance permission of

the system owners, of breaking into computer systems

to demonstrate security weaknesses. The term, ethical

hackers, having a positive connotation, is associated

with those using their skills for legitimate purposes, e.g.

computer security experts doing system research or

vulnerability testing to better defend against attacks.

This is in contrast to unethical hacker, having a negative

connotation, denotes unauthorized individuals who

break in to computer systems for illegitimate purposes –

thus being synonymous with crackers [13].

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 368

Based on those aims various benefits can be achieved,

such as: maintenance cost savings, quality improvements,

competitive advantages, or software reuse facilitation.

Savings of cost during the maintenance phase are obvious

when considering the important role of the maintenance

phase within the whole life-cycle [14]. Reverse engineering

supports the improvement of software quality not only on

the source-code level, but also on higher levels of

abstractions, such as the design or requirements level, by

providing alternative views and varying representations of

the system. Those activities are also effective in the

elimination of redundancies in the system which were often

the reason for quality deterioration during maintenance

operations. Decompilers, one of the important tools of

software RE have many legitimate uses which include code

unification, ensuring code consistency and vendor product

maintenance.

Wikipedia [9], gave the following as reasons for reverse

engineering among others:

i. Software Modernization: reverse engineering is

generally needed in order to understand the 'as is'

state of existing or legacy software in order to

properly estimate the effort required to migrate

system knowledge into a 'to be' state. Much of this

may be driven by changing functional, compliance

or security requirements.

ii. Product analysis. To examine how a product works,

what components it consists of, estimate costs, and

identify potential patent infringement.

iii. Digital update/correction. To update the digital

version (e.g. CAD model) of an object to match an

"as-built" condition.

iv. Acquiring sensitive data by disassembling and

analysing the design of a system component.

v. Military or commercial espionage. Learning about

an enemy's or competitor's latest research by

stealing or capturing a prototype and dismantling it.

vi. Creation of unlicensed/unapproved duplicates.

vii. Academic/learning purposes.

viii. Curiosity.

ix. Competitive technical intelligence (understand

what your competitor is actually doing, versus what

they say they are doing).

x. Learning: learn from others' mistakes. Do not make

the same mistakes that others have already made

and subsequently corrected [9].

IV. MALICIOUS DEPLOYMENT OF SOFTWARE RE

According to Hoglund and McGraw (2004); “Because

reverse engineering can be used to reconstruct source code,

it walks a fine line in intellectual property law”. The

researchers also stated that “the single most important skill

of a potential attacker is the ability to unravel the

complexities of target software”. They referred to this skill

as reverse engineering or sometimes just reversing. The

authors further believe that software attackers are great tool

users, but exploiting software is not magic and there are no

magic software exploitation tools. To break a nontrivial

target program, an attacker must manipulate the target

software in unusual ways. So although an attack almost

always involves tools (disassemblers, scripting engines,

input generators), these tools tend to be fairly basic. The real

smarts remain the attacker‟s prerogative [1].

Grimm, (2004) believed that the term, reverse

engineering: implies unethical behavior, lacking meaning

and conjuring up images of the past. He contended that the

most widespread use of reverse engineering is in software

development and decompiling computer code, thereby

providing a direct access attack with the application source

code as the target. Analysis and tampering typically involve

direct access to the target code, involving a skilled attacker,

with sufficient resources and time to manipulate the code in

a controlled environment [15].

According to Main and van Oorschot (2003), a threat

model identifies the threats a system is designed to counter,

taking into account the nature of relevant classes of attackers

(including their expected attack approaches and resources –

e.g. techniques, tools, powers, geographic access), as well as

other environmental assumptions and conditions [13]. Van

Oorschot (2003), defined direct access attacks to be those

developed on a local machine using a local copy of the

target code. However in some cases, the term may also

include attacks developed over a network connection; the

main point is direct human involvement: this is the bad news

of Reverse engineering, the process cannot be fully

automated, human interference is possible. Sadly, an attack

on a slice of the program is an attack on the entire

application because a slice is a subprogram which, behave

upon termination like the entire program. Reverse

engineering for malicious purpose – e.g. theft of intellectual

property (such as a competitor‟s secret formula or process),

software tampering, or the discovery and exploitation of

vulnerabilities – is facilitated by a number of advanced

program analysis tools which also serve the legitimate

software development community, e.g. in debugging,

software engineering, and understanding malware [16].

