
 Volume 2, Issue 4, April 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Knowledge Management: through the Classification of Unit

Testing Techniques
M.Sravani

*
 S. Munwar

 M. Tech Student Assistant Professor

 IT Department, SVEC, Tirupati IT Department, SVEC, Tirupati

 sravani999it@gmail.com

Abstract— Now a day’s Knowledge classification analyze the classification makes a significant contribution to advancing knowledge in both

science and engineering. It is a way of investigating the relationships between the objects to be classified and identifies gaps in knowledge.
Classification in engineering also has a practical application; it supports object selection.

Classifications have advanced knowledge in three ways as the following

• By providing a set of unifying constructs.

• By understanding interrelationships

• By identifying knowledge gaps.

They can help mature Software engineering knowledge, as classifications constitute an organized structure of knowledge items. Till date,
there have been few attempts at classifying in Software Engineering. In this research, we examine how useful classifications in Software

Engineering are for advancing knowledge by trying to classify testing techniques. The paper presents a preliminary classification of a set of

unit testing techniques. To obtain this classification, we enacted a generic process for developing useful Software Engineeri ng classifications.

The proposed classification has been proven useful for maturing knowledge about testing te chniques, and therefore, SE, as it helps to:

1) Provide a systematic description of the techniques,
2) Understand testing techniques by studying the relationships among techniques (measured in terms of differences and similarities),

3) Identify potentially useful techniques that do not yet exist by analyzing gaps in the classification, and

4) Support practitioners in testing technique selection by matching technique characteristics to project characteristics.

 Keywords— Classification, Software engineering, Software testing, test design techniques, unit testing techniques.

I. Introduction

Software Engineering (SE) has aspects that disqualify it as a

genuine engineering discipline. A prominent point is the

immaturity of the theoretical knowledge in some areas of SE. In

science and engineering, knowledge matures as the investigated

objects are classified. Mature knowledge is not a sequential heap

of pieces of knowledge, but an organized structure of knowledge

items, where each piece smoothly and elegantly fits into place, as

in a puzzle. Classificat ion groups similar objects to form an

organization. Examples are the classification of living beings in

the natural sciences, diseases in medicine, elements in chemistry,

architectural styles in architecture, materials in civ il engineering,

etc. Classifications have advanced knowledge in three ways as the

following:

By providing a set of unifying constructs: Such constructs

systematically characterize the area of research. To facilitate

knowledge sharing, disciplines typically develop classifications.

These classifications then provide a common termino logy for

communicat ion.

By understanding interrelationships : For example, the

periodic table of elements that Mendeleyev built in the 1860s had

a profound impact on the understanding of the structure of the

atom. On the contrary, it is hard to pigeonhole bacteria within the

classification of living beings because relatively little is known

about them.

By identifying knowledge gaps: For instance, the gaps in

the classification of chemical elements prompted a search for

further knowledge. Properties of elements like gallium and

germanium were predicted before they were discovered years

later. However, classifications can serve other purposes apart

from provid ing a useful organization of knowledge. In medicine,

for example, the classification of diseases has two main aims:

prediction (separating diseases that require different treatments)

and provision of a basis for research into the causes of different

types of disease. In the case of engineering, this other purpose is

usually decision making support.

http://www.ijarcsse.com/
mailto:sravani999it@gmail.com

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 88

II. BACKGROUND AND RELATED WORK

Experience has shown that as software is fixed, emergence of new

and/or reemergence of old fau lts is quite common. Somet imes

reemergence occurs because a fix gets lost through poor revision

control practices (or simple human error in revision control).

