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Abstract-- There are many path planning algorithms designed for mobile robots with software implementation. In the case of dynamic 

environments high-speed planning and recomputation of paths is necessary to avoid collision of robots with moving objects. A hardware-

efficient algorithm is presented for finding a path of a mobile robot on image of an environment captured by an overhead camera. The 

algorithm computes the shortest path to identify collision free region for the robot. If multiple paths are provided, the path is traced to 

nearest path. 2-D cell architecture has been presented for the Euclidean distance Transform (EDT) and Nearest Neighbor Transform 

(NNT) for operating at high speed. The simulation result shows that the architecture is suitable for path planning in a dynamic 

environment containing obstacles with arbitrary shape and motion. 

Keywords— Euclidean distance transform(EDT), nearest neighbor transform(NNT), image, path planning, dynamic environment. 
 

I. INTRODUCTION 

 

The development of robots that are able to assist humans in 

their day-to-day tasks has become a popular research area over 

the last few years [6], [11]. Mobile manipulator systems public 

service robots (PSRs1 and 2) perform delivery, patrol, and floor-

cleaning jobs[8]. The guide robot provides exhibition guide 

services at a museum. These robots are equipped with a few 

laser range finders (LRFs) for localization and obstacle 

detection. The PSR1 and PSR2 are driven by active caster-typed 

holonomic omni directional wheels. The guide robot uses 

conventional two-wheel differential-type wheels. Basically, 

these robots share common control architecture. Some software 

components were partially modified according to the target 

robot system.. The control architecture design, navigation 

system, and behavior selection framework were proposed in 

[16] for each robot. The focus on the localization problem 

whose solution will enable robots to carry out dependable 

navigation in dynamic indoor environments depends upon 

algorithm. Localization as in [16] is one of the most important 

issues for successful autonomous navigation, and a great 

number of localization methods have been proposed so far.  

Many studies have addressed about position tracking 

problems. According to the International Federation of Robotics 

(IFR), ‘‘a service robot is a robot which operates semi or fully 

autonomously to perform services useful to the well being of 

human and equipment, excluding manufacturing operations’’ 

[6]. These devices are typically complex systems requiring the 

input of knowledge from numerous disciplines. The authors 

have been using different software engineering techniques for 

the last 15 years, integrating new paradigms in the service robot 

development process as they emerged. This has made it possible  

 

 

to achieve rapid development of applications and subsequent 

maintenance.  

Path planning is a fundamental task for a mobile robot by 

which it guides itself through the environment on the basis of 

sensory information. The potential of computational vision for 

robotic navigation is enormous, and vision-based path planning 

has been actively studied in the last decade [4]. The work has 

progressed on two separate fronts: 1) vision-based navigation of 

indoor robot where the complete knowledge of the environment 

is available [9],[13] and 2) vision-based navigation of outdoor 

robots where partial knowledge of the environment is only often 

available. Many existing path-planning algorithms have been 

designed for implementation in software. In the case of dynamic 

environments, high-speed planning and recomputation of paths 

is necessary to avoid collisions of robots with moving objects, 

particularly when new objects enter the environment suddenly 

or when moving objects change their predicted course. In such 

cases, the computational requirement exceeds the computing 

power of present-day general-purpose processors that implement 

the path-planning algorithm. It is desirable to develop 

specialized hardware-directed solutions which operate at high 

speed and which offer additional advantages, such as 

reconfigurability and portability. Programmable hardware 

devices such as field-programmable gate arrays (FPGAs) 

nowadays provide advanced features and resources to allow 

rapid prototyping of system-on-chips[12][14]. 

A new vision-based hardware-directed algorithm for tracing 

a path for an indoor mobile robot that is translating as well as 

rotating is proposed. 

The proposed path planning scheme has the following features. 
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1) The algorithm involves simple local neighborhood 

operations on integer data for constructing the distance 

map and for tracing the path on an environment image 

captured by an overhead camera. 

2) The algorithm can be easily mapped onto a cellular 

architecture with locally interconnected 2-D array of 

cells. 

3) A cell has simple computational units and a few 

registers. 

4) All the pixels can be processed in parallel by the 

cells. 

5) The architecture can be operated at high speed due 

to its local interconnections. 

6) The architecture is scalable. 

This paper is organized as follows. Section II describes 

the construction of a distance map and the path planning on the 

constructed distance map. A new parallel algorithm for the path 

planning on an environment image is discussed Section III. The 

results for path planning are presented and explained in Section 

IV. Section V concludes this paper. 

 

II.   METHODOLOGY 

 

Several algorithms for path planning are available for 

implementation on general-purpose processors [3], [10]. 

