
© 2012, IJARCSSE All Rights Reserved Page | 256

 Volume 2, Issue 4, April 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

An Efficient Architecture for Robotic Path Planning
M.Vijay

P.G. Scholar

Dept. of VLSI DESIGN

SRI RAMAKRISHNA ENGINEERING COLLEGE

vijayseessi@gmail.com,

Dr.M.Jagadeeswari

Professor & Head

Dept. of VLSI DESIGN

SRI RAMAKRISHNA ENGINEERING COLLEGE

Abstract-- There are many path planning algorithms designed for mobile robots with software implementation. In the case of dynamic

environments high-speed planning and recomputation of paths is necessary to avoid collision of robots with moving objects. A hardware-

efficient algorithm is presented for finding a path of a mobile robot on image of an environment captured by an overhead camera. The

algorithm computes the shortest path to identify collision free region for the robot. If multiple paths are provided, the path is traced to

nearest path. 2-D cell architecture has been presented for the Euclidean distance Transform (EDT) and Nearest Neighbor Transform

(NNT) for operating at high speed. The simulation result shows that the architecture is suitable for path planning in a dynamic

environment containing obstacles with arbitrary shape and motion.

Keywords— Euclidean distance transform(EDT), nearest neighbor transform(NNT), image, path planning, dynamic environment.

I. INTRODUCTION

The development of robots that are able to assist humans in

their day-to-day tasks has become a popular research area over

the last few years [6], [11]. Mobile manipulator systems public

service robots (PSRs1 and 2) perform delivery, patrol, and floor-

cleaning jobs[8]. The guide robot provides exhibition guide

services at a museum. These robots are equipped with a few

laser range finders (LRFs) for localization and obstacle

detection. The PSR1 and PSR2 are driven by active caster-typed

holonomic omni directional wheels. The guide robot uses

conventional two-wheel differential-type wheels. Basically,

these robots share common control architecture. Some software

components were partially modified according to the target

robot system.. The control architecture design, navigation

system, and behavior selection framework were proposed in

[16] for each robot. The focus on the localization problem

whose solution will enable robots to carry out dependable

navigation in dynamic indoor environments depends upon

algorithm. Localization as in [16] is one of the most important

issues for successful autonomous navigation, and a great

number of localization methods have been proposed so far.

Many studies have addressed about position tracking

problems. According to the International Federation of Robotics

(IFR), ‘‘a service robot is a robot which operates semi or fully

autonomously to perform services useful to the well being of

human and equipment, excluding manufacturing operations’’

[6]. These devices are typically complex systems requiring the

input of knowledge from numerous disciplines. The authors

have been using different software engineering techniques for

the last 15 years, integrating new paradigms in the service robot

development process as they emerged. This has made it possible

to achieve rapid development of applications and subsequent

maintenance.

Path planning is a fundamental task for a mobile robot by

which it guides itself through the environment on the basis of

sensory information. The potential of computational vision for

robotic navigation is enormous, and vision-based path planning

has been actively studied in the last decade [4]. The work has

progressed on two separate fronts: 1) vision-based navigation of

indoor robot where the complete knowledge of the environment

is available [9],[13] and 2) vision-based navigation of outdoor

robots where partial knowledge of the environment is only often

available. Many existing path-planning algorithms have been

designed for implementation in software. In the case of dynamic

environments, high-speed planning and recomputation of paths

is necessary to avoid collisions of robots with moving objects,

particularly when new objects enter the environment suddenly

or when moving objects change their predicted course. In such

cases, the computational requirement exceeds the computing

power of present-day general-purpose processors that implement

the path-planning algorithm. It is desirable to develop

specialized hardware-directed solutions which operate at high

speed and which offer additional advantages, such as

reconfigurability and portability. Programmable hardware

devices such as field-programmable gate arrays (FPGAs)

nowadays provide advanced features and resources to allow

rapid prototyping of system-on-chips[12][14].

A new vision-based hardware-directed algorithm for tracing

a path for an indoor mobile robot that is translating as well as

rotating is proposed.

The proposed path planning scheme has the following features.

http://www.ijarcsse.com/
mailto:vijayseessi@gmail.com

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 257

1) The algorithm involves simple local neighborhood

operations on integer data for constructing the distance

map and for tracing the path on an environment image

captured by an overhead camera.

