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Abstract: Databases are rich with hidden information that can be used for intelligent decision making. Classification and 

prediction are two forms of data analysis that can be used to extract models describing important data classes or to predict 

future data trends. Such analysis can help provide us with a better understanding of the data at large. Whereas 

classification predicts categorical (discrete, unordered) labels, prediction models continuous valued functions. The data 

analysis task is classification; Decision tree induction is the learning of decision trees from class-labeled training Tuples. 

A decision tree is a flowchart-like tree structure. The individual tuples making up the training set are referred to as 

training tuples and are selected from the database under analysis. Training data are analyzed by a classification 

algorithm. Many classification methods have been proposed by researchers in machine learning, pattern recognition, and 

statistics. Most algorithms are memory resident, typically assuming a small data size. In this paper we describe a basic 

algorithm for learning decision trees called Decision Tree Induction. During tree construction, attribute selection 

measures are used to select the attribute that best partitions the tuples into distinct classes. Popular measures of attribute 

selection are given. When decision trees are built, many of the branches may reflect noise or outliers in the training data. 

Tree pruning attempts to identify and remove such branches, with the goal of improving classification accuracy on unseen 

data. Tree pruning and Scalability issues for the induction of decision trees from large databases are discussed. 

 

Keywords: Classification, Decision Tree Induction, Data partitions, Information gain, Gain ratio, Gini index and Tree 

Pruning. 

 

1. INTRODUCTION    

Databases are rich with hidden information that can be 

used for intelligent decision making. Classification and 

prediction [1] are two forms of data analysis that can be 

used to extract models describing important data classes 

or to predict future data trends. Such analysis can help 

provide us with a better understanding of the data at large. 

Whereas classification predicts categorical (discrete, 

unordered) labels, prediction models continuous valued 
functions. Many classification and prediction methods 

have been proposed by researchers in machine learning, 

pattern recognition, and statistics. Most algorithms are 

memory resident, typically assuming a small data size. 

Recent data mining research has built on such work, 

developing scalable classification and prediction 

techniques capable of handling large disk-resident data. 

 

2. RELATED WORK 

Classification based on association rule mining [4] is 

explored. Other approaches to classification, such as k-

nearest-neighbor classifiers, case-based reasoning, genetic 

algorithms, rough sets, and fuzzy logic techniques, are 

introduced. The data analysis task is classification; the 

individual tuples making up the training set are referred to 

as training tuples and are selected from the database under 

analysis. Training data are analyzed by a classification 

algorithm. Classification: Test data are used to estimate 

the accuracy of the classification rules. If the accuracy is 

considered acceptable, the rules can be applied to the 
classification of new data tuples. Decision tree induction 

[5] is the learning of decision trees from class-labeled 

training tuples. A decision tree is a flowchart-like tree 

structure, where each internal node (nonleaf node) 

denotes a test on an attribute, each branch represents an 

outcome of the test, and each leaf node (or terminal node) 

holds a class label. The topmost node in a tree is the root 

node. “How is decision trees used for classification?” 

Given a tuple, X, for which the associated class label is 

unknown, the attribute values of the tuple are tested 

against the decision tree. 
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Fig 1.1 

Fig1.1. A decision tree for the concept buys computer, 

indicating whether a customer at All Electronics is likely 

to purchase a computer. Each internal (nonleaf) node 

represents a test on an attribute. Each leaf node 

represents a class (either buys computer = yes or buys 

computer = no). 

 

 A path is traced from the root to a leaf node, which holds 
the class prediction for that tuple. Decision trees can 

easily be converted to classification rules. “Why are 

decision tree classifiers so popular?” The construction of 

decision tree classifiers does not require any domain 

knowledge or parameter setting, and therefore is 

appropriate for exploratory knowledge discovery. 

 

3. PROPOSED SYSTEM 

 

 Decision trees can handle high dimensional data. Their 

representation of acquired knowledge in tree form is 

intuitive and generally easy to assimilate by humans. The 
learning and classification steps of decision tree induction 

are simple and fast. In general, decision tree classifiers 

have good accuracy. 

 

 However, successful use may depend on the data at hand. 

