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Abstract:-In this work we present an overview of image alignment, describing most of the algorithms and their extensions
in a consistent framework. We concentrate on the inverse compositional algorithm, an efficient algorithm that we recently
proposed. We cover the quantity approximated, the warp update rule, and the gradient descent approximation. In this
work, we propose the use of a modified version of the correlation coefficient as a performance criterion for the
image alignment problem. The proposed modification has the desirable characteristic of being invariant with
respect to photometric distortions. Since the resulting similarity measure is a nonlinear function of the warp
parameters, we develop two iterative schemes forits maximization, one based on the forward additive approach
and the second on the inverse compositional method. As is customary in iterative optimization, in each iteration,
the nonlinear objective function is approximated by an alternative expression for which the corresponding
optimization is simple. In our case, we propose an efficient approximation that leads to a closed-form solution
(per iteration) which is of low computational complexity, the latter property being particularly strong in our inverse
version. The proposed schemes are tested against the Forward Additive Lucas-Kanade and the Simultaneous
Inverse Compositional (SIC) algorithm through simulations. Under noisy conditions and photometric distortions,
our forward version achieves more accurate alignments and exhibits faster convergence, whereas our inverse
version has similar performance as the SIC algorithm but at a lower computational complexity.

Keywords: Image alignment, Lucas-Kanade, a unifying framework, additive vs. compositional algorithms, for- wards vs.
inverse algorithms, the inverse compositional algorithm, efficiency, steepest descent, Gauss-Newton, Newton, Levenberg-
Marquardt.

1. INTRODUCTION the alignment algorithm be able to take into account

The alignment problem can be seen as a mapping
between the coordinate systems of two images;
therefore, the first step toward its solution is the
suitable selection of a geometric transformation that
adequately models this mapping. Existing
models are basically parametric [12] and their
exact form heavily depends on the specific
application and the strategy selected to solve the
alignment problem [3], [13]. The class of affine
transformations and, in particular, several special
cases (as pure translation) have been the center of
attention in many application, [4,5,10]. Alternative
approaches rely on projective transformations
(homography) and, more generally, on nonlinear
transformations [5] [15].

A common assumption encountered in most exsting
techniquesis the brightness constancy of
corresponding points or regions in the two profiles
[20]. However, this assumption is valid only in
specific cases and it is obviously violated under
varying illumination conditions. There, it becomes
clear that, in a practical situation, it is important that
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illumination changes. Alignment techniques that
compensate for photometric distortions in contrast
and brightness have been proposed in [1], [6], [8],
[10], [16]. Alternative schemes make use of a set of
basis images for handling arbitrary lighting
conditions [3], [21] or wuse spatially dependent
photo metric models [7].

Image alignment consists of moving, and possibly
deforming, a template to minimize the difference between
the template and an image. Since the first use of image
alignment in the Lucas- Kanade optical flow algorithm
[13], image alignment has become one of the most
widely used techniques in computer vision. Besides
optical flow, some of its other applications include
tracking [5, 12], parametric and layered motion estimation
[4], mosaic construction [16], medical image registration
[7], and face coding [2, 8].

The usual approach to image alignment is gradient
descent. A variety of other numerical algorithms such as
difference decomposition [11] and linear regression [8]
have also been proposed, but gradient descent is the
defacto standard. Gradient descent can be performed in
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variety of different ways, however. One difference
between the various approaches is whether they estimate
an additive increment to the parameters (the additive
approach [13]), or whether they estimate an incremental
warp that is then composed with the current estimate of
the warp (the compositional approach [16].) Another
difference is whether the algorithm performs a Gauss-
Newton, a Newton, a steepest-descent, or a Levenberg-
Marquardtapproximation in each gradient descent step.
We propose a unifying framework for image alignment,
describing the various algorithms and their extensions in a
consistent manner. Throughout the framework we
concentrate on the inverse compositional algorithm, an
efficient algorithm that we recently proposed [2]. We
examine which of the extensions to Lucas-Kanade can be
applied to the inverse compositional algorithm without
any significant loss of efficiency, and which extensions
require additional computation. Wherever possible we
provide empirical results to illustrate the various
algorithms and their extensions.