2) The algorithm can be easily mapped onto a cellular

architecture with locally interconnected 2-D array of

cells.

3) A cell has simple computational units and a few

registers.

4) All the pixels can be processed in parallel by the

cells.

5) The architecture can be operated at high speed due

to its local interconnections.

6) The architecture is scalable.

This paper is organized as follows. Section II describes

the construction of a distance map and the path planning on the

constructed distance map. A new parallel algorithm for the path

planning on an environment image is discussed Section III. The

results for path planning are presented and explained in Section

IV. Section V concludes this paper.

II. METHODOLOGY

Several algorithms for path planning are available for

implementation on general-purpose processors [3], [10].

However, hardware-directed approaches are relatively recent. In

particular, hardware-directed schemes have concentrated on two

approaches for map construction. One approach is based on

visibility graphs, while the other is based on Voronoi diagrams.

A popular structure to represent the environment in which a

robot operates is the visibility graph. The graph has among its

nodes, the vertices of the objects[7]. Arcs in the graph connect

the points x and y that can see one another. Construction of the

graph precedes path finding for the robot. For shortest path

computations for mobile robots and autonomous vehicles, one

typically considers the reduced visibility graph instead of the

complete visibility graph. Traditionally, visibility graph

computation has focused on sequential algorithms and software

implementations. A direct method to construct the complete

graph in an environment with n nodes would require O(n
3
) time.

Since on a general- purpose computer, all tasks are executed in a

sequential fashion, the visibility graph computation is time

consuming and not appropriate for real-time applications. A new

hardware-directed method for various phases of tangent

construction, a central component in visibility graph

construction is presented in [17]. In [7], a hardware-directed

algorithm has been proposed for the construction of the

complete visibility graph. However, the visibility-graph-based

approaches assume the approximation of robot and obstacles by

circumscribing polygons. The approximation requires

considerable preprocessing. The visibility graph and related

approaches are model-based, and they require modeling the

environment before computing the graph. Moreover, the

obstacles are approximated by polygonal shapes.

Another useful geometrical structure for path planning is

the Voronoi diagram. Some designs of array-type architectures

for the construction of Voronoi diagram on an environment

image are available in the literature [17]. The authors have

applied it to path planning for a diamond-shaped robot on a

synthesized image containing simple obstacles. The diagram is

constructed considering the interactions between features

belonging to the same obstacle as well as those from different

obstacles, and therefore, it has extra branches. Geometric data

structures play an important role in various applications. Among

them is the Voronoi diagram, whose applications include robot

path planning, pattern classification, and image processing. The

construction of Voronoi diagram is a fundamental problem in

computational geometry, and the one that is constructed

typically is the continuous one based on assumption of a model

for the objects (polygon, curve, etc.). The Voronoi region of an

object consists of all pixels which are closest to that object. The

Voronoi diagram is quite complex when an image of real

obstacles is considered, and the path planning on such a diagram

is difficult. A new very large scale integration (VLSI) algorithm

for construction of the Euclidean distance-based Voronoi

diagram is proposed in [17]. The algorithm has linear time

complexity (linear in image size). The algorithm involves

simple computations based on local information, and is,

therefore, amenable for hardware implementation. The

algorithm considers the entire obstacle and not its features for

the construction of a Voronoi diagram and so it has no extra

branches. However, path planning has not been attempted using

the diagram in any of these works.

Very recently, an algorithm has been presented in [16] for

computing the actual path on a binary image of an environment.

The method constructs the path from the start point to the goal

but on the Euclidean distance transform (EDT) and Nearest

Neighbor Transform (NNT) of the image. A straightforward

realization of the method in hardware has been presented. In an

earlier work [16], hardware architecture for the distance

transform is available. In order to achieve a complete path-

planning solution in hardware, interfacing strategies have to be

designed to integrate these architectures. A distance

transformation converts a binary image which consists of

foreground and background pixels into an image where every

foreground pixel has a value corresponding to the minimum

distance from the background. A nearest neighbor

transformation assigns the identity of the nearest background

pixel to each pixel of the image. The distance transform (DT)

and nearest neighbor transform (NNT) have applications in

image processing, machine vision and other domains. In image

processing, for instance, distance transforms find applications in

image analysis. It is used for the shape analysis of objects in an

image. It is also used to compute the discrete skeleton, the

discrete Voronoi diagram and the Hausdorff distance for

images. In this paper, a novel array-architecture-based hardware

solution is proposed for complete path planning on the binary

image of the environment. The different operations in path

planning are decomposed into simple local neighborhood

operations, and these local neighborhood operations are

combined to design a processing element of the architecture.