Decision tree induction algorithms have been used for 

classification in many application areas, such as medicine, 

manufacturing and production, financial analysis, 

astronomy, and molecular biology. Decision trees are the 

basis of several commercial rule induction systems. 

 
Algorithm: Generate decision tree. Generate a decision 

tree from the training tuples of data partition D. 

 

Input: Data partition, D, which is a set of training tuples 

and their associated class labels; attribute list, the set of 

candidate attributes; Attribute selection method, a 

procedure to determine the splitting criterion that “best” 

partitions the data tuples into individual classes. This 

criterion consists of a splitting attribute and, possibly, 

either a split point or splitting subset. 

 
Output: A decision tree. 

 

Method: 

 

(1) Create a node N; 

(2) if tuples in D are all of the same class, C then 

(3) return N as a leaf node labeled with the class C; 

(4) if attribute list is empty then 

(5) return N as a leaf node labeled with the majority class 

in D; // majority voting 

(6) apply Attribute selection method(D, attribute list) to 

find the “best” splitting criterion; 

(7) label node N with splitting criterion; 

(8) if splitting attribute is discrete-valued and multiway 

splits allowed then // not restricted to binary trees 

(9) attribute list attribute list _ splitting attribute; // 

remove splitting attribute 

(10) for each outcome j of splitting criterion 

// partition the tuples and grow subtrees for each partition 

(11) let Dj be the set of data tuples in D satisfying 

outcome j; // a partition 

(12) if Dj is empty then 

(13) attach a leaf labeled with the majority class in D to 

node N; 

(14) else attach the node returned by Generate decision 

tree(Dj, attribute list) to node N; 

endfor 

(15) return N; 

 

Most algorithms for decision tree induction also follow 

such a top-down approach, which starts with a training set 

of tuples and their associated class labels. The training set 

is recursively partitioned into smaller subsets as the tree is 

being built. A basic decision tree algorithm is summarized 
in Figure 1.1 At first glance, the algorithm may appear 

long, but fear not! It is quite straightforward.  

 

4. WORKING OF ALGORITHM 

 

The strategy is as follows. The algorithm is called with 

three parameters: D, attribute list, and Attribute selection 

method. We refer to D as a data partition. Initially, it is 
the complete set of training tuples and their associated 

class labels. The parameter attribute list is a list of 

attributes describing the tuples. Attribute selection method 
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specifies a heuristic procedure for selecting the attribute 

that ―best‖ discriminates the given tuples according to 

class.  

 

This procedure employs an attribute selection measure, 

such as information gain or the gini index. Whether the 
tree is strictly binary is generally driven by the attribute 

selection measure. Some attribute selection measures, 

such as the Gini index, enforce the resulting tree to be 

binary. Others, like information gain, do not, therein 

allowing multiway splits (i.e., two or more branches to be 

grown from a node). The tree starts as a single node, N, 

representing the training tuples in D (step 1).5 If the 

tuples in D are all of the same class, then node N becomes 

a leaf and is labeled with that class (steps 2 and 3). Note 

that steps 4 and 5 are terminating conditions. All of the 

terminating conditions are explained at the end of the 

algorithm. 
 

 Otherwise, the algorithm calls Attribute selection method 

to determine the splitting 

Criterion. The splitting criterion tells us which attribute to 

test at node N by determining the ―best‖ way to separate 

or partition the tuples in D into individual classes (step 6). 

The splitting criterion also tells us which branches to 

grow from node N with respect to the outcomes of the 

chosen test. More specifically, the splitting criterion 

indicates the splitting attribute and may also indicate 

either a split-point or a splitting subset. The splitting 
criterion is determined so that, ideally, the resulting 

partitions at each branch are as ―pure‖ as possible.  

 

A partition is pure if all of the tuples in it belong to the 

same class. In other words, if we were to split up the 

tuples in D according to the mutually exclusive outcomes 

of the splitting criterion, we hope for the resulting 

partitions to be as pure as possible. The node N is labeled 

with the splitting criterion, which serves as a test at the 

node (step 7). A branch is grown from node N for each of 

the outcomes of the splitting criterion [7]. The tuples in D 

are partitioned accordingly (steps 10 to 11). There are 
three possible scenarios, as illustrated in Figure 1.2 

 

 Let A be the splitting attribute. A has v distinct values, f 

=a1, a2, : : : , avg, based on the training data.1. A is 

discrete-valued: In this case, the outcomes of the test at 

node N correspond directly to the known values of A. A 

branch is created for each known value, aj, of A and 

labeled with that value (Figure 1.2(a)). Partition Dj is the 

subset of class-labeled tuples in D having value aj of A. 

