

© 2012, IJARCSSE All Rights Reserved Page | 427

 Volume 2, Issue 4, April 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Classification by Decision Tree Induction Algorithm to Learn

Decision Trees from the class-Labeled Training Tuples

Ravindra Changala
1
 Annapurna Gummadi

2
 G Yedukondalu

3
 UNPG Raju

4

Asst.Prof, Dept of IT. Asst.Prof, MCA Dept Assoc. Prof, CSE Dept Asst.Prof, CSE Dept

Guru Nanak Engineering College Vignan Institute of Vignan Institute of Vignan Institute of

Hyderabad, India Technology&Science Technology&Science Technology&Science

changalaravindra@gmail.com Hyderabad, India Hyderabad, India Hyderabad, India

Abstract: Databases are rich with hidden information that can be used for intelligent decision making. Classification and

prediction are two forms of data analysis that can be used to extract models describing important data classes or to predict

future data trends. Such analysis can help provide us with a better understanding of the data at large. Whereas

classification predicts categorical (discrete, unordered) labels, prediction models continuous valued functions. The data

analysis task is classification; Decision tree induction is the learning of decision trees from class-labeled training Tuples.

A decision tree is a flowchart-like tree structure. The individual tuples making up the training set are referred to as

training tuples and are selected from the database under analysis. Training data are analyzed by a classification

algorithm. Many classification methods have been proposed by researchers in machine learning, pattern recognition, and

statistics. Most algorithms are memory resident, typically assuming a small data size. In this paper we describe a basic

algorithm for learning decision trees called Decision Tree Induction. During tree construction, attribute selection

measures are used to select the attribute that best partitions the tuples into distinct classes. Popular measures of attribute

selection are given. When decision trees are built, many of the branches may reflect noise or outliers in the training data.

Tree pruning attempts to identify and remove such branches, with the goal of improving classification accuracy on unseen

data. Tree pruning and Scalability issues for the induction of decision trees from large databases are discussed.

Keywords: Classification, Decision Tree Induction, Data partitions, Information gain, Gain ratio, Gini index and Tree

Pruning.

1. INTRODUCTION

Databases are rich with hidden information that can be

used for intelligent decision making. Classification and

prediction [1] are two forms of data analysis that can be

used to extract models describing important data classes

or to predict future data trends. Such analysis can help

provide us with a better understanding of the data at large.

Whereas classification predicts categorical (discrete,

unordered) labels, prediction models continuous valued
functions. Many classification and prediction methods

have been proposed by researchers in machine learning,

pattern recognition, and statistics. Most algorithms are

memory resident, typically assuming a small data size.

Recent data mining research has built on such work,

developing scalable classification and prediction

techniques capable of handling large disk-resident data.

2. RELATED WORK

Classification based on association rule mining [4] is

explored. Other approaches to classification, such as k-

nearest-neighbor classifiers, case-based reasoning, genetic

algorithms, rough sets, and fuzzy logic techniques, are

introduced. The data analysis task is classification; the

individual tuples making up the training set are referred to

as training tuples and are selected from the database under

analysis. Training data are analyzed by a classification

algorithm. Classification: Test data are used to estimate

the accuracy of the classification rules. If the accuracy is

considered acceptable, the rules can be applied to the
classification of new data tuples. Decision tree induction

[5] is the learning of decision trees from class-labeled

training tuples. A decision tree is a flowchart-like tree

structure, where each internal node (nonleaf node)

denotes a test on an attribute, each branch represents an

outcome of the test, and each leaf node (or terminal node)

holds a class label. The topmost node in a tree is the root

node. “How is decision trees used for classification?”

Given a tuple, X, for which the associated class label is

unknown, the attribute values of the tuple are tested

against the decision tree.

http://www.ijarcsse.com/
mailto:changalaravindra@gmail.com

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 428

Fig 1.1

Fig1.1. A decision tree for the concept buys computer,

indicating whether a customer at All Electronics is likely

to purchase a computer. Each internal (nonleaf) node

represents a test on an attribute. Each leaf node

represents a class (either buys computer = yes or buys

computer = no).

 A path is traced from the root to a leaf node, which holds
the class prediction for that tuple. Decision trees can

easily be converted to classification rules. “Why are

decision tree classifiers so popular?” The construction of

decision tree classifiers does not require any domain

knowledge or parameter setting, and therefore is

appropriate for exploratory knowledge discovery.