However, hardware-directed approaches are relatively recent. In 

particular, hardware-directed schemes have concentrated on two 

approaches for map construction. One approach is based on 

visibility graphs, while the other is based on Voronoi diagrams. 

A popular structure to represent the environment in which a 

robot operates is the visibility graph. The graph has among its 

nodes, the vertices of the objects[7]. Arcs in the graph connect 

the points x and y that can see one another. Construction of the 

graph precedes path finding for the robot. For shortest path 

computations for mobile robots and autonomous vehicles, one 

typically considers the reduced visibility graph instead of the 

complete visibility graph. Traditionally, visibility graph 

computation has focused on sequential algorithms and software 

implementations. A direct method to construct the complete 

graph in an environment with n nodes would require O(n
3
) time. 

Since on a general- purpose computer, all tasks are executed in a 

sequential fashion, the visibility graph computation is time 

consuming and not appropriate for real-time applications. A new 

hardware-directed method for various phases of tangent 

construction, a central component in visibility graph 

construction is presented in [17]. In [7], a hardware-directed 

algorithm has been proposed for the construction of the 

complete visibility graph. However, the visibility-graph-based 

approaches assume the approximation of robot and obstacles by 

circumscribing polygons. The approximation requires 

considerable preprocessing. The visibility graph and related 

approaches are model-based, and they require modeling the 

environment before computing the graph. Moreover, the 

obstacles are approximated by polygonal shapes. 

Another useful geometrical structure for path planning is 

the Voronoi diagram. Some designs of array-type architectures 

for the construction of Voronoi diagram on an environment 

image are available in the literature [17]. The authors have 

applied it to path planning for a diamond-shaped robot on a 

synthesized image containing simple obstacles. The diagram is 

constructed considering the interactions between features 

belonging to the same obstacle as well as those from different 

obstacles, and therefore, it has extra branches. Geometric data 

structures play an important role in various applications. Among 

them is the Voronoi diagram, whose applications include robot 

path planning, pattern classification, and image processing. The 

construction of Voronoi diagram is a fundamental problem in 

computational geometry, and the one that is constructed 

typically is the continuous one based on assumption of a model 

for the objects (polygon, curve, etc.). The Voronoi region of an 

object consists of all pixels which are closest to that object. The 

Voronoi diagram is quite complex when an image of real 

obstacles is considered, and the path planning on such a diagram 

is difficult. A new very large scale integration (VLSI) algorithm 

for construction of the Euclidean distance-based Voronoi 

diagram is proposed in [17]. The algorithm has linear time 

complexity (linear in image size). The algorithm involves 

simple computations based on local information, and is, 

therefore, amenable for hardware implementation. The 

algorithm considers the entire obstacle and not its features for 

the construction of a Voronoi diagram and so it has no extra 

branches. However, path planning has not been attempted using 

the diagram in any of these works. 

Very recently, an algorithm has been presented in [16] for 

computing the actual path on a binary image of an environment. 

The method constructs the path from the start point to the goal 

but on the Euclidean distance transform (EDT) and Nearest 

Neighbor Transform (NNT) of the image. A straightforward 

realization of the method in hardware has been presented. In an 

earlier work [16], hardware architecture for the distance 

transform is available. In order to achieve a complete path-

planning solution in hardware, interfacing strategies have to be 

designed to integrate these architectures. A distance 

transformation converts a binary image which consists of 

foreground and background pixels into an image where every 

foreground pixel has a value corresponding to the minimum 

distance from the background. A nearest neighbor 

transformation assigns the identity of the nearest background 

pixel to each pixel of the image. The distance transform (DT) 

and nearest neighbor transform (NNT) have applications in 

image processing, machine vision and other domains. In image 

processing, for instance, distance transforms find applications in 

image analysis. It is used for the shape analysis of objects in an 

image. It is also used to compute the discrete skeleton, the 

discrete Voronoi diagram and the Hausdorff distance for 

images. In this paper, a novel array-architecture-based hardware 

solution is proposed for complete path planning on the binary 

image of the environment. The different operations in path 

planning are decomposed into simple local neighborhood 

operations, and these local neighborhood operations are 

combined to design a processing element of the architecture. 

The path obtained from a start point to the goal is the shortest in 

terms of the number of steps. 
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III.   PATH PLANNING ON AN ENVIRONMENT IMAGE 

 

Given the image of an environment captured by an 

overhead camera, the method first constructs a distance map for 

the binary form of the image to determine the collision-free 

region. The shortest path is then constructed in the collision free 

region.  