Often, a fix for a problem will be "fragile" in that it fixes the

problem in the narrow case where it was first observed but not in

more general cases which may arise over the lifet ime of the

software. Frequently, a fix for a problem in one area inadvertently

causes a software bug in another area. Finally, it has often been

the case that when some feature is redesigned, the same mistakes

that were made in the original implementation of the feature were

made in the redesign.Therefore, in most software development

situations it is considered good practice that when a bug is located

and fixed, a test that exposes the bug is recorded and regularly

retested after subsequent changes to the program. A lthough this

may be done through manual testing procedures using

programming techniques, it is often done using automated testing

tools. Such a test suite contains software tools that allow the

testing environment to execute all the regression test cases

automatically; some projects even set up automated systems to

automatically re -run all regression tests at specified intervals and

report any failures (which could imply a regression or an out-of-

date test). Common strategies are to run such a system after every

successful compile (for s mall pro jects), every night, or once a

week. Those strategies can be automated by an external tool, such

as BuildBot.Regression testing is an integral part of the extreme

programming software development method. In this method,

design documents are replaced by extensive, repeatable, and

automated testing of the entire software package at every stage in

the software development cycle. Tradit ionally, in the corporate

world, regression testing has been performed by a software

quality assurance team after the development team has completed

work. However, defects found at this stage are the most costly to

fix. This problem is being addressed by the rise of developer

testing. Although developers have always written test cases as

part of the development cycle, these test cases have generally

been either functional tests or unit tests that verify only intended

outcomes. Developer testing compels a developer to focus on unit

testing and to include both positive and negative test cases.

 III. Knowledge Management in ATPG

ATPG (acronym for both Automatic Test Pattern Generation

and Automatic Test Pattern Generator) is an electronic design

automation method/technology used to find an input (or test)

sequence that, when applied to a digital circuit, enables

testers to distinguish between the correct circuit behavior and

the faulty circuit behavior caused by defects. The generated

patterns are used to test semiconductor devices after

manufacture, and in some cases to assist with determining the

cause of failure (failure analysis.[1]) the effectiveness of

ATPG is measured by the amount of modeled defects, or

fault models, that are detected and the number of generated

patterns. These metrics generally indicate test quality (higher

with more fault detections) and test application time (higher

with more patterns). ATPG efficiency is another important

consideration. It is influenced by the fault model under

consideration, the type of circuit under test (full scan,

synchronous sequential, or asynchronous sequential), the

level of abstraction used to represent the circuit under test.

 Fig. 4. Application Window

Table 1
Four parameter values on application

Test

C.No.

Input

 Expected

Behavior

Observed

behavior

Status

P =

Passed

F =

Failed

1. Basics of ATPG

A defect is an error introduced into a device during the

manufacturing process. A fault model is a mathemat ical

description of how a defect alters design behavior. A fault is

said to be detected by a test pattern if, when applying the

pattern to the design, any logic value observed at one or more

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 89

of the circuit 's primary outputs differs between the original

design and the design with the fault. The ATPG process for a

targeted fault consists of two phases: fault activation and

fault propagation. Fault activation establishes a signal value

at the fault model site that is opposite of the value produced

by the fault model. Fau lt propagation moves the resulting

signal value, or fault effect, forward by sensitizing a path

from the fau lt site to a primary output.

ATPG can fail to find a test for a particular fault in at least

two cases. First, the fault may be intrinsically undetectable,

such that no patterns exist that can detect that particular fault.

The classic example of this is a redundant circuit, designed so

that no single fault causes the output to change. In such a

circuit, any single fault will be inherently undetectable.

Second, it is possible that a pattern(s) exist, but the algorithm

cannot find it. Since the ATPG problem is NP-complete (by

reduction from the Boolean satisfiability problem) there will

be cases where patterns exist, but ATPG gives up since it will

take an incred ibly long time to find them (assuming P≠NP, of

course).

2. The Stuck-at fault model

In the past several decades, the most popular fault model

used in practice is the single stuck-at fault model. In this

model, one of the signal lines in a circuit is assumed to be

stuck at a fixed logic value, regardless of what inputs are

supplied to the circuit. Hence, if a circuit has n signal lines,

there are potentially 2n stuck-at faults defined on the circuit,

of which some can be viewed as being equivalent to others.