We categorize algorithms as either additive or
compositional,and as either forwards or inverse. We prove
the first order equivalence of the various alternatives,
derive the efficiency of the resulting algorithms, describe
the set of warps that each alternative can be applied to,
and finally empirically compare the algorithms. In
Section 4 we describe the various gradient descent
approximations that can be used in each iteration, Gauss-
Newton, Newton, diagonal Hessian, Levenberg-
Marquardt, and steepest-descent [14]. We compare these
alternatives both in terms of speed and in terms of
empirical performance. We conclude in Section 5 with a
discussion. In future papers in this series (currently under
preparation), we will cover the choice of the error norm,
how to allow linear appearance variation, how to add
priors on the parameters, and various techniques to avoid
local minima.

A common assumption encountered in most existing
techniques is the brightness constancy of corresponding
points or regions in the two profiles [20]. However, this
assumption is valid only in specific cases and it is
obviously violated under varying illumination conditions.
There, it becomes clear that, in a practical situation, it is
important that the alignment algorithm be ab le to take into
account illumination changes. Alignment techniques that
compensate for photometric distortions in contrast and
brightness have been proposed in [1], [6], [8], [10], [16].
Alternative schemes make use of a set of basis images for
handling arbitrary lighting conditions[3], [21] or use
spatially dependent photometric models [7].

we adopt a recently proposed similarity measure [11], the
enhanced correlation coefficient, as our objective function
for the alignment problem. Our measure is characterized
by two very desirable properties. First, it is invariant to
photometric distortions in contrast and brightness.
Second, although it is a nonlinear function of the
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parameters, the iterative scheme we are going to develop
for the optimization problem will turn out to be linear,
thus requiring reduced computational complexity. Despite
the resemblance of our final algorithm to well-known
variants of the Lucas-Kanade alignment method which
take lighting changes into account [10], [19], its
performance, as we are going to see, is notably superior.
We would like to mention that the enhanced correlation
coefficient criterion was successfully applied to the
problem of 1D translation estimation in stereo
correspondence [11] and 2D translation estimation in
registration [2].

1.2 History

Algorithms for aligning images and stitching them into
seamless photo-mosaics are among the oldest and most
widely used in computer vision. Frame-rate image
alignment is used in every camcorder that has an “image
stabilization” feature. Image stitching algorithms create
the high- resolution photo-mosaics used to produce
today’s digital maps and satellite photos. They also come
bundled with most digital cameras currently being sold,
and can be used to create beautiful ultra wide-angle
panoramas.

An early example of a widely-used image registration
algorithm is the patch-based translational alignment
(optical flow) technique developed by Lucas and Canada
(1981). Variants of this algorithm are used in almost all
motion-compensated video compression schemes such as
MPEG andH.263 (Le Gall 1991). Similar parametric
motion estimation algorithms have found a wide variety
of applications, including video summarization (Bergen et
al. 1992a, Theodosia and Bender 1993,Kumar et al. 1995,
Iran and Anandan 1998), video stabilization (Hansen et al.
1994), and video compression (Irani et al. 1995, Lee et al.
1997). More sophisticated image registration algorithms
have also been developed for medical imaging and remote
sensing—see (Brown 1992, Zitov’aa and Flusser 2003,
Goshtasby 2005) for some previous surveys of image
registration techniques.

In the photo grammetry community, more manually
intensive methods based on surveyed ground control
points or manually registered tie points have long been
used to register aerial photos into large-scale photo-
mosaics (Slama 1980). One of the key advances in this
community was the development of bundle adjustment
algorithms that could simultaneously solve for the
locations of all of the camera positions, thus yielding
globally consistent solutions (Triggs et al. 1999). One of
the recurring problems in creating photo-mosaics is the
elimination of visible seams, for which a variety of
techniques have been developed over the years (Milgram
1975, Milgram 1977, Peleg 1981, Davis 1998, Agarwala
et al. 2004).

1.3 Application
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Image alignment is the process of matching one image
called template (let's denote it as T) with another image.
There are many applications for image alignment,
tracking object on video , motion estimation analysis, and
other tasks of computer vision , such as object tracking ,
image registration problem , region tracking.

1.3.1 Image registration:-

Image registration is the process of aligning two or more
images of the same scene. Typically, one image, called
the base image or reference image, is considered the
reference to which the other images, called input images,
are compared. The object of image registration is to bring
the input image into alignment with the base image by
applying a spatial transformation to the input image. The
differences between the input image and the output image
might have occurred as a result of terrain relief and other
changes in perspective when imaging the same scene
from different viewpoints. Lens and other internal sensor
distortions, or differences between sensors and sensor
types, can also cause distortion.