3. PROPOSED SYSTEM

 Decision trees can handle high dimensional data. Their

representation of acquired knowledge in tree form is

intuitive and generally easy to assimilate by humans. The
learning and classification steps of decision tree induction

are simple and fast. In general, decision tree classifiers

have good accuracy.

 However, successful use may depend on the data at hand.

Decision tree induction algorithms have been used for

classification in many application areas, such as medicine,

manufacturing and production, financial analysis,

astronomy, and molecular biology. Decision trees are the

basis of several commercial rule induction systems.

Algorithm: Generate decision tree. Generate a decision

tree from the training tuples of data partition D.

Input: Data partition, D, which is a set of training tuples

and their associated class labels; attribute list, the set of

candidate attributes; Attribute selection method, a

procedure to determine the splitting criterion that “best”

partitions the data tuples into individual classes. This

criterion consists of a splitting attribute and, possibly,

either a split point or splitting subset.

Output: A decision tree.

Method:

(1) Create a node N;

(2) if tuples in D are all of the same class, C then

(3) return N as a leaf node labeled with the class C;

(4) if attribute list is empty then

(5) return N as a leaf node labeled with the majority class

in D; // majority voting

(6) apply Attribute selection method(D, attribute list) to

find the “best” splitting criterion;

(7) label node N with splitting criterion;

(8) if splitting attribute is discrete-valued and multiway

splits allowed then // not restricted to binary trees

(9) attribute list attribute list _ splitting attribute; //

remove splitting attribute

(10) for each outcome j of splitting criterion

// partition the tuples and grow subtrees for each partition

(11) let Dj be the set of data tuples in D satisfying

outcome j; // a partition

(12) if Dj is empty then

(13) attach a leaf labeled with the majority class in D to

node N;

(14) else attach the node returned by Generate decision

tree(Dj, attribute list) to node N;

endfor

(15) return N;

Most algorithms for decision tree induction also follow

such a top-down approach, which starts with a training set

of tuples and their associated class labels. The training set

is recursively partitioned into smaller subsets as the tree is

being built. A basic decision tree algorithm is summarized
in Figure 1.1 At first glance, the algorithm may appear

long, but fear not! It is quite straightforward.

4. WORKING OF ALGORITHM

The strategy is as follows. The algorithm is called with

three parameters: D, attribute list, and Attribute selection

method. We refer to D as a data partition. Initially, it is
the complete set of training tuples and their associated

class labels. The parameter attribute list is a list of

attributes describing the tuples. Attribute selection method

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 429

specifies a heuristic procedure for selecting the attribute

that ―best‖ discriminates the given tuples according to

class.

This procedure employs an attribute selection measure,

such as information gain or the gini index. Whether the
tree is strictly binary is generally driven by the attribute

selection measure. Some attribute selection measures,

such as the Gini index, enforce the resulting tree to be

binary. Others, like information gain, do not, therein

allowing multiway splits (i.e., two or more branches to be

grown from a node). The tree starts as a single node, N,

representing the training tuples in D (step 1).5 If the

tuples in D are all of the same class, then node N becomes

a leaf and is labeled with that class (steps 2 and 3). Note

that steps 4 and 5 are terminating conditions. All of the

terminating conditions are explained at the end of the

algorithm.

 Otherwise, the algorithm calls Attribute selection method

to determine the splitting

Criterion. The splitting criterion tells us which attribute to

test at node N by determining the ―best‖ way to separate

or partition the tuples in D into individual classes (step 6).

The splitting criterion also tells us which branches to

grow from node N with respect to the outcomes of the

chosen test. More specifically, the splitting criterion

indicates the splitting attribute and may also indicate

either a split-point or a splitting subset. The splitting
criterion is determined so that, ideally, the resulting

partitions at each branch are as ―pure‖ as possible.

A partition is pure if all of the tuples in it belong to the

same class. In other words, if we were to split up the

tuples in D according to the mutually exclusive outcomes

of the splitting criterion, we hope for the resulting

partitions to be as pure as possible. The node N is labeled

with the splitting criterion, which serves as a test at the

node (step 7). A branch is grown from node N for each of

the outcomes of the splitting criterion [7]. The tuples in D

are partitioned accordingly (steps 10 to 11). There are
three possible scenarios, as illustrated in Figure 1.2

 Let A be the splitting attribute. A has v distinct values, f

=a1, a2, : : : , avg, based on the training data.1. A is

discrete-valued: In this case, the outcomes of the test at

node N correspond directly to the known values of A. A

branch is created for each known value, aj, of A and

labeled with that value (Figure 1.2(a)). Partition Dj is the

subset of class-labeled tuples in D having value aj of A.

