
© 2012, IJARCSSE All Rights Reserved Page | 412

 Volume 2, Issue 4, April 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper

 Available online at: www.ijarcsse.com

Signature Based Rule Matching Technique in Network
Intrusion Detection System

Mr. Chandrapal U. Chauhan Mrs. V.A.Gulhane
Master of Technology Scholar, G.H.R.C.E, Nagpur Assistant Professor, G.H.R.C.E, Nagpur

chanderpaul1@gmail.com vinagulhane@gmail.com

Abstract— Signature is the pattern that you look for inside a data packet. A signature is used to detect one or multiple types of

attacks. S ignatures may be present in different parts of a data packet depending upon the nature of the attack. We can find signatures
in the IP header, transport layer header (TCP or UDP header) and application layer header or payload. Usually IDS depends upon

signatures to find out about intruder activity. With the increased amount of data transferred by computer networks, the amoun t of

the malicious traffic also increases and therefore it is necessary to protect the network by security system such as firewalls and the

Intrusion Detection System. Pattern matching is the time critical operation of current Intrusion Detection System. In this project this

pattern matching is based on the regular expression where as these pattern of known attack are stored in the database of Intrusion
Detection System. Regular Expressions are often used to describe malicious network pattern.

Keywords- Regular Expression, Intrusion Detection System, Rule set, KMP algorithm, SNORT IDS, Malicious data.

I. INTRODUCTION

In this paper, we are concentrating on two areas like

Computer Network Security and Automata Theory. In the

recent years, Internet has become a very popular method to

connect computers all over the world. While the availab ility of

continuous communication has created many new

opportunities, it has also brought new possibilities for

malicious users. The Importance of network Security is

therefore growing; one of the ways of malicious activity

detection on a network is by using Intrusion Detection System.

 Most modern Intrusion Detection System relies on a

set of rules that are applied to each input packet in order to

define suspicious activities. The simplest rules are described

by packet header field content and pattern of data in the

packet payload. Detecting such patterns is the core operation

of an Intrusion Detection System.

 Network Intrusion Detection System uses a

collection of signatures of known security threats and viruses

to scan each packet‘s payload. These signatures are used to

scan the data streams of various flows traversing through the

network link, when the flow matches the signature,

appropriate action will be taken. Traditionally, these

signatures have been specified as string based exact match,

however as the complexity of rule set increases, traditional

string matching techniques are being replaced by more

sophisticated regular expression matching technique.

II. REVIEW OF LITERATURE

Many string matching algorithms and architectures

have been proposed in recent years for the network security.

The architecture of regular expression matching has been

studied by Floyd and Ullman[3]. They have implemented

NFA in hardware, proposing a hierarchical implementation

based on Automata Theory. Wie Zhang has proposed the

syntax of regular expression in PCRE (Perl Compatible

Regular Expression) is the most popular defin ition which is

used in deep packet inspection [1].The authors in [2] have

proposed the novel method to reduce the memory requirement

and still provide worst case speed guarantees called state

merging DFA. They have implemented all state merg ing

algorithm using C++.In this paper, Authors [12] propose how

the Intrusion Detection System (IDS) has been adopted into

the SSFNet and describe the implementation based on IDS.

They extend the SSF'Net to be used as a framework which

plays a role of defense system against the network intrusion.

IDS is a software tool to detect and report the patterns of

network intrusion on the internet. It can be classified into two

categories: intrusion detection system based on hosts and that

on networks. They propose a rule based system with misuse

detect in the category of IDS on networks. Marly Roesch who

is a developer of the Snort systems [6] defines a given

network at "lightweight network intrusion detection system"

when the network traffic and the packets on the IP network

can be analyzed and logged in real-t ime. Like a network

snipper who is based on the network packet collect ing system

lib rary called "libpcap". Snort is a too1 to audit record and

alert to the network traffic which allows to easily changing the

rule sets to cope with various intrusion detections. It can work

on many functions including protocol analysis search of text,

rule matching, and detection of various intrusion attempts

such as overflow. The ru les of intrusion detection on the

http://www.ijarcsse.com/

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 413

Snort system can continually be updated by security

community via the internet so that the information on new

patterns of network intrusions can be reflected.