The path obtained from a start point to the goal is the shortest in

terms of the number of steps.

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 258

III. PATH PLANNING ON AN ENVIRONMENT IMAGE

Given the image of an environment captured by an

overhead camera, the method first constructs a distance map for

the binary form of the image to determine the collision-free

region. The shortest path is then constructed in the collision free

region.

For a binary image of obstacles, the EDT and NNT of the

image is first computed. The EDT converts the binary image to

a multivalued image in which each pixel p is assigned the

Euclidean distance between p and the nearest obstacle pixel. The

salient feature of the algorithm is that the computation of EDT

involves only integer arithmetic operations within a small

neighborhood of each pixel. The algorithm computes the

distance vector (Δx,Δy) for each pixel, where Δx and Δy are the

number of rows and columns by which a pixel is displaced from

its nearest object pixel. The Euclidean distance d is given by d =

. The (Δx,Δy) of object pixels are initialized at

(0,0), and those of free-space pixels are computed iteratively

starting from the pixels near the object and moving toward the

far away pixels. At any iteration k, the (Δx(p),Δy(p)) of those

pixels p whose nearest integer approximation to their Euclidean

distance d(p) equals k are computed. That is, the values of d(p)

for these pixels lie within (k − 0.5, k + 0.5]. d(p) is not an

integer, and hence, d
2
(p) is considered. d

2
(p) lies within (k

2
 − k,

k
2
 + k] since d

2
(p) is an integer. However, d

2
(p) is quite large in

magnitude, and it requires a large storage space in a hardware. A

new integer quantity δ(p), which is much smaller than d
2
(p), is

defined as (k
2
 + k) − d

2
(p), and it lies in the range [0, 2k). δ is

used for the computation of (Δx,Δy). d
2
(p) can be derived using

the already computed (Δx,Δy) of eight neighbors pi, i = 1 to 8,

surrounding p, as shown in Fig. 1.

Fig. 1 Neighborhood N

It is given by min[Δx

2
i +Δy

2
i] where

 Δxi= (1)

The increment by one is due to p being displaced from pi by one

row. Similarly, Δyi is given in terms of Δy(pi). d
2
(p) is now

expressed as min[d
2
(pi)+ΔXi +ΔYi] where

ΔXi= (2)

δ(p) is finally expressed as follows:

δ(p) =k
2
 + k − d

2
(p)

 = max[k
2
 + k − d

2
(pi) − ΔXi − ΔYi]

 = max [δ(pi) − ΔXi − ΔYi] = max[δi] (3)

δ(p) ≥ 0 implies that d(p) is less than k + 0.5. The iterative

computation of (Δx,Δy) proceeds as follows. δ values of the

object pixels are initialized to zero. At each iteration k, the δ

values of free-space pixels whose (Δx,Δy) are not yet known are

computed using the already computed δ, Δx, and Δy of the

neighbors. If δ(p)

≥ 0, then (Δx(p),Δy(p)) corresponds to (Δxi,Δyi), where the

subscript i pertains to the pixel pi that gives maximum δi in (3).p

can be assigned an integer distance dI which is equal to k. This

integer distance is sufficient to determine the collision-free

region for the given robot. Once the (Δx,Δy) of a pixel is

known, its δ should be updated for at least two successive

iterations, as it depends on k. The updating allows the use of δ

for the computation of (Δx,Δy) of the neighbors. δk(p) at

iteration k is derived from δk−1(p) at iteration k − 1 as follows:

δk(p) =k
2
 + k − d

2
(p)

 =2k +[(k − 1)
2
 + (k − 1) − d

2
(p)]

 =2k + δk−1(p). (4)

To keep track of pixels whose (Δx,Δy) have been computed, a

flag done is assigned to each pixel, whose value is set to one

when the transform values of pixels are computed at any

iteration. The dI (p) given by the iteration number k, when done

is set, forms the distance map. The distance map is used to find

first the collision-free region for the robot. Let dfar be the

distance between the center of rotation and the farthest point of

the robot from the center. The collision-free region consists of

those pixels whose distance values (dI) are greater than dfar.