Because all of the tuples in a given partition have the

same value for A, then A need not be considered in any
future partitioning of the tuples.

Therefore, it is removed from attribute list (steps 8 to 9).

2. A is continuous-valued: In this case, the test at node N

has two possible outcomes, corresponding to the

conditions A _ split point and A > split point, respectively,

where split point is the split-point returned by Attribute

selection method as part of the splitting criterion. Two
branches are grown from N and labeled according to the

above outcomes (Figure 1.2(b)). The tuples are

partitioned such thatD1 holds the subset of class-labeled

tuples in D for which A split point, while D2 holds the

rest.

3. A is discrete-valued and a binary tree must be produced

(as dictated by the attribute selection measure or

algorithm being used): The test at node N is of the form

―A 2 SA?‖. SA is the splitting subset for A, returned by

Attribute selection method [1] as part of the splitting

criterion. It is a subset of the known values of A. If a

given tuple has value aj of A and if aj 2 SA, then the test
at node N is satisfied. Two branches are grown from N

(Figure 1.2(c)). By convention, the left branch out of N is

labeled yes so that D1 corresponds to the subset of class-

labeled tuples in D that satisfy the test. The right branch

out of N is labeled no so that D2 corresponds to the subset

of class-labeled tuples [4] from D that do not satisfy the

test.

The algorithm uses the same process recursively to form a

decision tree [2] for the tuple sat each resulting partition,

Dj, of D (step 14). The recursive partitioning stops only
when any one of the following terminating conditions is

true: 1. All of the tuples in partition D (represented at

node N) belong to the same class (steps 2 and 3), or 2.

There are no remaining attributes on which the tuples may

be further partitioned (step 4). In this case, majority

voting is employed (step 5). This involves converting

node N into a leaf and labeling it with the most common

class in D. Alternatively, the class distribution of the node

tuples may be stored.

3. There are no tuples for a given branch, that is, a

partition Dj is empty (step 12). In this case, a leaf is
created with the majority class in D (step 13). The

resulting decision tree is returned (step 15).The

computational complexity of the algorithm given training

set D is O(n_jDj_ log(jDj)), where n is the number of

attributes describing the tuples in D and jDj is the number

of training tuples in D. This means that the computational

cost of growing a tree grows at most n_jDj_log(jDj) with

jDj tuples. The proof is left as an exercise for the reader.

Incremental versions of decision tree induction have also

been proposed. When given new training data, these

restructure the decision tree acquired from learning on
previous training data, rather than relearning a new tree

from scratch.

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 430

Fig 1.2. Three possibilities for partitioning tuples based on the splitting criterion, shown with examples. Let A be he splitting

attribute. (a) If A is discrete-valued, then one branch is grown for each known value of A. (b) If A is continuous-valued, then

two branches are grown, corresponding to A _ split point and A > split point. (c) If A is discrete-valued and a binary tree

must be produced, then the test is of the form A 2 SA, where SA is the

Splitting subset for A.

4.1 Attribute Selection Measures

An attribute selection measure [3] is a heuristic for

selecting the splitting criterion that ―best‖ separates a

given data partition, D, of class-labeled training tuples [6]
into individual classes. If we were to split D into smaller

partitions according to the outcomes of the splitting

criterion, ideally each partition would be pure. The

attribute selection measure provides a ranking for each

attribute describing the given training tuples. The attribute

having the best score for the measure is chosen as the

splitting attribute for the given tuples. If the splitting

attribute is continuous-valued or if we are restricted to

binary trees then, respectively, either a split point or a

splitting subset must also be determined as part of the

splitting criterion. The tree node created for partition D is
labeled with the splitting criterion, branches are grown for

each outcome of the criterion, and the tuples are

partitioned accordingly. This section describes three

popular attribute selection measures—information gain,

gain ratio, and gini index. The notation used herein is as

follows. Let D, the data partition, be a training set of

class-labeled tuples. Suppose the class label attribute has

m distinct values defining m distinct classes, Ci (for i = 1,

: : : , m). Let Ci,D be the set of tuples of class Ci in D. Let

jDj and jCi,Dj denote the number of tuples in D and Ci,D,

respectively.

4.1.1 Information gain

 ID3 [10] uses information gain as its attribute selection

measure. This measure is based on pioneering work by

Claude Shannon on information theory, which studied the

value or ―information content‖ of messages. Let node N

represents or holds the tuples of partition D. The attribute

with the highest information gain is chosen as the splitting
attribute for node N. This attribute minimizes the

information needed to classify the tuples in the resulting

partitions and reflects the least randomness or ―impurity‖

in these partitions.