The stuck-at fault model is a logical fault model because no

delay informat ion is associated with the fault defin ition. It is

also called a permanent fault model because the faulty effect

is assumed to be permanent, in contrast to intermittent faults

which occur (seemingly) at random and transient faults

which occur sporadically, perhaps depending on operating

conditions (e.g. temperature, power supply voltage) or on the

data values (high or low voltage states) on surrounding signal

lines. The single stuck-at fault model is structural because it

is defined based on a structural gate-level circuit model.

A pattern set with 100% stuck-at fault coverage consists of

tests to detect every possible stuck-at fault in a circuit. 100%

stuck-at fault coverage does not necessarily guarantee high

quality, since faults of many other kinds -- such as bridging

faults, opens faults, and transition (aka delay) faults -- often

occur.

3. Sequential ATPG

Sequential-circuit ATPG searches for a sequence of vectors

to detect a particular fault through the space of all possible

vector sequences. Various search strategies and heuristics

have been devised to find a shorter sequence and/or to find a

sequence faster. However, according to reported results, no

single strategy/heuristic out-performs others for all

applications/circuits. This observation implies that a test

generator should include a comprehensive set of heuristics

.Even a simple stuck-at fault requires a sequence of vectors

for detection in a sequential circu it. Also, due to the presence

of memory elements, the controllability and observability of

the internal signals in a sequential circuit are in general much

more d ifficu lt than those in a combinational circuit. These

factors make the complexity of sequential ATPG much

higher than that of combinational ATPG.

Due to the high complexity of the sequential ATPG, it

remains a challenging task for large, highly sequential

circuits that do not incorporate any Design For Testability

(DFT) scheme. However, these test generators, combined

with low-overhead DFT techniques such as partial scan, have

shown a certain degree of success in testing large designs.

For designs that are sensitive to area and/or performance

overhead, the solution of using sequential-circuit ATPG and

partial scan offers an attractive alternative to the popular full-

scan solution, which is based on combinational-circuit

ATPG.

4. ATPG and nanometer technologies

Historically, ATPG has focused on a set of faults derived

from a gate-level fault model. As design trends move toward

nanometer technology, new manufacture testing problems are

emerging. During design validation, engineers can no longer

ignore the effects of crosstalk and power supply noise on

reliability and performance. Current fault modeling and

vector-generation techniques are giving way to new models

and techniques that consider timing informat ion during test

generation, that are scalable to larger designs, and that can

capture extreme design conditions. For nanometer

technology, many current design validation problems are

becoming manufacturing test problems as well, so new fault-

modeling and ATPG techniques will be needed.

Algorithmic methods

Testing very-large-scale integrated circuits with a high fault

coverage is a difficu lt task because of complexity. Therefore

many different ATPG methods have been developed to

address combinatorial and sequential circuits. Early test

generation algorithms such as Boolean difference and literal

proposition were not practical to implement on a computer.

• The D Algorithm was the first practical test generation

algorithm in terms of memory requirements. The D

Algorithm introduced D Notation which continues to be used

in most ATPG algorithms.

• Path-Oriented Decision Making (PODEM) is an

improvement over the D Algorithm. PODEM was created in

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 90

1981 when shortcomings in D Algorithm became evident

when design innovations resulted in circuits that D Algorithm

could not realize.

• Fan-Out Oriented (FAN Algorithm) is an improvement over

PODEM. It limits the ATPG search space to reduce

computation time and accelerates backtracking.

• Methods based on Boolean satisfiability are sometimes used

to generate test vectors.

• Pseudorandom test generation is the simplest method of

creating tests. It uses a pseudorandom number generator to

generate test vectors, and relies on logic simulat ion to

compute good machine results, and fault simulation to

calculate the fault coverage of the generated vectors.