Consider the collision-free region as a graph. Each pixel is

represented as a node, and it is connected to the eight

neighboring pixels surrounding it by edges. The construction of

the shortest collision-free path involves the construction of the

breadth-first search (bfs) tree on the collision-free graph with its

root being the goal pixel[16]. The construction of the bfs tree is

continued until the start pixel is encountered. The construction

involves storing the parent of each pixel. The path is then traced

by following the parent nodes from the start pixel until the root

node is reached. The path constructed by this method on the

image is the shortest path in terms of the number of pixels. The

robot is moved from one pixel to the next along the path by

aligning its center of rotation to every pixel. The path planning

can be extended to a scenario with multiple goals. In this case,

bfs trees are constructed simultaneously with each goal pixel as

a root. The path from a start pixel is traced to the nearest goal.

The pseudo code of the proposed algorithm Parallel_Path_Plan

is as follows.

A. Algorithm: Parallel_Path_Plan

Inputs: An n × n binary image, dfar, ps, and pg

Outputs: Sequence of moves for the robot from ps to pg

Step 1: Initialization

Δx = Δy = δ = 0 & done = 1 for object pixels

visited(p) =

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 259

parent(p) = 0 for all p

Step 2: Find EDT

repeat for k = 1, 2, . . .

for all pixels p do in parallel

Compute Δxi, Δyi, and δi, i = 1 to 8

δm = max{δi with done(pi) = 1}.

if (done(p) = 0 ^ δm ≥ 0)

Δx(p) = Δxm

Δy(p) = Δym

δ(p) = δm

done(p) = 1

else if done(p) = 1

δ(p) = δ(p) + 2k

end if

end for

until done = 1 for all pixels

Step 3: Find collision-free region

for every pixel p do in parallel

if (dI (p) > dfar) cfr(p) = 1

else cfr(p) = 0

end for

Step 4: Construction of bfs tree

repeat

for every pixel p do in parallel

if (visited(p) = 0) ˄ (Ǝpi ε N[visited(p) = 1])

visited(p) = 1

parent(p) is pointed to pi with minimum i

end if

end for

until (visited = 1 for all p where cfr = 1)

Step 5: Find sequence of moves

p = ps

while (parent(p) ≠0)

print parent(p)

p = parent pixel of p

end while

The sequences of moves are given by the pointers. The robot

can take horizontal, vertical, or diagonal step based on the

pointer value. It should be noted that once the bfs tree is

constructed in Step 4, the shortest path from any pixel to the

given goal pixel can be found out.

B. Complexity Analysis

The time and space complexities are given via Propositions

1and 2.

Proposition 1: The time complexity of Algorithm

Parallel_Path_Plan is O(n
2
).

Proof: The time complexity of the proposed algorithm

depends mainly on the repeat-until and while loops. The

statements within for-end for are executed in parallel for all

pixels. The repeat-until loop in Step 2 runs until done is set to

one for all pixels. In the worst case, the loop is executed for

dmax times, where dmax is the maximum possible distance

value, which is √ 2n in the case of an n × n image. The cfr

computation in Step 3 takes only constant time. The repeatuntil

loop in Step 4 is executed close to n2 times in the worst case

when the path obtained is a zigzag one. The while loop in Step 5

also runs close to n2 times in the worst case. Hence, the overall

time complexity of the algorithm is O(n
2
).

Proposition 2: The space complexity of Algorithm

Parallel_Path_Plan is also O(n
2
).

Proof: In the algorithm, the values of Δx, Δy, δ, cfr,

visited, and parent of each pixel are stored. Since there are n2

pixels, the space complexity is O(n
2
).

C. Simulation Studies

Results of VHDL code simulated using ModelSim followed

by synthesis and implementation using Xilinx ISE are presented

as in [15]. The design of an n × n algorithm was coded in

Verilog hardware description language (HDL), and its

functional behavior was tested.

The integer distance value, d(p), computed by the algorithm

for every pixel p has been transformed into intensity levels. The

maximum frequency of operation is shown in the Table I.

TABLE I

COMPARISON OF OPERATING FREQUENCY FOR

DIFFERENT TECHNIQUES
Techniques Frequency(MHz) Computation

Time(μs)

Voronoi

Diagram

50 200

Visibility

graph

160 67

BFS 232 43.1

The computation time for collision free path is less when

compared to the other two techniques. The identical local

operations performed in a local neighborhood of each pixel

make the algorithm feasible for VLSI implementation in a two-

dimensional array of locally connected identical cells.