1.3.2 Object tracking:-

Object tracking consists in estimation of trajectory of
moving objects in the sequence of images. Automation of
the computer object tracking is a difficult task. Dynamics
of multiple parameters changes representing features and
motion of the objects, and temporary partial or full
occlusion of the tracked objects have to be considered.
This monograph presents the development of object
tracking algorithms, methods and systems. Both, state of
the art of object tracking methods and also the new trends
in research are described in this book. Fourteen chapters
are split into two sections. Section 1 presents new
theoretical ideas whereas Section 2 presents real-life
applications. Despite the variety of topics contained in
this monograph it constitutes a consisted knowledge in the
field of computer object tracking. The intention of editor
was to follow up the very quick progress in the
developing of methods as well as extension of the
application.

1.3.3 Motion estimation:-

Successive video frames may contain the same objects
(still or moving). Motion estimation examines the
movement of objects in an image sequence to try to obtain
vectors representing the estimated motion. Motion
compensation uses the knowledge of object motion so
obtained to achieve data compression. In interface coding,
motion estimation and compensation have become
powerful techniques to eliminate the temporal redundancy
due to high correlation between consecutive frames.

1.3.4 Computer vision:-

Computer vision is a field that includes methods for
acquiring, processing, analyzing, and understanding
images and, in general, high-dimensional data from the
real world in order to produce numerical or symbolic
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information, e.g., in the forms of decisions. A theme in
the development of this field has been to duplicate the
abilities of human vision by electronically perceiving and
understanding an image. This image understanding can be
seen as the disentangling of symbolic information from
image data using models constructed with the aid of
geometry, physics, statistics, and learning theory.

2. Outline

In this section we briefly introduce the problem of
alignment of two image profiles. To this end, let us
assume that a reference image Iy (X) and a warped

image lw (xD) are given, where x = [x,y] and x =

[xD, yo] denote coordinates. Suppose also that we are
given a set of coordinates S ={xj|i =1, ..., K}in
the reference image, which is called target area.
Then, the alignment problem consists in finding
the corresponding coordinate set in the warped image.
By considering that a transformation model T (x; p)
where

p=(@1.p2,....pN)t

is a vector of unknown parameters is given, the
alignment problem is reduced to the problem of
estimating the parameter vector p such that

Ir () = ¥(w (T (X p)); a), X €S, (1)
where transformation Y¥(l , a) which is
parameterized by a vector «, accounts for possible
photometric distortions that violate the brightness
constancy assumption, a case which arises in real
applications due to different viewing directions
and/or different illumination conditions.
The goal of most existing  algorithms is the
minimization of the dissimilarity of the two image
profiles, providing the optimum parameter values.
Dissimilarity is usually expressed through an objective
function E(p, &) which involves the Ip norm of the
intensity residual of the image profiles. A typical
minimization problem has the following form
min E(p, ) =min  [Ir (x) ~¥ (Qw (T(x p)), o) [°
Solving the above defined problem is not a simple
task because of the nonlinearity involved in the
correspondence part. Computational complexity and
estimation quality of existing schemes depends on the
specific [p norm and the models used for warping and
photometric distortion.
3. Problem formation
In this section we briefly introduce the problem of
alignment of two image profiles. To this end, let us
assume that a reference image Ir (x) and a warped
image lw (X ) are given, where x = [x,y] and x =
[x ,y ] denote coordinates. Suppose also that we are
given a set of coordinates S = {xj|i = 1, ..., K}in
the reference image, which is called target area. Then,
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the alignment problem consists in finding the
corresponding coordinate set in the warped image.

By considering that a transformation model T (x; p)
where p = (p1 , p2 ,..., PN ) s a vector of
unknown parameters is given, the alignment problem is
reduced to the problem of estimating the parameter
vector p such that

Ir (X) = Y(Aw (T (X p));a), X €S,

where transformation W (I, a) which is parameterized
by a vector «, accounts for possible photometric
distortions that violate the brightness constancy
assumption, a case which arises in real applications due
to different viewing directions and/or different
illumination conditions.