2.1 Summary of Literature Survey

 Three algorithms are widely used to perform the pattern

matching are as follows:

 2.1.1. Kunth Morris Prat Algorithm

Knuth have proposed a string matching algorithm that turns

the search string into a finite state machine, and then runs the

machine with the string to be searched as the input string.

 2.1.2. Karp-Rabin Algorithm

Karp and Rabin [6] have proposed a string matching

algorithm that searches a pattern within a text using hashing.

The main idea is to use a hash function to convert every

substring in the text to a numeric value (hash value). The

algorithm exploits the fact that if two strings are equal, their

hash values are also equal.

 2.1.3. Boyer-Moore Algorithm

The detection engine in Snort IDS depends on Boyer- Moore

string matching algorithm. The Boyer-Moore algorithm is one

of the early algorithms and is the most widely used algorithm

for string matching. It is based on two heuristics: bad

character heuristic and good suffix heuristic.

 As mention above, out of three pattern matching algorithm

KMP algorithm is perform the pattern matching on the rule set

based on the regular expression.

2.2 KNUTH MORRIS PRAT ALGORITHM

Knuth, Morris and Pratt proposed a linear time algorithm for

the string matching problem. A matching time of O(n) is

achieved by avoiding comparisons with elements of ‗S‘ that

have previously been involved in comparison with some

element of the pattern ‗p‘ to be matched. i.e., backtracking on

the string ‗S‘ never occurs [09].

Components of KMP algorithm:

• The prefix function, Π

The prefix function,Π for a pattern encapsulates knowledge

about how the pattern matches against shifts of itself. This

informat ion can be used to avoid useless shifts of the pattern

‗p‘. In other words, this enables avoiding backtracking on the

string ‗S‘.

• The KMP Matcher

With string ‗S‘, pattern ‗p‘ and prefix function ‗Π‘ as inputs,

finds the occurrence of ‗p‘ in ‗S‘ and returns the number of

shifts of ‗p‘ after which occurrence is found.

The prefix function, Π

Following pseudocode computes the prefix fucnction, Π:

Compute-Prefix-Function (p)

m length[p] //‘p‘ pattern to be matched

 Π[1] 0

 k 0

 for q 2 to m

 do while k > 0 and p[k+1] != p[q]

 do k Π[k]

 If p[k+1] = p[q]

 then k k +1

 Π[q] k

 return Π

The KMP Matcher:

The KMP Matcher, with pattern ‗p‘, string ‗S‘ and prefix

function ‗Π‘ as input, finds a match of p in S.Following

pseudocode computes the matching component of KMP

algorithm:

KMP-Matcher(S,p)

1 n length[S]

2 m length[p]

3 Π Compute-Prefix-Function(p)

4 q 0 //number of characters matched

5 for i 1 to n //scan S from left to right

6 do while q > 0 and p[q+1] != S[i]

7 do q Π[q] //next character does not match

8 if p [q+1] = S[i]

9 then q q + 1 //next character matches

10 if q = m //is all o f p matched?

11 then print ―Pattern occurs with shift‖ i – m

12 q Π[q] // look for the next match

Algorithm 1: KMP algorithm.

III. ARCHITECTURE

Fig. 3.1 Data flow diagram of IDS

IV. RESEARCH DESIGN

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 414

4.1 Method of Data Collection

 Marly Roesch who is a developer of the Snort

systems [6] defines a given network at "lightweight network

intrusion detection system" when the network traffic and the

packets on the IP network can be analyzed and logged in real-

time. Like a network snipper who is based on the network

packet collecting system library called "libpcap". Since the

libpcap will be log into a database for my project and then

with the help of pattern matching algorithm compare the

content of the packet with the rule set present in the database.

4.2 Source of Data Collection

Snort is a Free and open source NIDS. It utilizes the

rule driven language to perform the pattern matching. Since

the detection process of Snort is heavily depend on the rule set

present in the database.

4.3 Structure of IDS Rule

All IDS ru les have two logical parts: ru le header and rule

options. This is shown in Figure 3-1.The ru le header contains

informat ion about what action a rule takes. It also contains

criteria for matching a rule against data packets. The options

part usually contains an alert message and information about

which part of the packet should be used to generate the alert

message. The options part contains additional criteria for

matching a ru le against data packets. A rule may detect one

type or mult iple types of intrusion activity. Intelligent rules

should be able to apply to multiple intrusion signatures.