For a binary image of obstacles, the EDT and NNT of the 

image is first computed. The EDT converts the binary image to 

a multivalued image in which each pixel p is assigned the 

Euclidean distance between p and the nearest obstacle pixel. The 

salient feature of the algorithm is that the computation of EDT 

involves only integer arithmetic operations within a small 

neighborhood of each pixel. The algorithm computes the 

distance vector (Δx,Δy) for each pixel, where Δx and Δy are the 

number of rows and columns by which a pixel is displaced from 

its nearest object pixel. The Euclidean distance d is given by d = 

. The (Δx,Δy) of object pixels are initialized at 

(0,0), and those of free-space pixels are computed iteratively 

starting from the pixels near the object and moving toward the 

far away pixels. At any iteration k, the (Δx(p),Δy(p)) of those 

pixels p whose nearest integer approximation to their Euclidean 

distance d(p) equals k are computed. That is, the values of d(p) 

for these pixels lie within (k − 0.5, k + 0.5]. d(p) is not an 

integer, and hence, d
2
(p) is considered. d

2
(p) lies within (k

2
 − k, 

k
2
 + k] since d

2
(p) is an integer. However, d

2
(p) is quite large in 

magnitude, and it requires a large storage space in a hardware. A 

new integer quantity δ(p), which is much smaller than d
2
(p), is 

defined as (k
2
 + k) − d

2
(p), and it lies in the range [0, 2k). δ is 

used for the computation of (Δx,Δy). d
2
(p) can be derived using 

the already computed (Δx,Δy) of eight neighbors pi, i = 1 to 8, 

surrounding p, as shown in Fig. 1. 

  
 

Fig. 1 Neighborhood N 
                                               
It is given by min[Δx

2
i +Δy

2
i ] where 

 Δxi=                (1) 

The increment by one is due to p being displaced from pi by one 

row. Similarly, Δyi is given in terms of Δy(pi). d
2
(p) is now 

expressed as min[d
2
(pi)+ΔXi +ΔYi] where 

 

ΔXi=         (2) 

 

δ(p) is finally expressed as follows: 

δ(p) =k
2
 + k − d

2
(p) 

        = max[k
2
 + k − d

2
(pi) − ΔXi − ΔYi] 

         = max [δ(pi) − ΔXi − ΔYi] = max[δi]             (3) 

 

δ(p) ≥ 0 implies that d(p) is less than k + 0.5. The iterative 

computation of (Δx,Δy) proceeds as follows. δ values of the 

object pixels are initialized to zero. At each iteration k, the δ 

values of free-space pixels whose (Δx,Δy) are not yet known are 

computed using the already computed δ, Δx, and Δy of the 

neighbors. If δ(p)  

≥ 0, then (Δx(p),Δy(p)) corresponds to (Δxi,Δyi), where the 

subscript i pertains to the pixel pi that gives maximum δi in (3).p 

can be assigned an integer distance dI which is equal to k. This 

integer distance is sufficient to determine the collision-free 

region for the given robot. Once the (Δx,Δy) of a pixel is 

known, its δ should be updated for at least two successive 

iterations, as it depends on k. The updating allows the use of δ 

for the computation of (Δx,Δy) of the neighbors. δk(p) at 

iteration k is derived from δk−1(p) at iteration k − 1 as follows: 

δk(p) =k
2
 + k − d

2
(p)  

        =2k +[(k − 1)
2
 + (k − 1) − d

2
(p)] 

        =2k + δk−1(p).                 (4) 

To keep track of pixels whose (Δx,Δy) have been computed, a 

flag done is assigned to each pixel, whose value is set to one 

when the transform values of pixels are computed at any 

iteration. The dI (p) given by the iteration number k, when done 

is set, forms the distance map. The distance map is used to find 

first the collision-free region for the robot. Let dfar be the 

distance between the center of rotation and the farthest point of 

the robot from the center. The collision-free region consists of 

those pixels whose distance values (dI) are greater than dfar. 

Consider the collision-free region as a graph. Each pixel is 

represented as a node, and it is connected to the eight 

neighboring pixels surrounding it by edges. The construction of 

the shortest collision-free path involves the construction of the 

breadth-first search (bfs) tree on the collision-free graph with its 

root being the goal pixel[16]. The construction of the bfs tree is 

continued until the start pixel is encountered. The construction 

involves storing the parent of each pixel. The path is then traced 

by following the parent nodes from the start pixel until the root 

node is reached. The path constructed by this method on the 

image is the shortest path in terms of the number of pixels. The 

robot is moved from one pixel to the next along the path by 

aligning its center of rotation to every pixel. The path planning 

can be extended to a scenario with multiple goals. In this case, 

bfs trees are constructed simultaneously with each goal pixel as 

a root. The path from a start pixel is traced to the nearest goal. 