The goal of most exsting algorithms is the
minimization of the dissimilarity of the two image
profiles, providing the optimum parameter values.
Dissimilarity is usually expressed through an objective
function E(p, «) which involves the Ip  norm of the
intensity residual of the image profiles. A typical
minimization problem has the following form Solving
the above defined problem is not asimple task because
of the nonlinearity involved in the correspondence
part. Computational complexity and estimation quality
of existing schemes depends on the specific Ip  norm
and the models used for warping and photometric
distortion. As far as the norm power p is concerned most
methods use p = 2 (Euclidean norm). This will also be
the case in the approach we briefly present in the next
section.

4. PROPOSED CRITERION AND MAIN RESULTS

Under the warping transformation d(x; p).the
quardinate xk, k=1......... ,k and denote with ir and
iw dpb their zero-mean versions, which are obtained
by subtracting  from each vector its
corresponding arithmetic mean. We then propose
the following criterion to quantify the
performance of the warping transformation with
parameters p.

41 Performance Measure Optimization

Once the performance measure is specified, we then
continue with its minimization in order to
compute the optimum parameter values. It is
straightforward to prove that minimizing EECC dpb
is equivalent to maximizing the version of the zero-
mean reference vector, which is constant. Notice that,
even if iw dpp depends linearly on the parameter
vector p, the resulting objective function is still
nonlinear with respect to p due to the normalization
of the warped vector. This, of course, suggests that
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its maximization requires nonlinear optimization
techniques

Performed either by using direct search or by
gradient-based approaches. Here, we are going to
use the Ilatter. As is customary in iterative
techniques, we are going to replace the original
optimization problem with a sequence of secondary
optimizations. Each secondary optimization relies
on the outcome

5. Simulation Result

In this  section, we perform a number of
simulations in order to evaluate our FA-ECC and
IC-ECC algorithmic version. As we mentioned
above, we will also simulate the FA-LK
algorithmic version that copes with photometric
distortions and the SIC algorithm, which is
considered to be the most effective inverse LK
scheme. For all aspects affecting the simulation
experiments, we made an effort to stay exactly
within the framework specified in [13], [19]. To
model the warping process, we are going to use the
class of affine transformations. We know that the 2D
rigid body or similarity transformation are
members of this class. Furthermore, the Jacobean of
the affine model is a constant matrix, meaning that it
can be computed offline. Before proceeding with
the presentation of our simulation results, let us first
briefly present the experimental setup and the
figures of merit we are going to adopt.

5.1 First Experiment

In this experiment, for the intensity noise, we use
a standard deviation j, which corresponds to eight
gray levels, and compare the convergence
characteristics of the competing algorithms for a

maximum number of iterations?2 jmax ¥2 15 and

TMSD Y 1pixe|2.Figs. la, 1b, and 1c depict the
convergence  profiles of the algorithms for
different values of p. We observe the appearance
of an MSD floor value in each algorithm which
is due to the presence of the intensity noise. Fig. 1d
presents the corresponding PoC as a function of
As we can see, each algorithm attains a different
MSD  floor value with our FA-ECC version
converging to the lowest one and with a rate which
can be significantly better. Specifically, for weak
geometric deformations, all algorithms reach
almost comparable floor values and have
comparable convergence rates, with FA-ECC being
slightly faster than its rivals. However, in the
case of medium to strong deformations, FA-ECC
reaches an MSD floor value which is 3 dB lower
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than the inverse versions and slightly lower than
the FA-LK algorithm. On the other hand, the
convergency rate of FA-ECC is significantly
superior compared to all other algorithms.
Regarding our IC-ECC version, as we can see, it has
performance comparable to the SIC algorithm. The
same characteristics also apply to PoC, where FA-
ECC exhibits a larger percentage of successful
convergences  while IC-ECC  matches the
performance of SIC. Regarding the third figure
of merit, we applied the algorithms for a

maximal number of iterations JMAX % 100. In
order to test the accuracy of the alignment, we

selected a threshold value TmSD % 81=18 pixe ID2
(ie., 25 dB), assuring that TMsSD is higher than

the MSD floor value of all competing algorithms.
Fig. 3a depicts the corresponding curves for three
values of p. As we can see, for weak
deformations, all algorithms are almost com
pletely successful after the 10th iteration.
When, however, the geometric deformation be-
comes stronger, FA-ECC outperforms its competitors
significantly. Again, IC-ECC is comparable to SIC.