Fig 1.3

The attribute age has the highest information gain and

therefore becomes the splitting attribute at the root node

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 431

of the decision tree. Branches are grown for each outcome

of age. The tuples are shown partitioned accordingly.

 Such an approach minimizes the expected number of

tests needed to classify a given tuple and guarantees that a

simple (but not necessarily the simplest) tree is found.
The expected information needed to classify a tuple in D

is given by

Where pi is the probability that an arbitrary tuple in D

belongs to class Ci and is estimated by jCi, Dj/jDj. A log

function to the base 2 is used, because the information is

encoded in bits. Info (D) is just the average amount of
information needed to identify the class label of a tuple in

D. Note that, at this point, the information we have is

based solely on the proportions of tuples of each class.

Info(D) is also known as the entropy of D.

4.1.2 Gain ratio

 The information gain measure is biased toward tests with

many outcomes. That is, it prefers to select attributes

having a large number of values. For example, consider

an attribute that acts as a unique identifier, such as

product ID. A split on product ID would result in a large

number of partitions (as many as there are values), each

one containing just one tuple. Because each partition is

pure, the information required to classify data set D based
on this partitioning would be Info product ID(D) = 0.

Therefore, the information gained by partitioning on this

attribute is maximal. Clearly, such a partitioning is useless

for classification. C4.5, a successor of ID3, uses an

extension to information gain known as gain ratio, which

attempts to overcome this bias. It applies a kind of

normalization to information gain using a ―split

information‖ value defined analogously with Info(D) as

SplitInfoA(D) =

This value represents the potential information generated

by splitting the training data set, D, into v partitions,
corresponding to the v outcomes of a test on attribute A.

Note that, for each outcome, it considers the number of

tuples having that outcome with respect to the total

number of tuples in D.

It differs from information gain, which measures the

information with respect to classification that is acquired

based on the same partitioning. The gain ratio is defined

as above

The attribute with the maximum gain ratio is selected as

the splitting attribute. Note, however, that as the split
information approaches 0, the ratio becomes unstable. A

constraint is added to avoid this, whereby the information

gain of the test selected must be large—at least as great as

the average gain over all tests examined.

4.1.3 Gini index

 The Gini index is used in CART [8]. Using the notation

described above, the Gini index measures the impurity of

D, a data partition or set of training tuples, as

Where pi is the probability that a tuple in D belongs to

class Ci and is estimated by jCi, Dj/jDj. The sum is

computed over m classes. The Gini index considers a

binary split for each attribute. Let’s first consider the case

where A is a discrete-valued attribute having v distinct

values, fa1, a2, : : : , avg, occurring in D.

To determine the best binary split on A, we examine all of

the possible subsets that can be formed using known

values of A. Each subset, SA, can be considered as a

binary test for attribute A of the form ―A 2 SA?‖. Given a
tuple, this test is satisfied if the value of A for the tuple is

among the values listed in SA. If A has v possible values,

then there are 2v possible subsets. For example, if income

has three possible values, namely flow, medium, highg,

then the possible subsets are flow, medium, high g, flow,

medium g, flow, high g, f medium, high g, flow g, f

medium g, f high g, and fg. We exclude the power set,

flow, medium, high g, and the empty set from

consideration since, conceptually, they do not represent a

split. Therefore, there are 2v_2 possible ways to form two

partitions of the data, D, based on a binary split on A.
When considering a binary split, we compute a weighted

sum of the impurity of each resulting partition. For

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 432

example, if a binary split on A partitions D into D1 and

D2, the gini index of D given that partitioning is

For each attribute, each of the possible binary splits is

considered. For a discrete-valued attribute, the subset that

gives the minimum gini index for that attribute is selected

as its splitting subset.

4.2 Tree Pruning

When a decision tree is built, many of the branches will

reflect anomalies in the training data due to noise or

outliers. Tree pruning methods address this problem of

over fitting the data. Such methods typically use statistical

measures to remove the least reliable branches. An

unpruned tree and a pruned version of it are shown in

Figure 1.4. Pruned trees [11] tend to be smaller and less

complex and, thus, easier to comprehend. They are
usually faster and better at correctly classifying

independent test data (i.e., of previously unseen tuples)

than unpruned trees. “How does tree pruning work?”

There are two common approaches to tree pruning:

prepruning and postpruning. In the prepruning approach,

a tree is ―pruned‖ by halting its construction early (e.g.,

by deciding not to further split or partition the subset of

training tuples at a given node).

