
© 2012, IJARCSSE All Rights Reserved Page | 274

 Volume 2, Issue 4, April 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Threat Modeling and Security Pattern used in Design Phase of

Secure Software Development life Cycle
 Mr. Swapnesh Taterh Prof (Dr.) K.P Yadav Prof (Dr.) S.K Sharma

 P.A.H.E.R.Univ, Udaipur Director Director

 swapnesh_t@yahoo.com

Abstract: Improving software-engineering practices and processes can lead to the creation of secure software, as software

that realizes with justifiably high confidence, The process improvement generates software releases with extremely few

defects, reasonable development costs, lower maintenance costs, and enhanced product reputation. The purpose of this

paper is to explain the use of Software Architecture and Threat Modeling with respect to the security in the design phase

of software development. These are one such method that, when integrated in the software development process, can help

developers to prevent security problems in software. Software is malleable in the design phase, once the architectural

design and threat modeling are set, and then after the cost and complexity of making changes rises tremendously.

Keywords : Software, Security, SDLC, Software Design, Secure Design.

1. Introduction
As the technologies increases there is a wide use of

software which increases the threat to the security of

software. Various factors that harm the organization work

from inside or outside are increasing day by day. They not

only affect the financial status of the organization but also

adversely affect the credibility and integrity of the

organization.

Fig, 1 Overview of Design Phase of Secure Software

Development Life Cycle

Now a day’s security is not a unique feature of the

software it’s a essential part of the software which has to

be taken care of during the process of a software

development. The security model, which has to be used,

must consider these issues effectively and efficiently. If

software is not secure then all its operations are exposed

to attacks

2. Software Architecture

Define security architecture and design guidelines. The

Software Architecture describes the essential elements in

the system, their structure with their relationship. This

will defined in software requirement specification and

also in architecture specification of the software.

Architecture specification comprised of a number of view

that depict key system concern from a number of different

perspectives. The architecture specification enables the

designer to show all the primary characteristics in a

complex system and their relationship to each other and

with external system.

2.1 Application-Specific

Depending on the application being designed, the types of

issues that must be addressed vary. The categories defined

in each application-specific security frame were defined

by security experts who have examined and analyzed the

top security issues across many applications.

Define the overall structure of the software from a

security perspective, and identify those components

whose correct functioning is essential to security.

Software Architecture

DESIGN

PHASE

Requirement Phase

Sec Design Prin

Output: They

are proven

rules for

improving the

security of an

application,

System Sec

Web Sec

Threat Modeling

Output : Threat

can be

identified that

reduce the

software cost

Output :

Provide higher

level of

abstraction

Solution of

recurring

software

engineering

problem.

Output :

Help to

mitigate the

vulnerabiliti

es exist in

the software

development

Tools
Sec Patterns

http://www.ijarcsse.com/
mailto:swapnesh_t@yahoo.com

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 275

2.2 System Security Architecture

We know from the past that many security vulnerabilities

on a system take place either by sending data from the

system (e.g., buffer overflow exploitation) or by receiving

data from the external system (e.g., symlink). In both of

these types of security vulnerabilities, the malicious user

connects to a system and invokes the system’s methods

(e.g., API), and sends (receives) data items (e.g., input

strings) into (from) the system. The malicious user can

also send (receive) data indirectly into (from) a system by

using persistent data items (e.g., files); the malicious user

can send data into a system by writing to a file that the

system later reads. Hence, the malicious user uses a

system’s methods and data items to harm the system.

 Sending and receiving data

2.3 Web Security Architecture

When we design a secure Web application, it is important

that we follow guidelines to ensure effective user

authentication and authorization, to protect sensitive data

as it is transmitted over public networks, and to prevent

attacks such as session hijacking. Some of the important

Web application issues that must be addressed with secure

design practices are shown in Figure.

Identify design techniques, such as layering, use of

strongly typed language, application of least privilege,

and minimization of attack surface, that apply to the

software globally. (Layering refers to the organization of

software into well-defined components that are structured

so as to avoid circular dependencies among

components—components are organized into layers and a

higher layer may depend on the services of lower layers,

while lower layers are forbidden from depending on

higher layers.) Specifics of individual elements of the

architecture will be detailed in individual design

specifications, but the security architecture identifies an

overall perspective on security design.