Chandran (2008) believed in the open-ended attribute of

software reverse engineering. He described Software reverse

engineering as the technique of getting the original source

code from the binary. He also stated that competitors might

use reverse engineering to figure out how certain important

features of an application, crackers might use it to see how

they can bypass the license policy and game cheats use

reverse engineering, as well to cheat [17].

A. Software Analysis and Vulnerabilities

The major approach to reverse engineering software is

analysis. However, this genuine process can be put to

malicious intent. One malicious application of analysis is

software tampering. Reverse engineering may lead to the

discovery of vulnerabilities in the internals of an application.

An attacker may therefore explore this vulnerability in the

form of software tampering. Another is the malicious

deployment of software static or dynamic analysis. Static

analysis refers to analysis of software and data when it is not

running and dynamic analysis is performed on executing

code and involves tracing of data values and control flow.

Main and Oorschot (2003) believed that software tampering

attacks may be static or dynamic. A static tampering attack

modifies code in a non-executing state and the modified

code is subsequently run. If a software integrity mechanism

is in place, then the integrity-checking mechanism must be

defeated for the modified software to execute as desired. A

dynamic tampering attack changes values (data or code) in

memory during execution. An attack may be developed or

tested dynamically, on a separate platform, and then turned

into a static attack on a target platform. A typical goal of

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 369

tampering attacks is software piracy, or unauthorized

duplication of files in violation of a licensing agreement [13].

Other more complex direct access attacks from RE process

according to the same authors are: Software differential

analysis (SDA), In which case, two or more different

versions of an application are compared, to identify which

parts have been changed. Crackers who develop copy

protection removal tools use SDA to quickly isolate changed

protection techniques, updating their tools to allow them to

continue working on new releases.

Collusion attacks involve multiple attackers sharing

analysis, to leverage not only different skills to reverse

engineer a system, but also to pool user-specific data or

knowledge of help in defeating security mechanisms. Replay

attacks capture program state and later restore it. For

example, a user downloading a movie may watch it within

three days of pressing play. A backup of the entire machine

state is made using a disk imaging tool, once the original

digital rights are consumed, the user restores them using the

back-up machine state [13].

Major aspects of reverse engineering include disassembly

and decompilation, To this end, foundational tools in the

cracker‟s reverse engineering toolkit include: debuggers,

disassemblers, decompilers and emulators. Decompilation

recovers higher-level program abstractions and semantic

structure from binary programs while disassembly

reconstructs assembly language instructions from machine

code; it may be considered a subset of decompilation, or a

step along the way. A disassembler is typically the first tool

used in reverse engineering an executable program, whether

for legitimate purposes (e.g. automated code optimization)

or otherwise. Debuggers [18] trace the program logic and

data values during program execution. Breakpoints can be

set and code and data modified on the fly, making debuggers

valuable tools for uncovering bugs and addressing

performance issues, as well as reverse engineering and

tampering with applications.

 Emulation and spoofing attacks are methods that, rather

than tamper directly with an application, exploit an interface

or impersonate presumably-trusted system components.

Thus emulators and simulators [19] allow crackers to

emulate the environment in which an application expects to

run. Emulators can be used to store state information, to help

replay attacks. They are also used to create virtual drives to

bypass copy protection schemes [20].

V. SOFTWARE PROTECTION TECHNIQUES AGAINST RE AND

CODE TAMPERING

Several strategies had been proposed and implemented to

protect against the use of reverse engineering for malicious

purposes. A simple yet very powerful process is envelope

protection. According to Chandra (2008) software can be

protected within an envelope without making any change to

the source code. The software is passed through a special

utility, and it comes out encrypted, with the envelope

protecting it. Envelope protection, in addition to encryption,

also provides anti-debugger strategies to prevent an attacker

from attaching a debugger to the program, periodic polling

the USB port to see if the right dongle is still present,

implementation of several code obfuscation strategies, and

provision of different grades of encryption to the binary [17].

Techniques to disrupt the process of static disassembly of

programs have recently been explored by [21]. The goal is to

make correct disassembly more difficult. Their techniques

are complementary and orthogonal to software obfuscation.