5.2 Second Experiment

In this simulation, we consider the realistic case of
photometrically distorted images under noisy
conditions. We consider two different scenarios.
We impose the photometric distortion 1) on the
reference image and 2) on the warped one. Since all
competing algorithms perfectly compensate for
linear photometric distortions, we consider a
nonlinear transformation of the for We repeat
the same set of simulations as in the first
experiment, only now we impose the photometric
distortion before adding intensity noise.

The results we obtained are shown in Fig. 2. As we
can see, the performance of our forward algorithm
seems to be almost unaffected, achieving, under
both scenarios, almost the same and the lowest
MSD floor value. On the other hand, the performance
of both inverse algorithms and FA-LK scheme
seems to be vitally affected. Comparing Fig. 2 with
Fig. 1, we observe that, under the first scenario, FA-
ECC performs even better than before. In fact, the
MSD floor value is now 3 and 5 dB lower than
the value attained by the FA-LK algorithm and the
inverse algorithms, respectively. We should note
here that the MSD floor is due not only to the
intensity noise but also to the photometric
model mismatch. Under the second scenario, all
algorithms achieve the same MSD floor value. As
far as PoC is concerned, we observe a rather steady
and robust behavior for the forward algorithms
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under both scenarios while inverse schemes,
under the first scenario, exhibit a significant
performance reduction as compared to the second
one. Again, FA-ECC outperforms the other
algorithms. Com- paring Fig. 3a with Fig. 3b, we
can also notice a robust and consistent behavior
of FA-ECC with respect to intensity noise and
photo metric distortion model mis match.

In summary, we can safely conclude that our
proposed schemes are preferable to the
corresponding variants of the LK algorithm.
Clearly, our forward version is more effective than
the forward LK scheme regarding both speed and
percentage of convergence. On the other hand, our
inverse version has performance  which is
comparable to the performance of SIC, which is
the best inverse version of the LK algorithm.
However, the point that makes our IC-ECC version
preferable to SIC is the reduced computational
complexity.

We should also mention that we evaluated the
algorithms under diverse uncertainty conditions.
Only in the case of zero intensity noise (in other
words, when the warped image follows the
warping model exactly), we observed the
performance of both inverse algorithms and the
FA-ECC to be similar to that one.

addition, based on the inverse compositional update rule,
we developed an efficient modification of the forward
algorithm. Our iterative schemes were compared against
two variants of the LK algorithm through numerous
simulations. Under ideal conditions ,the proposed
algorithms and the SIC algorithm exhibited similar
performance, out performing the forward LK algorithm.
However, in the more realistic case of noisy conditions
and photometric distortions, our forward algorithm
exhibited a noticeably superior performance in
convergence speed, accuracy, and percentage of
convergence.

6. Conclusion

In this paper, we have proposed a new I2-based iterative
algorithm tailored to the parametric image alignment
problem. The new scheme is aimed at maximizing the
Enhanced Correlation Coefficient function, which
constitutes a measure that is robust against geometric and
photometric distortions. The optimal parameters were
obtained by iteratively solving a sequence of approximate
nonlinear optimization problems which enjoy a simple
closed-form solution with low computational cost. In
addition, based on the inverse compositional
update rule, we developed an efficient
modification of the forward algorithm. Our iterative
schemes were compared against two variants of
the LK algorithm through numerous simulations.
Under ideal conditions, the proposed algorithms and
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the SIC algorithm exhibited similar performance,
outperforming the forward LK algorithm.
However, in the more realistic case of noisy
conditions and photometric distortions, our
forward algorithm exhibited a noticeably superior
performance in convergence speed, accuracy, and
percentage of convergence.

PoC (%)
R ENER RN D |

o
]

(b)
Fig. 1. PoC as a function of iterations: (a) noisy images
(b)noisy i

The first inequality is true because of the non

positivity of u utv(from our assumption); for the
second, we applied the Schwartz inequality in the
numerator; finally, for the last, we used the fact that
the ratio is smaller than 1. We observe that, in this
case, we end up with a different (smaller) upper
bound. In order to verify its tightness (i.e., whether
it constitutes a supremum), we use the selection
prescribed by the Schwartz inequality, that is, z%
du again with > 0 and compute the
corresponding value of the objective function. By
letting ¥ 1, we realize that we converge to kuk.
This suggests that, for sufficiently large , we can
approach the desired upper bound arbitrarily close
(but there is no finite z for which we can attain it
exactly!). This concludes the proof.
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