Because all of the tuples in a given partition have the 

same value for A, then A need not be considered in any 
future partitioning of the tuples.  

 

Therefore, it is removed from attribute list (steps 8 to 9). 

2. A is continuous-valued: In this case, the test at node N 

has two possible outcomes, corresponding to the 

conditions A _ split point and A > split point, respectively, 

where split point is the split-point returned by Attribute 

selection method as part of the splitting criterion. Two 
branches are grown from N and labeled according to the 

above outcomes (Figure 1.2(b)). The tuples are 

partitioned such thatD1 holds the subset of class-labeled 

tuples in D for which A split point, while D2 holds the 

rest. 

3. A is discrete-valued and a binary tree must be produced 

(as dictated by the attribute selection measure or 

algorithm being used): The test at node N is of the form 

―A 2 SA?‖. SA is the splitting subset for A, returned by 

Attribute selection method [1] as part of the splitting 

criterion. It is a subset of the known values of A. If a 

given tuple has value aj of A and if aj 2 SA, then the test 
at node N is satisfied. Two branches are grown from N 

(Figure 1.2(c)). By convention, the left branch out of N is 

labeled yes so that D1 corresponds to the subset of class-

labeled tuples in D that satisfy the test. The right branch 

out of N is labeled no so that D2 corresponds to the subset 

of class-labeled tuples [4] from D that do not satisfy the 

test. 

 

The algorithm uses the same process recursively to form a 

decision tree [2] for the tuple sat each resulting partition, 

Dj, of D (step 14). The recursive partitioning stops only 
when any one of the following terminating conditions is 

true: 1. All of the tuples in partition D (represented at 

node N) belong to the same class (steps 2 and 3), or 2. 

There are no remaining attributes on which the tuples may 

be further partitioned (step 4). In this case, majority 

voting is employed (step 5). This involves converting 

node N into a leaf and labeling it with the most common 

class in D. Alternatively, the class distribution of the node 

tuples may be stored.  

 

3. There are no tuples for a given branch, that is, a 

partition Dj is empty (step 12). In this case, a leaf is 
created with the majority class in D (step 13). The 

resulting decision tree is returned (step 15).The 

computational complexity of the algorithm given training 

set D is O(n_jDj_ log(jDj)), where n is the number of 

attributes describing the tuples in D and jDj is the number 

of training tuples in D. This means that the computational 

cost of growing a tree grows at most n_jDj_log(jDj) with 

jDj tuples. The proof is left as an exercise for the reader. 

Incremental versions of decision tree induction have also 

been proposed. When given new training data, these 

restructure the decision tree acquired from learning on 
previous training data, rather than relearning a new tree 

from scratch. 
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Fig 1.2. Three possibilities for partitioning tuples based on the splitting criterion, shown with examples. Let A be he splitting 

attribute. (a) If A is discrete-valued, then one branch is grown for each known value of A. (b) If A is continuous-valued, then 

two branches are grown, corresponding to A _ split point and A > split point. (c) If A is discrete-valued and a binary tree 

must be produced, then the test is of the form A 2 SA, where SA is the 

Splitting subset for A. 