Test call generators {TCGs) are revenue assurance solutions

that replicate events on a telecoms network [1] to identify

potential revenue leakage and to help achieve regulatory

compliance. Both cellu lar and fixed-line telecom operators

utilize test call generators to independently test their

networks for call detail record (CDR) reconciliation and

validate call start-time/duration metering and

telecommunications rating. TCGs are mission-critical tools

utilized by telecom operator revenue assurance departments

to improve revenue capture and to validate network integrity.

Revenue assurance and test call generators

Network integrity test call generators are too often seen

solely as an engineering tool to gauge the quality of network

functions. Automated test call generators can also enhance

revenue assurance by providing measures of completeness,

accuracy, and timeliness.

Cellu lar and fixed line network testing Test call generators

have the capability to test both GSM and fixed-line networks

through utilizing various hardware components. The

components of a TCG system consists of both hardware and

software, the key components are defined as:

• Network hardware tester units - These can be either GSM

units for 2G/3G testing, and fixed-line units for analogue

testing.

• System software - Generally consists of the following

software modules; (1) System controller to manage the

automated call execution process, (2) CDR importer to

import the corresponding Operator CDRs, (3) Matching

algorithm to match the operator CDRs and (4) Rating module

to independently rate the CDRs.

Test call generation – revenue assurance call testing

Revenue assurance via testing

while various processes make a contribution to Revenue

Assurance, it is - service usage from the subscriber’s views

that is receiving the most attention among Wireless

Operators. Test Systems are available that emulate the

subscriber’s service usage within the operational network,

and check the corresponding billing records. These are

completely automated and under the direct control of the

groups who validate the billing process and measure the

quality of service. Though these techniques are

comparatively new to Operators, they are becoming a priority

across the industry for completely understanding and

managing Revenue Assurance and QoS (service quality).

TCG's are utilized by telecom operators to consolidate

revenue assurance strategies . They provide automated testing

by executing live calls on the operators network to identify

potential network performance issues and revenue leakage.

TCGs produce independent rated CDRs that are reconciled

against the operators CDRs to validate CDR integrity and to

ultimately uncover lost revenue. Some of the services that

TCGs provide are:

1. Real-time testing for multiple call and data services e.g.

voice, SMS, MMS, HTTP, mobile TV, video calling, content

download (games, ringtones..)

2. End to end call detail record reconciliation (from switch

to billing)

3. Verification testing of new tariffs

4. CDR matching reconciliat ion

5. Call rating validation for interconnect and retail b illing

6. Regulatory compliance testing (Ofcom/Sarbanes -Oxley)

7. Network performance testing to validate new network

components

Compare with manual testing.

Test automation is the use of software to control the

execution of tests, the comparison of actual outcomes to

predicted outcomes, the setting up of test preconditions, and

other test control and test reporting functions [1]. Commonly,

test automation involves automating a manual process

already in p lace that uses a formalized testing process.

There are two general approaches to test automation:

• Code-driven testing. The public (usually) interfaces to

classes, modules, or libraries are tested with a variety of input

arguments to validate that the results that are returned are

correct.

• Graphical user interface testing. A testing framework

generates user interface events such as keystrokes and mouse

clicks, and observes the changes that result in the user

interface, to validate that the observable behavior of the

program is correct.

Test automation tools can be expensive, and it is usually

employed in combination with manual testing. It can be made

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 91

cost-effective in the longer term, especially when used

repeatedly in regression testing.

One way to generate test cases automatically is model-based

testing through use of a model of the system for test case

generation, but research continues into a variety of alternative

methodologies for doing so.

What to automate, when to automate, o r even whether one

really needs automation are crucial decisions which the

testing (or development) team must make. Select ing the

correct features of the product for automation largely

determines the success of the automation. Automating

unstable features or features that are undergoing changes

should be avoided.

 Code-driven testing

A growing trend in software development is the use of testing

frameworks such as the unit frameworks (fo r example, JUnit

and NUnit) that allow the execution of unit tests to determine

whether various sections of the code are acting as expected

under various circumstances. Test cases describe tests that

need to be run on the program to verify that the program runs

as expected.