IV. PROPOSED CELL ARCHITECTURE

 The different modules of EDT and NNT are shown in

Fig. 2. The ADD-SUB module computes df, i= 1-8. The

computation involves an addition and a subtraction for i = 2, 4, 6

& 8 and only a subtraction for i = 1, 3, 5 & 7. Therefore, eight

subtractors and four adders are required to realise this

computation. The INC module computes Δxi and Δyi given by

eqn. 1. The computation requires twelve incrementers, six for

implementing Δxi=│IΔx(pi)│ + 1, i= 1, 2, 4, 5, 6 & 8, and

another six for implementing Δyl = │Δy(pi)│ + 1, i=2, 3, 4, 6, 7

& 8.

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 260

 Fig. 2 EDT and NNT Architecture

Once dfi,Δxi and Δyi for i= 1-8 have been computed, these

values are given to a MAX module along with done(p,) and

borrow bits bi from the subtractors of the ADD-SUB module.

The MAX module has seven CMP-MUX (comparator-

multiplexer) modules arranged in three levels to compute

max[dfi], i= 1-8,[17]. In the Figure, max[dfi] is denoted by dw.

Further, the MAX module allows the values of Δxi and Δyi,

corresponding to the i that yields dm. These values are denoted

by ΔxM and ΔyM.

The CMP-MUX module takes two sets of inputs, setj={dfi,

Δxj, Δyj, done(pj), bj} and setk={dfk, Δxk, Δyk, done(pk), bk}. It

has a comparator to compare dfi > dfk and a multiplexer that

outputs either setj or setk depending on the value of se1 input of

multiplexer. setj is output when se1 = 0 while setk is output when

sel = 1. The sel is generated using the output cmp of comparator

and the values of done and borrow bits. The comparator is

designed for the simple case of comparing two unsigned binary

numbers. done(pj)= 1 means the value of dfi is valid. bj = 1

means dfj is negative and cmp= 1 means dfi > dfk. The dm, output

by the MAX module, is added to 2k where k is the iteration

number generated by an external counter. The output df(p0) of

the adder is given as input to the register dj. The outputs, ΔxM

and ΔyM, of the MAX module are given as inputs to the registers

Ax and Ay. The done flip-flop is input with logic 1. In the

design, the registers and flip-flop are loaded with the available

inputs during the rising edge of the clock. From the switch and

if statements of the algorithm in Section 3, it is clear that the

clock is activated only when the following conditions are

satisfied.

1. done of cell is not set.

2. At least a value of done of neighbors is logic 1.

3. d f (p0)is positive. In 2's complement representation of

df(p0) means that the MSB is 0.

The done of cells corresponding to obstacle pixels are

initialized at one and the visited of goal pixels are set to one.

The initialization is done by feeding the done and visited of each

row to the corresponding leftmost cell in the pipeline. When

clocked, the inputs are passed through the array from left to

right in each row. There are three modes of operation. EDT

computation is done first. Using the initial done values, distance

values dI are computed first. Once EDT is computed, cfr is

computed in the next phase using the input dfar and the

computed dI. In the third phase, the bfs tree is constructed using

cfr and visited values. The gate counts for visibility graph and

bfs and nnt are compared in Table II.

TABLE II

COMPARISON OF AREA

Techniques

Gate Counts

Visibility Graph 33026

BFS and NNT 1188

V. CONCLUSION

 An algorithm for tracing the shortest path of a translating

and rotating robot on the binary image of an environment has

been given. The algorithm first constructs the distance map of

the image to obtain a collision-free region and then constructs

the bfs tree of pixels in the collision-free region, which defines

the shortest path from any start pixel to a specific goal pixel. If

multiple goals are provided, the path is traced to the nearest

goal. The actual Euclidean distance value and the nearest

neighbor of each pixel can be obtained from the vector

Euclidean distance. Owing to simple, identical and local

neighborhood operations, the proposed EDT architecture of

computation is suitable for VLSI implementation. The

architecture is capable of processing images at video rate for

real-time path planning in a dynamic environment. Extensions

to the work presented in this paper could involve handling a

large indoor environment via multiple overhead cameras. Path

planning can be performed by processing the images of portions

of the environment in sequence and integrating the partial

results. The block RAMs (BRAMs) and reconfigurability

feature of FPGA can be exploited to achieve this. The FPGA

will be reconfigured with the design for integration of these

results to provide the complete bfs tree.