 

4.1 Attribute Selection Measures  

 

An attribute selection measure [3] is a heuristic for 

selecting the splitting criterion that ―best‖ separates a 

given data partition, D, of class-labeled training tuples [6] 
into individual classes. If we were to split D into smaller 

partitions according to the outcomes of the splitting 

criterion, ideally each partition would be pure. The 

attribute selection measure provides a ranking for each 

attribute describing the given training tuples. The attribute 

having the best score for the measure is chosen as the 

splitting attribute for the given tuples. If the splitting 

attribute is continuous-valued or if we are restricted to 

binary trees then, respectively, either a split point or a 

splitting subset must also be determined as part of the 

splitting criterion. The tree node created for partition D is 
labeled with the splitting criterion, branches are grown for 

each outcome of the criterion, and the tuples are 

partitioned accordingly. This section describes three 

popular attribute selection measures—information gain, 

gain ratio, and gini index. The notation used herein is as 

follows. Let D, the data partition, be a training set of 

class-labeled tuples. Suppose the class label attribute has 

m distinct values defining m distinct classes, Ci (for i = 1, 

: : : , m). Let Ci,D be the set of tuples of class Ci in D. Let 

jDj and jCi,Dj denote the number of tuples in D and Ci,D, 

respectively. 
 

 

 

4.1.1 Information gain 

 

 ID3 [10] uses information gain as its attribute selection 

measure. This measure is based on pioneering work by 

Claude Shannon on information theory, which studied the 

value or ―information content‖ of messages. Let node N 

represents or holds the tuples of partition D. The attribute 

with the highest information gain is chosen as the splitting 
attribute for node N. This attribute minimizes the 

information needed to classify the tuples in the resulting 

partitions and reflects the least randomness or ―impurity‖ 

in these partitions. 

 
 

Fig 1.3 

The attribute age has the highest information gain and 

therefore becomes the splitting attribute at the root node 
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of the decision tree. Branches are grown for each outcome 

of age. The tuples are shown partitioned accordingly. 

 

 Such an approach minimizes the expected number of 

tests needed to classify a given tuple and guarantees that a 

simple (but not necessarily the simplest) tree is found. 
The expected information needed to classify a tuple in D 

is given by  

 
Where pi is the probability that an arbitrary tuple in D 

belongs to class Ci and is estimated by jCi, Dj/jDj. A log 

function to the base 2 is used, because the information is 

encoded in bits. Info (D) is just the average amount of 
information needed to identify the class label of a tuple in 

D. Note that, at this point, the information we have is 

based solely on the proportions of tuples of each class. 

Info(D) is also known as the entropy of D.  

 

4.1.2 Gain ratio 

 The information gain measure is biased toward tests with 

many outcomes. That is, it prefers to select attributes 

having a large number of values. For example, consider 

an attribute that acts as a unique identifier, such as 

product ID. A split on product ID would result in a large 

number of partitions (as many as there are values), each 

one containing just one tuple. Because each partition is 

pure, the information required to classify data set D based 
on this partitioning would be Info product ID(D) = 0. 

Therefore, the information gained by partitioning on this 

attribute is maximal. Clearly, such a partitioning is useless 

for classification. C4.5, a successor of ID3, uses an 

extension to information gain known as gain ratio, which 

attempts to overcome this bias. It applies a kind of 

normalization to information gain using a ―split 

information‖ value defined analogously with Info(D) as 

SplitInfoA(D) =  

 

 
 

 

 

This value represents the potential information generated 

by splitting the training data set, D, into v partitions, 
corresponding to the v outcomes of a test on attribute A. 

Note that, for each outcome, it considers the number of 

tuples having that outcome with respect to the total 

number of tuples in D. 

 
 

It differs from information gain, which measures the 

information with respect to classification that is acquired 

based on the same partitioning. The gain ratio is defined 

as above 

 

The attribute with the maximum gain ratio is selected as 

the splitting attribute. Note, however, that as the split 
information approaches 0, the ratio becomes unstable. A 

constraint is added to avoid this, whereby the information 

gain of the test selected must be large—at least as great as 

the average gain over all tests examined.  

 

 

 

 

 

 

4.1.3 Gini index 

 

 The Gini index is used in CART [8]. Using the notation 

described above, the Gini index measures the impurity of 

D, a data partition or set of training tuples, as  

 
 

Where pi is the probability that a tuple in D belongs to 

class Ci and is estimated by jCi, Dj/jDj. The sum is 

computed over m classes. The Gini index considers a 

binary split for each attribute. Let’s first consider the case 

where A is a discrete-valued attribute having v distinct 

values, fa1, a2, : : : , avg, occurring in D.  