However for reverse engineering we advocate techniques

that will make the source code more difficult to understand

by the attacker i.e tamper resistant software. Suggested are:

A. Obfuscation

Software Code Obfuscation is a cracker-centric approach

to disrupt cracker‟s actions by hiding secrets involved in the

software systems. Obfuscations transform a program so that

it is more complex and difficult to understand, yet is

functionally equivalent to the original program. The secrets

in a program may include subroutines, algorithms and

constant values that are valuable and/or related to system

security. There are various types of software obfuscation

methods, including control flow obfuscation, inter-module

call relation obfuscation, identifier obfuscation, self-

modifying code, data obfuscation, etc. [22]. [17] believed

that code obfuscation is the simplest (and cheapest) method

to deter reverse engineers because it changes function names,

alters the sequence of code, and adds noise, without

changing the functionality of the code itself.

B. Software Tokens

Another common technique is software tokens. This

involves shipping a „license‟ file along with the software

product. This file contains information that the product

checks every time it is run; if the file is not present, or the

information is wrong, the product exits with a license

violation error. The information may include information

specific to the installation site [23], such as the hardware

network card address.

C. Tamper Proofing

Providing tamper resistance may involve making software

difficult to modify or tamper using static and dynamic

tamper detection approaches such as co-designing and

dynamic self-checking; to watch out for integrity violations

of any component of a software application or its operating

environment.

D. Code Partitioning

Code Partitioning is the technique of placing a portion of

the software in inaccessible memory. This portion may be

just the license-checking part of the application. However,

the attacker may find the code within the application (which

is in unprotected memory) that invokes the protected

license-checking code, and patch around it. To discourage

such attempts, it will be necessary to physically protect a

more substantial portion of the application [22].

E. Mutation Analysis

Mutation Analysis is a method of software testing, which

involves modifying program's source code in small ways.

This technique has been successfully deployed in analyzing

threats in software system [24].

VI. CONCLUSION AND RECOMMENDATIONS

We have presented an unbiased exploration of the

technology of software reverse engineering in this paper. It

is our position that the technology represents a two-edged-

sword - an important tool for maintenance and roundtrip

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 370

software engineering and a serious threat to software

integrity and authentication and application security through

many of its approaches to understanding the inherent

structures and functionality of a software system. We

therefore recommend that even with a slice of the program,

software engineers must be cognizant of the threats from

reverse engineering and engineer software systems with

credible technical defenses against code-level breaches,

while still delivering value to customers.

REFERENCES

[1] Hoglund, G. McGraw, G. (2004). Exploiting Software How to Break

Code. Addison Wesley. Chapter three, pp 71-145. ISBN: 0-201-

78695-8

[2] HP Fortify Software Security Center: Proactively Eliminate Risk in

Software. Downloaded February 2012 from

https://www.fortify.com/downloads2/public/Fortify_360_Datasheet.

pdf

[3] Ponemon Institute released findings of the 2010 Annual Study: U.S.

Cost of a Data Breach. Available at http://www.ponemon.org/data-

security

[4] Larry Ponemon (2010). Ponemon Institute LLC Five Countries:

Cost of Data Breach Sponsored by PGP Corporation. Downloaded

April 2012 from

http://www.ponemon.org/local/upload/fckjail/generalcontent/18/file/

2010%20Global%20CODB.pdf

[5] Symantec Corp., Internet Security Threat Report, Vol. 16. Accessed

April 1 2012 from

https://www4.symantec.com/Vrt/wl?tu_id=ybxO1301703708025310

104

[6] Juniper Networks study, May 2011. Downloaded April 2012 from

www.juniper.net/us/en/local/pdf/whitepapers/2000415-en.pdf

[7] lARP64Tech Software. Protection Versus Hacking. Downloaded

February 2012 from http://www.larp64.com/index.html

[8] Osuagwu, O. E., Oladipo, O. F. and Yinka-Banjo, C. (2008).

Deploying Reverse Software Engineering as tool for Converting

Legacy Applications in critical-sensitive systems for Nigerian

Industries. In Proceedings of the 22nd National conference and AGM

of the Nigeria Computer Society Conference (ENCTDEV 2008). 24-

27 June

[9] Reverse engineering from Wikipedia the free encyclopedia.

http://en.wikipedia.org/wiki/Reverse_engineering

[10] Klosch, R.R. (1996). Reverse Engineering: Why and how to reverse

engineer software, Proceedings of the California Software

Symposium (CSS ‟96), Los Angeles, California.

[11] Rugaber, S. (1994). "Program Comprehension for Reverse

Engineering," http://www.cc.gatech.edu/reverse/papers.html, College

of Computing, Georgia Institute of Technology, March 9, 1994

[12] Oladipo, O.F. (2010a). Software Reverse Engineering of Legacy

Applications. Unpublished Ph.D Thesis. Computer Science

Department, Nnamdi Azikiwe University, Awka Nigeria. External

Assessment, November, 2009.