Fig 1.4.
An unpruned decision tree and a pruned version of it.

4.3 Scalability and Decision Tree Induction

 “What if D, the disk-resident training set of class-labeled

tuples, does not fit in memory? In other words, how

scalable is decision tree induction?” The efficiency of

existing decision tree algorithms, such as ID3, C4.5, and

CART [3], has been well established for relatively small

data sets. Efficiency becomes an issue of concern when

these algorithms are applied to the mining of very large

real-world databases. The pioneering decision tree

algorithms that we have discussed so far have the

restriction that the training tuples should reside in

memory. In data mining applications, very large training

sets of millions of tuples are common. Most often, the
training data will not fit in memory!

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 433

Fig 1.5

 An example of sub tree (a) repetition (where an attribute
is repeatedly tested along a given branch of the tree, e.g.,

age) and (b) replication (where duplicate sub trees exist

within a tree, such as the sub tree headed by the node

―credit rating?‖).

Fig 1.6

Decision tree construction [1] therefore becomes

inefficient due to swapping of the training tuples in and

out of main and cache memories. More scalable

approaches, capable of handling training data that are too

large to fit in memory, are required. Earlier strategies to

―save space‖ included discretizing continuous-valued

attributes and sampling data at each node. These

techniques, however, still assume that the training set can

fit in memory.

 Fig1.7

Fig 1.8

The use of data structures to hold aggregate information

regarding the training data are one approach to improving

the scalability of decision tree induction.

5. CONCLUSION

“What if D, the disk-resident training set of class-labeled

tuples, does not fit in memory?

In other words, how scalable is decision tree

induction?”The pioneering decision tree algorithms that
we have discussed so far have the restriction that the

training tuples should reside in memory. In data mining

applications, very large training sets of millions of tuples

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 434

are common. Most often, the training data will not fit in

memory! Decision tree construction therefore becomes

inefficient due to swapping of the training tuples in and

out of main and cache memories. More scalable

approaches, capable of handling training data that are too

large to fit in memory, are required. Earlier strategies to

―save space‖ included discretizing continuous-valued

attributes and sampling data at each node. These

techniques, however, still assume that the training set can

fit in memory.

6. REFERENCES

[1] V. K. Vaishnavi, "Multidimensional height-balanced

trees," IEEE Trans. Comput., vol. C-33, pp. 334-343,

1984.

[2] Tomoki Watanuma, Tomonobu Ozaki, and Takenao

Ohkawa. ¯Decision Tree Construction from

Multidimensional Structured Data..Sixth IEEE

International Conference on Data Mining – Workshop s,

2006.

[3] L. Breiman, J. Friedman, R. Olshen, and C. Stone.

Classification of Regression Trees. Wadsworth, 1984.

[4] Micheline Kamber, Lara Winstone, Wan Gong, Shang

Cheng, Jiawei Han, ¯Generalization and Decision Tree

Induction: Efficient

Classification in Data Mining., Canada V5A IS6, 1996.

[5] J. R. Quinlan. Induction of decision trees. Machine

Learning, 1:81–106, 1986.

[6] J. R. Quinlan. C4.5: Programs for Machine Learning.

Morgan Kaufmann, 1993.

[7] L. B. Holder. Intermediate decision trees. In Proc.

14th Intl. Joint Conf. on Artificial Intelligence, pages

1056–1062, Montreal, Canada, Aug

1995.

[8] XindongWu · Vipin Kumar · J. Ross Quinlan ·

Joydeep Ghosh · Qiang Yang · Hiroshi Motoda ·

Geoffrey J. McLachlan · Angus Ng · Bing Liu · Philip S.
Yu · Zhi-Hua Zhou · Michael Steinbach · David J. Hand ·

Dan Steinberg. A survey paper on ¯Top 10 algorithms in

data

Mining. 2007.

[9] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast

scalable classifier for data mining. In Proc. 1996 Intl.

Conf. on Extending Database

Technology (EDBT’96), Avignon, France, March 1996.

[10] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A
scalable parallel classifier for data mining. In Proc. 22nd

Intl. Conf. Very Large Data Bases (VLDB), pages 544–

555, Mumbai (Bombay), India, 1996.

[11] J. Han, Y. Cai, and N. Cercone. Datadriven

discovery of quantitative rules in relational databases.

IEEE Trans. Knowledge and Data

Engineering, 5:29–40, 1993.

[12] D. H. Freeman, Jr. Applied Categorical Data

Analysis. Marcel Dekker, Inc., New York, NY, 1987.