The pseudo code of the proposed algorithm Parallel_Path_Plan 

is as follows. 

A. Algorithm: Parallel_Path_Plan 

Inputs: An n × n binary image, dfar, ps, and pg 

Outputs: Sequence of moves for the robot from ps to pg 

Step 1:  Initialization 

Δx = Δy = δ = 0 & done = 1 for object pixels 

visited(p) =  
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parent(p) = 0 for all p 

Step 2: Find EDT 

repeat for k = 1, 2, . . . 

for all pixels p do in parallel 

Compute Δxi, Δyi, and δi, i = 1 to 8 

δm = max{δi with done(pi) = 1}. 

if (done(p) = 0 ^ δm ≥ 0) 

Δx(p) = Δxm 

Δy(p) = Δym 

δ(p) = δm 

done(p) = 1 

else if done(p) = 1 

δ(p) = δ(p) + 2k 

end if 

end for 

until done = 1 for all pixels 

Step 3: Find collision-free region 

for every pixel p do in parallel 

if (dI (p) > dfar) cfr(p) = 1 

else cfr(p) = 0 

end for 

Step 4: Construction of bfs tree 

repeat 

for every pixel p do in parallel 

if (visited(p) = 0)  ˄ (Ǝpi ε  N[visited(p) = 1]) 

visited(p) = 1 

parent(p) is pointed to pi with minimum i 

end if 

end for 

until (visited = 1 for all p where cfr = 1) 

Step 5: Find sequence of moves 

p = ps 

while (parent(p) ≠0) 

print parent(p) 

p = parent pixel of p 

end while 

The sequences of moves are given by the pointers. The robot 

can take horizontal, vertical, or diagonal step based on the 

pointer value. It should be noted that once the bfs tree is 

constructed in Step 4, the shortest path from any pixel to the 

given goal pixel can be found out. 

 

B. Complexity Analysis 

 

The time and space complexities are given via Propositions 

1and 2. 

Proposition 1: The time complexity of Algorithm 

Parallel_Path_Plan is O(n
2
). 

Proof: The time complexity of the proposed algorithm 

depends mainly on the repeat-until and while loops. The 

statements within for-end for are executed in parallel for all 

pixels. The repeat-until loop in Step 2 runs until done is set to 

one for all pixels. In the worst case, the loop is executed for 

_dmax_ times, where dmax is the maximum possible distance 

value, which is √ 2n in the case of an n × n image. The cfr 

computation  in Step 3 takes only constant time. The repeatuntil 

loop in Step 4 is executed close to n2 times in the worst case 

when the path obtained is a zigzag one. The while loop in Step 5 

also runs close to n2 times in the worst case. Hence, the overall 

time complexity of the algorithm is O(n
2
).  

Proposition 2: The space complexity of Algorithm 

Parallel_Path_Plan is also O(n
2
). 

Proof: In the algorithm, the values of Δx, Δy, δ, cfr, 

visited, and parent of each pixel are stored. Since there are n2 

pixels, the space complexity is O(n
2
). 

 

C. Simulation Studies 

 

Results of VHDL code simulated using ModelSim followed 

by synthesis and implementation using Xilinx ISE are presented 

as in [15]. The design of an n × n algorithm was coded in 

Verilog hardware description language (HDL), and its 

functional behavior was tested. 

The integer distance value, d(p), computed by the algorithm 

for every pixel p has been transformed into intensity levels. The 

maximum frequency of operation is shown in the Table I.  

 
TABLE I 

COMPARISON OF OPERATING FREQUENCY FOR 

DIFFERENT TECHNIQUES 
Techniques Frequency(MHz) Computation 

Time(μs) 

Voronoi 

Diagram 

50 200 

Visibility 

graph 

160 67 

BFS 232 43.1 

 

The computation time for collision free path is less when 

compared to the other two techniques. The identical local 

operations performed in a local neighborhood of each pixel 

make the algorithm feasible for VLSI implementation in a two-

dimensional array of locally connected identical cells.  