[13] Main, A. and Van Oorschot, P.C. (2003). Software Protection and

Application Security: Understanding the Battleground. State of the

Art and Evolution of Computer Security and Industrial Cryptography,

June 2003, Heverlee, Belgium, Springer-Verlag LNCS.

[14] Jean-Marie F. A (2007). Flexible Approach to Visualize Large

Software Products Downloaded December 2007 from

http://citeseer.ist.psu.edu/140717.html.

[15] Grimm, T. A. (2004). Reverse Engineering is criminal. Downloaded

February 2009 from http://www.tagrimm.com

[16] Van Oorschot, P. C. (2003). Revisiting Software Protection.

Proceedings of the 6th International Conference on Information

Security, ISC 2003, Bristol, UK, pp.1–13, Springer-Verlag LNCS

2851 (2003), Colin Boyd, Wenbo Mao (Eds.).

[17] Chandran, R. (2008). Defend against Reverse Engineering. Palizine

Information Security intelligence Magazine, Issue 34, July.

Downloaded February 2012 from http://palpapers.plynt.com/

[18] Cifuentes, C., Waddington, T., and Van Emmerik, M. (2001).

Computer Security Analysis through Decompilation and High-Level

Debugging., Workshop on Decompilation Techniques, pp.375-380,

8th IEEE WCRE (Working Conf. Rev. Eng.), Oct.2001

[19] Magnusson, P. S., Christianson, M., Eskilson, J. (2002). Simics: A

full system simulation platform, IEEE Computer vol.35 no.2

(Feb.2002), pp.50-58.

[20] Kennell, R. and Jamieson, L.H. (2003). Establishing the Genuity of

Remote Computer Systems, Proceedings of the 12th USENIX

Security Symposium (August 2003), pp.295-310.

[21] Linn, C. and Debray, S. (2003). Obfuscation of Executable Code to

Improve Resistance to Static Disassembly, Proceedings of the 10th

ACM Conference on Computer and Communications Security

(ACM CCS 2003), Wash. D.C., Oct. 2003 (ACM Press), pp.290-299.

[22] Yamauchi, H., Kanzaki, Y., Monden, A., Nakamura, M. and

Matsumoto, K. (2006). Software Obfuscation from Cracker‟s

Viewpoint. Proceedings of the IASTED International Conference

Advances in Computer Science and Technology January 23-25, 2006,

Puerto Vallarta, Mexico

[23] Joshi, B., S. (1987). Computer Software Security System. United

States Patent 4,688,169, 1987.

[24] Thomas, L., Xu, W., Xu, D. (2011). Mutation Analysis of Magento

for Evaluating Threat Model-Based Security Testing. Downloaded

April 2, 2012 from http://www.dsu.edu/research/ia/documents/[11]-

Mutation-Analysis-of-Magento-for-Evaluating-Threat-Model-Based-

Security-Testing.pdf

https://www.fortify.com/downloads2/public/Fortify_360_Datasheet.pdf
https://www.fortify.com/downloads2/public/Fortify_360_Datasheet.pdf
http://www.ponemon.org/data-security
http://www.ponemon.org/data-security
http://www.ponemon.org/local/upload/fckjail/generalcontent/18/file/2010%20Global%20CODB.pdf
http://www.ponemon.org/local/upload/fckjail/generalcontent/18/file/2010%20Global%20CODB.pdf
https://www4.symantec.com/Vrt/wl?tu_id=ybxO1301703708025310104
https://www4.symantec.com/Vrt/wl?tu_id=ybxO1301703708025310104
http://www.larp64.com/index.html
http://en.wikipedia.org/wiki/Reverse_engineering
http://palpapers.plynt.com/
http://www.dsu.edu/research/ia/documents/%5b11%5d-Mutation-Analysis-of-Magento-for-Evaluating-Threat-Model-Based-Security-Testing.pdf
http://www.dsu.edu/research/ia/documents/%5b11%5d-Mutation-Analysis-of-Magento-for-Evaluating-Threat-Model-Based-Security-Testing.pdf
http://www.dsu.edu/research/ia/documents/%5b11%5d-Mutation-Analysis-of-Magento-for-Evaluating-Threat-Model-Based-Security-Testing.pdf