3. Security design principles

Security design principles are a specific type of guidelines

and practices. They are proven rules for improving the

security of an application, and in order to be useful, the

principles must be applied to specific problems. This is

the great advantage with them since they can be identified

during the requirements phase doing threat modeling.

There exist

a large number of such principles, and even though just

reading through them once in a while will improve

security consciousness, the real value is added when they

are directly used to identify weaknesses and argue for

architecture and implementation decisions.

The security design principles in Table are built upon the

idea of simplicity and restriction. They were described by

Saltzer and Schroeder but a more up to date description

and examples are given by Bishop

Examples of design principles.

1.Principle of Least Privilege :The principle of least

privilege states that a subject should be given only those

privileges that it needs.

2.Principle of Fail : Safe Defaults The principle of fail-

safe defaults states that, unless a subject is given

explicit access to an object, it should be denied access.

3.Principle of Economy of Mechanism : The principle of

economy of mechanism states that security mechanisms

should be as simple as possible.

4.Principle of Complete Mediation : The principle of

complete mediation requires that all accesses to objects be

checked to ensure that they are allowed.

5.Principle of Open Design :The principle of open design

states that the security of a mechanism should not depend

on the secrecy of its design.

6.Principle of Separation of Privilege : The principle of

separation of privilege states that a system should not

grant permission based on a single condition.

7.Principle of Least Common Mechanism : The

principle of least common

mechanism states that mechanisms used to access

resources should not be shared.

8.Principle of Psychological Acceptability : The principle

of psychological acceptability states that security

mechanisms should not make the resource more difficult

to access than if the security mechanisms were not

present.

4. Security patterns

A security pattern is a well-understood solution to a

recurring security problem, and encourages effective re-

use for building in robustness. They are patterns in the

sense originally defined by Christopher Alexander1,

applied to the domain of information security. Software

design patterns have become widely accepted after the

B

R

O

W

S

E

R

WEB

SERVER

DATABASE

 SERVER

 WEB

APPLICA

TION

 Securing

Sensitive Data

Validating Input

 &

Authorizing users

 Securing

Sensitive Data

Cryptographic

Algorithm

WEB APPLICATION DESIGN ISSUE

Data User

Mlicious User

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 276

Gang of Four published their very influential book on this

topic in the middle of the nineties, and there exists a vast

number of patterns for software development, see for

example Hillside2 for an extensive online library.

However, while some security patterns take the form of

traditional design patterns, not all of them are design

patterns. There are many sources containing and related to

security patterns, which all have very much in common,

but some of these tend to resemble general guidelines and

rules-of-thumb more than traditional patterns, and this can

be a bit confusing.

Security patterns are usually divided into different types

and categories, typically:

1.Structural, behavioral and creational security patterns

encompass design patterns, such as those used by the

Gang of Four. They include diagrams on relationships

between entities and descriptions of interaction and object

creation.

2.Available System patterns are a sub-type of structural

patterns and they facilitate construction of systems which

provide predictable uninterrupted access to the services

and resources they offer to users.

3.Protected System patterns is another sub-type of

structural patterns that facilitate construction of

systems which protect valuable resources against

unauthorized use, disclosure, or modification.

4.Antipatterns are ways of not doing things based on

things that have failed in the past or invalid

 assumptions. An antipattern should also include a

solution, e.g. reference to a working pattern.

5.A mini-pattern is a shorter, less formal discussion of

security expertise in terms of just a problem and its

solution. Programming language specific

5. Threat modeling

Threat modeling is a security-analysis methodology that

can be used to identify risks and guide subsequent design,

coding, and testing decisions. The methodology is mainly

used in a project’s earliest phases, using specifications,

architectural views, dataflow diagrams, activity diagrams,

and so on. But it can also be used with detailed design

documents and code. The goal is to address those threats

with the potential to cause maximum damage to an

application.

Overall, threat modeling involves decomposing an

application to identify its key assets, and then identifying

and categorizing the threats to each asset or component.

The threats should be rated according to a risk ranking,

which should guide the development of threat mitigation

strategies in designs, code, and test cases.

Threat modeling is also the process of identifying what

functionality and which assets an attacker can take

advantage. The software design should be evaluated from

an attacker’s point of view. This process will result in a

threat model document that can be used by developers to

identify which threats are present, and which steps should

be taken to mitigate the associated risks. Swiderski and

Snyder list the following purposes of threat modeling:

• Understand the threat profile of a system.