 

IV. PROPOSED CELL ARCHITECTURE 

 

 The different modules of EDT and NNT are shown in 

Fig. 2. The ADD-SUB module computes df, i= 1-8. The 

computation involves an addition and a subtraction for i = 2, 4, 6 

& 8 and only a subtraction for i = 1, 3, 5 & 7. Therefore, eight 

subtractors and four adders are required to realise this 

computation. The INC module computes Δxi and Δyi given by 

eqn. 1. The computation requires twelve incrementers, six for 

implementing Δxi=│IΔx(pi)│ + 1, i= 1, 2, 4, 5, 6 & 8, and 

another six for implementing Δyl = │Δy(pi)│ + 1, i=2, 3, 4, 6, 7 

& 8. 
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  Fig. 2 EDT and NNT Architecture 

 

Once dfi,Δxi and Δyi for i= 1-8 have been computed, these 

values are given to a MAX module along with done(p,) and 

borrow bits bi from the subtractors of the ADD-SUB module. 

The MAX module has seven CMP-MUX (comparator-

multiplexer) modules arranged in three levels to compute 

max[dfi], i= 1-8,[17]. In the Figure, max[dfi] is denoted by dw. 

Further, the MAX module allows the values of Δxi and Δyi, 

corresponding to the i that yields dm. These values are denoted 

by ΔxM and ΔyM. 

The CMP-MUX module takes two sets of inputs, setj={dfi, 

Δxj, Δyj, done(pj), bj} and setk={dfk, Δxk, Δyk, done(pk), bk}. It 

has a comparator to compare dfi > dfk and a multiplexer that 

outputs either setj or setk depending on the value of se1 input of 

multiplexer. setj is output when se1 = 0 while setk is output when 

sel = 1. The sel is generated using the output cmp of comparator 

and the values of done and borrow bits. The comparator is 

designed for the simple case of comparing two unsigned binary 

numbers. done(pj)= 1 means the value of dfi is valid. bj = 1 

means dfj is negative and cmp= 1 means dfi > dfk. The dm, output 

by the MAX module, is added to 2k where k is the iteration 

number generated by an external counter. The output df(p0) of 

the adder is given as input to the register dj. The outputs, ΔxM 

and ΔyM, of the MAX module are given as inputs to the registers 

Ax and Ay. The done flip-flop is input with logic 1. In the 

design, the registers and flip-flop are loaded with the available 

inputs during the rising edge of the clock. From the switch and 

if statements of the algorithm in Section 3, it is clear that the 

clock is activated only when the following conditions are 

satisfied. 

1. done of cell is not set. 

2. At least a value of done of neighbors is logic 1. 

3. d f ( p0)is positive. In 2's complement representation of 

df(p0) means that the MSB is 0. 

 

The done of cells corresponding to obstacle pixels are 

initialized at one and the visited of goal pixels are set to one. 

The initialization is done by feeding the done and visited of each 

row to the corresponding leftmost cell in the pipeline. When 

clocked, the inputs are passed through the array from left to 

right in each row. There are three modes of operation. EDT 

computation is done first. Using the initial done values, distance 

values dI are computed first. Once EDT is computed, cfr is 

computed in the next phase using the input dfar and the 

computed dI. In the third phase, the bfs tree is constructed using 

cfr and visited values. The gate counts for visibility graph and 

bfs and nnt are compared in Table II. 

 
TABLE II  

COMPARISON OF AREA 

 

Techniques 

 

Gate Counts 

Visibility Graph 33026 

BFS and NNT 1188 

 

V. CONCLUSION 

 

            An algorithm for tracing the shortest path of a translating 

and rotating robot on the binary image of an environment has 

been given. The algorithm first constructs the distance map of 

the image to obtain a collision-free region and then constructs 

the bfs tree of pixels in the collision-free region, which defines 

the shortest path from any start pixel to a specific goal pixel. If 

multiple goals are provided, the path is traced to the nearest 

goal.  The actual Euclidean distance value and the nearest 

neighbor of each pixel can be obtained from the vector 

Euclidean distance. Owing to simple, identical and local 

neighborhood operations, the proposed EDT architecture of 

computation is suitable for VLSI implementation. The 

architecture is capable of processing images at video rate for 

real-time path planning in a dynamic environment. Extensions 

to the work presented in this paper could involve handling a 

large indoor environment via multiple overhead cameras. Path 

planning can be performed by processing the images of portions 

of the environment in sequence and integrating the partial 

results. The block RAMs (BRAMs) and reconfigurability 

feature of FPGA can be exploited to achieve this. The FPGA 

will be reconfigured with the design for integration of these 

results to provide the complete bfs tree. 
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