ACKNOWLEDGEMENT

The authors thank the Management and Principal of Sri

Ramakrishna Engineering College, Coimbatore for providing

excellent computing facility and encouragement.

REFERENCES

[1] Bellotto, N. and Huosheng, H. (2009) ‘Multisensor-

Based Human Detection And Tracking For Mobile

Service Robots’, IEEE Trans. Syst., Man,

Cybern.B,Cybern., Vol.39, No.1, pp.167–181.

[2] Chen, K.H. (1997) ‘Vision-Based Autonomous

 Land Vehicle Guidance In Outdoor Road

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 261

 Environments Using Combined Line And Road

 Following Techniques’, J. Robot. Syst., Vol.14,

 No.10, pp.711–728.

[3] Choset, H. Thrun, S. et al(2005) ‘Principles of

 Robot Motion: Theory, Algorithms, and

 Implementations.Cambridge’, MA: MIT Press.

[4] Desouza, G. and Kak, A. (2002) ‘Vision For

Mobile Robot Navigation: A Survey’, IEEE

Trans.Pattern Anal. Mach. Intell., Vol.24, No.2,

pp.237– 267.

[5] Dezhen, S. (2007) ‘Vision-Based Motion Planning

For An Autonomous Motorcycle On Ill-Structured

Roads’, Auton. Robots, Vol.23, No.3, pp.197– 212.

[6] Iborra, A. Caceres, D. et al (2009) ‘Design Of Service

Robots’, IEEE Robot. Autom. Mag., Vol.16, No.1,

pp.24–33.

[7] Kei, L. S. Sridharan, K. et al (2004) ‘Hardware-

Efficient Schemes For Logarithmic Approximation

And Binary Search With Application To Visibility

Graph Construction’, IEEE Trans. Ind. Electron.,

Vol.51, No.6, pp.1346–1348.

[8] Kim, M. Kim, S. et al (2009) ‘Servicerobot For The

Elderly’, IEEE Robot. Autom. Mag., Vol.16, No.1,

pp.34–45.

[9] Kim, D. and Nevatia, R. (1994) ‘Representation And

Computation Of The Spatial Environment For Indoor

Navigation’, in Proc. Int. Conf. Comput. Vis. Pattern

Recog., pp.475–482.

[10] Latombe, J. C. (1991) ‘Robot Motion Planning.

Norwell’, MA: Kluwer.

[11] Lee, D. and Chung, W. (2006) ‘Discrete-Status-Based

Localization For Indoor Service Robots’, IEEE Trans.

Ind. Electron., Vol.53, No.5, pp.1737–1746.

 [12] Monmasson, E. and Cirstea, M. N. (2007) ‘FPGA

Design Methodology For Industrial Control Systems—

A Review’, IEEE Trans. Ind. Electron., Vol.54, No.4,

pp.1824–1842.

[13] Rodrigo, R. Zouqi, M. et al (2009) ‘Robust And

Efficient Feature Tracking For Indoor Navigation’,

IEEE Trans. Syst., Man, Cybern. B, Cybern., Vol.39,

No.3, pp.658–671.

[14] Rodriguez-Andina, J. J. Moure, M. J. et al (2007)

‘Features, Design Tools, And Application Domains Of

FPGAs’, IEEE Trans. Ind. Electron., Vol.54, No.4,

pp.1810–1823.

[15] Sridharan, K. and Priya, T. K. (2005) ‘The Design Of

A Hardware Accelerator For Real-Time Complete

Visibility Graph Construction And Efficient FPGA

Implementation’, IEEE Trans. Ind. Electron., Vol.52,

pp.1185–1187.

[16] Sudha, N. Aruppukottai Rajarathinam Mohan, (2011)

‘Hardware-Efficient Image-Based Robotic Path

Planning In A Dynamic Environment And Its FPGA

Implementation’ IEEE Transactions On Industrial

Electronics, Vol.5.

[17] Sudha, N. and Sridharan, K (2004) ‘A High-Speed

VLSI Design And ASIC Implementation For

Constructing Euclidean Distance-Based Discrete

Voronoi Diagram’, IEEE Trans. Robot. Autom.,

Vol.20, No.2, pp.352–358.