Figure 4.3-1 Basic structure of IDS rules.

The general structure of rule header is shown in Figure 3-2.

The action part of the rule determines the type of action taken

when criteria are met and a rule is exactly matched against a

data packet. Typical actions are generating an alert or log

message or invoking another rule.

Figure 4.3-2 Structure of IDS rule header.

The protocol part is used to apply the rule on packets for a

particular p rotocol only. This is the first criterion mentioned in

the rule. Some examples of protocols used are IP, ICMP, UDP

etc. The address parts define source and destination addresses.

Addresses may be a single host, multip le hosts or network

addresses. We can also use these parts to exclude some

addresses from a complete network. There are two address

fields in the rule. Source and destination addresses are

determined based on direction field. As an example, if the

direction field is ―->‖, the Address on the left side is source

and the Address on the right side is destination. In case of

TCP or UDP protocol, the port parts determine the source and

destination ports of a packet on which the rule is applied. In

case of network layer protocols like IP and ICMP, port

numbers have no significance. The direction part of the rule

actually determines which address and port number is used as

source and which as destination. For example, consider the

following rule that generates an alert message whenever it

detects an ICMP1 p ing packet (ICMP ECHO REQUEST)

with TTL equal to 100, as fo llow:

alert icmp any any -> any any (msg: "Ping with TTL=100"; \

ttl: 100;)

The part of the ru le before the starting parenthesis is called the

rule header. The part o f the rule that is enclosed by the

parentheses is the options part. The header contains the

following parts, in order:

 • A rule action: In this ru le the action is ―alert‖, which means

that an alert will be generated when conditions are met. The

packets are logged by default when an alert is generated.

Depending on the action field, the rule options part may

contain additional criteria for the ru les.

 • Protocol: In th is rule the protocol is ICMP, which means

that the rule will be applied only on ICMP-type packets. In the

IDS detection engine, if the protocol of a packet is not ICMP,

the rest of the rule is not considered in order to save CPU t ime.

The protocol part plays an important role when you want to

apply IDS ru les only to packets of a particular type.

• Source address and source port. In this example both of them

are set to ―any‖, which means that the rule will be applied on

all packets coming from any source. Of course port numbers

have no relevance to ICMP packets. Port numbers are

relevant only when protocol is either TCP or UDP.

• Direction. In this case the direction is set from left to right

using the -> symbol. Th is shows that the address and port

number on the left hand side of the symbol are source and

those on the right hand side are destination. It also means that

the rule will be applied on packets traveling from source to

destination. You can also use a <- symbol to reverse the

meaning of source and destination address of the packet. Note

that a symbol <> can also be used to apply the rule on packets

going in either d irection.

• Destination address and port address. In this example both

are set to ―any‖, meaning the rule will be applied to all

packets irrespective of their destination address. The direction

in this rule does not play any role because the rule is applied

to all ICMP packets moving in either direction, due to the use

of the

keyword ―any‖ in both source and destination address parts.

The options part enclosed in parentheses shows that an alert

message will be generated containing the text string ―Ping

with TTL=100‖ whenever the condition of TTL=100 is met.

Note that TTL or Time To Live is a field in the IP packet

header.

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 415

V. IMPLEMENTATION DETAILS

5.1 Winpcap

Libpcap and WinPcap provide the packet-capture and

filtering engines of many open source and commercial

network tools, including protocol analyzers (packet

sniffers), network monitors, network intrusion detection

systems, traffic-generators and network-testers.

Libpcap and WinPcap also support saving captured packets to

a file, and reading files containing saved packets; applications

can be written, using libpcap or WinPcap, to be able to

capture network traffic and analyze it, or to read a saved

capture and analyze it, using the same analysis code. A

capture file saved in the format that libpcap and WinPcap use

can be read by applicat ions that understand that format, such

as tcpdump, Wireshark, CA NetMaster, or Microsoft Network

Monitor 3.x.