Code driven test automation is a key feature of Agile

software development, where it is known as Test-driven

development (TDD). Unit tests are written to define the

functionality before the code is written. Only when all tests

pass is the code considered complete. Proponents argue that

it produces software that is both more reliable and less costly

than code that is tested by manual explorat ion. It is

considered more reliable because the code coverage is better,

and because it is run constantly during development rather

than once at the end of a waterfall development cycle.

Because the developer discovers defects immediately upon

making a change, when it is least expensive to fix. Also,

since the only code that is written is what is required to make

the tests pass, the tendency to write too much code is

removed. Finally, rework is safer. When code is made faster

or is cleaned-up, all of the tests that passed must continue to

pass or the reworked code is not working as it should.

 Graphical User Interface (GUI) testing

Many test automation tools provide record and playback

features that allow users to interactively record user actions

and replay it back any number of times, comparing actual

results to those expected. The advantage of this approach is

that it requires little or no software development. This

approach can be applied to any application that has a

graphical user interface. However, reliance on these features

poses major reliab ility and maintainability problems.

Relabeling a button or moving it to another part of the

window may require the test to be re-recorded. Record and

playback also often adds irrelevant activities or incorrectly

records some activ ities.

A variation on this type of tool is for testing of web sites.

Here, the "interface" is the web page. This type of tool also

requires little or no software development. However, such a

framework utilizes entirely different techniques because it is

reading html instead of observing window events.

Another variation is script less test automation that does not

use record and playback, but instead builds a model o f the

application under test and then enables the tester to create test

cases by simply editing in test parameters and conditions.

This requires no scripting skills, but has all the power and

flexib ility of a scripted approach. Test-case maintenance is

easy, as there is no code to maintain and as the application

under test changes the software objects can simply be re-

learned or added. It can be applied to any GUI-based

software application

IV. RESULTS

 Table 2 shows the model output of ATPG

 Table 2: Output of ATPG

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 92

V. CONCLUSION AND FUTURE WORK

Although knowledge management in unit testing manual

tests may find many defects in a software application, it is a

laborious and time consuming process. In addition it may not be

effective in finding certain classes of defects. Test automation is a

process of writing a computer program to do testing that would

otherwise need to be done manually. Once tests have been

automated, they can be run quickly. Th is is often the most cost

effective method for software products that have a long

maintenance life, because even minor patches over the lifetime of

the application can cause features to break which were working at

an earlier point in time.

REFERENCES

[1] V.R. Basili, F. Shull, and F. Lanubile, “Using Experiments to Build

a Body of Knowledge,” Proc. Third Int’l Performance Studies Int’l

Conf., pp. 265-282, July 1999.

[2] L. Bass, P. Clements, R. Kazman, and K. Bass, Software Architecture
in Practice. Addison-Wesley, 1998.

[3] M.J. Baxter, Exploratory Multivariate Analysis in Archaeology.

Edinburgh Univ. Press, 1994.

[4] A. Bertolino, SWEBOK: Guide to the Software Engineering Body of

Knowledge, Guide to the Knowledge Area of Software Testing, 2004
version, chapter 5. IEEE CS, 2004.

[5] R. Chillarege, “Orthogonal Defect Classification,” Handbook of

Software Reliability Eng., chapter 9, Mc Graw-Hill, 1996.[1]

AUTHOR’S BIOGRAPHY

M.Sravani received the B.Tech Information Technology from JNTUA,

Anantapur, India in 2010 and pursuing his Master’s degree in Software
Engineering from the Sree Vidyanikethan Engineering College,

Tirupathi, India. Her research areas are Software Engineering, Reuse &

Reengineering, Quality Assurance and Testing.

Sk. Munwar received the B.Tech degree in Information Technology
from JNT University; He is currently working as Assistant Professor in

the Department of Information Technology at Sree Vidyanikethan

Engineering College, Tirupati, India since 2004. His current research

interests include Computer Networks, Wireless Networks and

Information Security and Algorithms. He is a member of ISTE.