• Provide a basis for secure design and implementation.

• Discover vulnerabilities.

• Provide feedback for the application security life cycle.

Threat modeling is not solely connected to the design

phase, threat modeling also considered an important part

of the requirements phase, as well as an iterative process,

continuously revisited throughout the software lifecycle.

Typical artifacts in threat modeling are: attack trees,

threat trees, misuse cases and cause and effect diagrams.

Results from threat modeling should feed directly into

product design: no design is complete until it

accommodates the potential threats against it. Revisit this

stage regularly through the development life cycle—

remember, attacks only get better.

6. Overview of Tools

Several types of tools are available to support secure

software production. These range from static code

analyzers and checkers to automated tools for verifying

and validating formal specifications and design. Tools

such as Prefast, Prefix and Model checking are helping to

reduce overall defects

The Threat Modeling Tool also combines with issue-

tracking system, making the threat modeling process a

part of the standard development process.

The Threat Modeling Tool enables the developer to:

 Communicate about the security design of their

systems

 Analyze those designs for potential security

issues using a methodology

 Suggest and manage mitigations for security

issues

7. Conclusion

The Software Process may consider the seemingly

unconnected facts on the requirements for and capabilities

of processes for producing secure software, a

recommended path emerged. The author has given the

System Architecture and Web Architecture in terms of

secure software design. The author also has provided a

way that following the guidelines and principles will lead

to software that is secure and reliable. We have also

shown the concept of thread modeling and the tools that

are used with threat modeling. We had a concluded that

without the use of threat modeling one can not enabled

the security features in the software.

8. References

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 277

[1] Martin Gilje Jaatun and Inger Anne Tondel ,

 ‖Covering Assets in Software Engineering,‖ in

 Proc.3rd International Conference on the

 Availability, Reliability and Security (ARES’08),

 Barcelona, Spain, Mar. 2008, pp.1172–1179.

[2] Anurag Agarwal, ―Threat modeling enhanced with

 misuse cases,‖searchsoftwarequalitytechtarget.com

 http://searchsoftwarequality.techtarget.com/t.html.

 Aug.2,2008.

[3] Chandramohan Muniraman and Meledath

 Damodaran, ―A practical approach to include

 security in software development,‖ Issues in

 Information Systems, Vol 2, No.2, pp 193-199,

 2007.

[4] Sridhar and K. W. Hamlen, ―ActionScript in-lined

 reference monitoring in Prolog,‖ in the Proceeding

 11th International Conference on Verification,

 Model Checking, and Abstract Interpretation,

 January 2010.

[5] M. Jones and K.W. Hamlen, ―Disambiguating

 aspect-oriented security policies,‖ in Proceeding

 9th International Conference on Aspect-Oriented

 Software Development, March 2010.

[6] A.Apvrille and M. Pourzandi, ―Secure Software

 Development by Example," in the IEEE Security

 & Privacy, vol. 3, 2005, pp. 10-17.

[7] N. Davis, "Developing Secure Software," The

 DoD Software Tech News, vol. 8, pp. 3-7, 2005.

[8] M. Dowd, J. McDonald, and J. Schuh, The Art of

 Software Security Assessment: Addison-Wesley,

 2007.

[9] S. Lipner and M. Howard, "The Trustworthy

 Computing Security Development Lifecycle,"

 2005.

[10] The Ballista Project, http://www.cs.cmu.edu

 /afs/cs.cmu.edu/project/edrcballista on 20 April

 2007.

[11] JTest, http://www.parasoft.com/jsp/products/home

 jsp?product=Jtest, April 2007.

[12] OWASP CLASP Project,http://www.owasp.org/

 index.php/Category:OWASP_CLASP_Project.

 May 2009.

[13] I. Flechais, C. Mascolo, and M.A.Sasse,

 ―Integrating Security and Usability into the

 Requirements and Design Process, ‖International

 Journal of Electronic Security and Digital

 Forensics, Inderscience Publishers, Geneva,

 Switzerland, 2007, vol. 1, no. 1, pp. 12-26.

[14] A.S. Sodiya, S.A. Onashoga, and O.B. Ajayi,

 ―Towards Building Secure Software Systems,‖

 Issues in Informing Science and Information

 Technology, Informing Science Institute,

 California, USA, 2006, vol. 3, pp. 635-646.