 

To determine the best binary split on A, we examine all of 

the possible subsets that can be formed using known 

values of A. Each subset, SA, can be considered as a 

binary test for attribute A of the form ―A 2 SA?‖. Given a 
tuple, this test is satisfied if the value of A for the tuple is 

among the values listed in SA. If A has v possible values, 

then there are 2v possible subsets. For example, if income 

has three possible values, namely flow, medium, highg, 

then the possible subsets are flow, medium, high g, flow, 

medium g, flow, high g, f medium, high g, flow g, f 

medium g, f high g, and fg. We exclude the power set, 

flow, medium, high g, and the empty set from 

consideration since, conceptually, they do not represent a 

split. Therefore, there are 2v_2 possible ways to form two 

partitions of the data, D, based on a binary split on A. 
When considering a binary split, we compute a weighted 

sum of the impurity of each resulting partition. For 
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example, if a binary split on A partitions D into D1 and 

D2, the gini index of D given that partitioning is 

 
For each attribute, each of the possible binary splits is 

considered. For a discrete-valued attribute, the subset that 

gives the minimum gini index for that attribute is selected 

as its splitting subset.  

 

4.2 Tree Pruning  

 

When a decision tree is built, many of the branches will 

reflect anomalies in the training data due to noise or 

outliers. Tree pruning methods address this problem of 

over fitting the data. Such methods typically use statistical 

measures to remove the least reliable branches. An 

unpruned tree and a pruned version of it are shown in 

Figure 1.4. Pruned trees [11] tend to be smaller and less 

complex and, thus, easier to comprehend. They are 
usually faster and better at correctly classifying 

independent test data (i.e., of previously unseen tuples) 

than unpruned trees. “How does tree pruning work?” 

There are two common approaches to tree pruning: 

prepruning and postpruning. In the prepruning approach, 

a tree is ―pruned‖ by halting its construction early (e.g., 

by deciding not to further split or partition the subset of 

training tuples at a given node). 

 

Fig 1.4.  
An unpruned decision tree and a pruned version of it. 

 

4.3 Scalability and Decision Tree Induction 

 
 “What if D, the disk-resident training set of class-labeled 

tuples, does not fit in memory? In other words, how 

scalable is decision tree induction?” The efficiency of 

existing decision tree algorithms, such as ID3, C4.5, and 

CART [3], has been well established for relatively small 

data sets. Efficiency becomes an issue of concern when 

these algorithms are applied to the mining of very large 

real-world databases. The pioneering decision tree 

algorithms that we have discussed so far have the 

restriction that the training tuples should reside in 

memory. In data mining applications, very large training 

sets of millions of tuples are common. Most often, the 
training data will not fit in memory!  
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Fig 1.5 

 An example of sub tree (a) repetition (where an attribute 
is repeatedly tested along a given branch of the tree, e.g., 

age) and (b) replication (where duplicate sub trees exist 

within a tree, such as the sub tree headed by the node 

―credit rating?‖). 

 

 

 
Fig 1.6 

Decision tree construction [1] therefore becomes 

inefficient due to swapping of the training tuples in and 

out of main and cache memories. More scalable 

approaches, capable of handling training data that are too 

large to fit in memory, are required. Earlier strategies to 

―save space‖ included discretizing continuous-valued 

attributes and sampling data at each node. These 

techniques, however, still assume that the training set can 

fit in memory. 

 Fig1.7 

 

 

Fig 1.8 

The use of data structures to hold aggregate information 

regarding the training data are one approach to improving 

the scalability of decision tree induction. 

 

5. CONCLUSION 

“What if D, the disk-resident training set of class-labeled 

tuples, does not fit in memory? 

In other words, how scalable is decision tree 

induction?”The pioneering decision tree algorithms that 
we have discussed so far have the restriction that the 

training tuples should reside in memory. In data mining 

applications, very large training sets of millions of tuples 
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are common. Most often, the training data will not fit in 

memory! Decision tree construction therefore becomes 

inefficient due to swapping of the training tuples in and 

out of main and cache memories. More scalable 

approaches, capable of handling training data that are too 

large to fit in memory, are required. Earlier strategies to 

―save space‖ included discretizing continuous-valued 

attributes and sampling data at each node. These 

techniques, however, still assume that the training set can 

fit in memory.  
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