The MIME type for the file format created and read by

libpcap and WinPcap is applicat ion/vnd.tcpdump.pcap. The

typical file extension is .pcap, although .cap and .dmp are also

in common use. [2]

5.2 Snapshot

Fig 5.1 Packet Details

As soon as we start the internet, the host systems on which we

access this module start capturing the packets. It shows the

data in the decimal format. The details of the captured packets

are shown in the snapshot. The function I used to capture and

monitor the packet is as follows:

Getting IP address to Keep watch / monitor

m_Monitor = new Socket (AddressFamily.InterNetwork,

SocketType.Raw, ProtocolType.IP);

Fig 5.2 Packet Information and Hex Data

Once we select any packet by double click on it that is shown

in the first snapshot, we are able to see the details of the

packet i.e. the header field and the payload. The header part is

consist of source IP address and destination IP address, name

of the protocol, Time to live field, version of a protocol,

Header length, various type of services and the total length

field. The data of the header field is shown in the decimal

form whereas the data of the payload is display in the

hexadecimal form. The function which is used to get the

details of the packet which is shown in the snapshot is as

follow:

Collecting data in HEX or raw format
m_Monitor.IOControl (SIO_RCVALL, BitConverter.GetBytes ((int) 1), null);

Start Packet Receiving and execution of user defined function

on receive

m_Monitor.BeginReceive(m_Buffer, 0, m_Buffer.Length,

SocketFlags.None, new AsyncCallback(this.OnReceive), null)

VI. POSSIBLE CONTRIBUTION OF THE STUDY

Memory requires to store the rule base will be small,

so memory optimizat ion can be achieved. Improvised version

of pattern matching technique will be implemented.

Implement the technique to improve the structure of rule

based to perform the fast and efficient pattern matching.

VII. FUTURE W ORK

 Store the self defined rules in our database using

rules we will match the incoming packet with the known

signature Use regular expression as a part of our rule set to

minimise the matching time.

VII. CONCLUSION

 With Time New Malicious data with New Pattern

may exist, Update can be done in this Project. Other

Algorithm can be used as per Requirement. New Rules can be

added later on.Improvement of Rules Matching by Dynamic

Adjustment Algorithm

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 416

IX. REFERENCES

[1] Wei Zhang, Yibo Xue, Dongsheng Wang, and T ian Song, ―A Multiple
 Simple Regular Expression Matching Architecture and Coprocessor for
 Deep Packet Inspection‖ IEEE INFOCOM 2008, Phoenix USA.

[2] Jiekun Zhang, Dafang Zhang and Kun Huang, ― A Regular Expression
 Matching Algorithm using Transition Merging‖ IEEE, 2009.

 [3] Perl Compatible Regular Expression, http ://www.pcre.org

 [4] M. Becchi and S. Cadambi, ―Memory efficient regular expression
 search using state merging,‖ In Proc. of IEEE Infocom 2007, May

 2007.

[5] J. van Lunteren, ―High-Performance pattern-matching for intrusion

 detection,‖ in 25th Conference of IEEE Infocom, Apr.2006.

[6] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese. ―Curing
 regular expressions matching algorithms from insomnia, amnesia, and
 acalculia,‖ In ANCS 2007, pages 155-164.

[7] S. Kumar, S. Dharmapurikar, and F. Yu. ―Algorithms to accelerate
 multiple regular expression matching for deep packet inspection,‖ In
 Proc. of SIGCOMM‘06, pages 339-350.ACM.

[8] S. Kumar, J. Turner, and J. Williams. ―Advanced algorithms for fast
 and scalable deep packet inspection,‖ In Proc. of ANCS‘06, pages 81-
 92. ACM.

 [9] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and Randy H. Katz. ―Fast
 and memory efficient regular expression matching for deep packet
 inspection,‖ In Proc. Of ANCS‘06, pages 93-102.

[10] D. Ficara, S. Giordano, G. Procissi, et al. ―An improved DFA for fast
 regular expression matching,‖ ACM SIGCOMM Computer
 Communications Review, 38, 2008.

[11] Jill Hyuk Kim, Seung Kyu Park Jung kuk Sea Joo Beom Yun, Dae Sik
 Choi. ―Implementation of IDS for Network Intrusion simulation based
 on SSFNet‖, 10th Asis~Pacific. Conference on Communications and

 5th International Symposium on Multi-Dimensional Mobile
 Communications 09.

[12] T. Johnson, S. Muthukrishnan, and I. Rozenbaum, ―Monitoring regular

 expressions on out-of-order streams,‖ in Data Engineering, 2007.
 ICDE2007. IEEE 23rd International Conference on, April 2007, pp.
 1315–1319.

