
© 2012, IJARCSSE All Rights Reserved Page | 147

 Volume 2, Issue 4, April 2012 ISSN: 2277 128X

International Journal of Advanced Research in
 Computer Science and Software Engineering
 Research Paper
 Available online at: www.ijarcsse.com

Design of a Parallel Migrating Web Crawler
Abhinna Agarwal, Durgesh Singh, Anubhav Kedia

Akash Pandey, Vikas Goel
CSE,AKGEC,Gzb

India.
abkedia@live.com

Abstract: As the size of the Web grows exponentially, crawling the web using parallel crawlers poses certain drawbacks

such as generation of large amount of redundant data and wastage of network bandwidth due to transmission of such

useless data. Thus to overcome these inherent bottlenecks with traditional crawling techniques we have proposed the

design of a parallel migrating web crawler. We first present detailed requirements followed by the architecture of a

crawler.

Keywords: web crawler, parallel, migration, web database

I.Introduction

1.1 Introduction to Crawling

The Web contains large volumes of documents and resources

that are linked together. In the early days of the Web,

manually locating relevant information was reasonably easy
due to the limited amount of information that was available.
Typically, users found relevant information with the aid of

manually maintained web rings, links pages, and directories,

such as Yahoo! [2008] and later DMOZ [2008], which were

organised by topic. However, as the size of the Web grew,

these approaches were augmented or replaced by automated

systems using web crawlers and search engines.

Search engines typically support “bag of word” querying

techniques, where users enter query terms and the search

engine ranks web documents by their likelihood of relevance
to the query terms. This approach, while effective, requires an

index of documents on the Web. This index is created by

retrieving a copy of every document to be indexed, from the

Web, a task that is undertaken by a web crawler. Web

crawlers exploit the link structure of web documents and

traverse the Web by retrieving documents, extracting the

embedded URLs, and following them to new documents.

Retrieved documents are placed in a central repository so they
can be indexed. Once indexed, a document is ranked in

response to user queries and its URL is returned to searchers

as part of a ranked list.

The user then follows the link to the live Web copy of the

document. We highlight this process in Figure 1[1] and the

following example.

1. The crawler retrieves a document about a computer virus

from the CNN home-page.

2. The crawler inserts the document into the local repository.

3. The search engine indexes the documents in the local

http://www.ijarcsse.com/
mailto:abkedia@live.com

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 148

repository.

4. A user poses the query “computer virus”.

5. The search engine examines the index for relevant

documents.

6. The search engine locates the CNN home-page and

retrieves its URL.

7. The search engine creates a short snippet or summary from

the cached document.

8. The search engine returns the CNN home-page URL and

snippet to the user.

9. The user clicks on the URL and is presented with the CNN
home-page containing the computer virus article.

However, the Web is a volatile environment where documents

are frequently created, modified, and removed, which means

that crawlers must revisit documents periodically to update the

local repository. Index inconsistency occurs when crawlers

fail to recrawl documents that have changed.

1.3 Pseudo code

An informal description of the remotely executed
crawling algorithm could look like the following pseudocode

[3] :

/**

* Pseudocode for a simple subject specific

* mobile crawler.

*/

migrate to web server;

put server url in url_list;

for all url ∈ url_list do begin

// *** local data access

load page;

// *** page analysis

extract page keywords;

store page in page_list if relevant;

// *** recursive crawling

extract page links;

for all link ∈ page do begin

if link is local then

add link to url_list;

else

add link to external_url_list;
end

end

II.Web Crawler Requirements

Figure 2[1] shows the structure of a generic crawling process .

We now discuss the requirements for a good crawler, and

approaches for achieving them. [7]

2.1 Flexibility:

We would like to be able to use the system in a variety of

scenarios, with as few modifications as possible.

2.2 Low Cost and High Performance:

The system should scale to at least several hundred pages per

second and hundreds of millions of pages per run, and should

run on low-cost hardware. Note that efficient use of disk

access is crucial to maintain a high speed after the main data

structures, such as the “URL seen” structure and crawl

frontier, become too large for main memory. This will only

happen after downloading several million pages.

Figure 2 : The crawling process

Figure 1

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 149

2.3 Robustness:

There are several aspects here. First, since the system will

interact with millions of servers, it has to tolerate bad HTML,

strange server behaviour and configurations, and many other

odd issues. Our goal here is to err on the side of caution, and if

necessary ignore pages and even entire servers with odd

behaviour, since in many applications we can only download a

subset of the pages anyway. Secondly, since a crawl may take

weeks or months, the system needs to be able to tolerate

crashes and network interruptions without losing (too much
of) the data. Thus, the state of the system needs to be kept on

disk. We note that we do not really require strict ACID

properties. Instead, we decided to periodically synchronize the

main structures to disk, and to recrawl a limited number of

pages after a crash.

2.4 Etiquette and Speed Control:

It is extremely important to follow the standard conventions

for robot exclusion (robots.txt and robots meta tags), to supply

a contact URL for the crawler, and to supervise the crawl. In
addition, we need to be able to control access speed in several

different ways. We have to avoid putting too much load on a

single server; we do this by contacting each site only once

every 30 seconds unless specified otherwise. It is also

desirable to throttle the speed on a domain level, in order not

to overload small domains, and for other reasons to be

explained later. Finally, since we are in a campus environment

where our connection is shared with many other users, we also

need to control the total download rate of our crawler.

2.5 Manageability & Reconfigurability:

An appropriate interface is needed to monitor the crawl,

including the speed of the crawler, statistics about hosts and

pages, and the sizes of the main data sets. The administrator

should be able to adjust the speed, add and remove

components, shut down the system, force a checkpoint, or add

hosts and domains to a “blacklist” of places that the crawler

should avoid. After a crash or shutdown, the software of the

system may be modified to fix problems, and we may want to

continue the crawl using a different machine configuration.

2.6 Localized Data Access:

The main task of stationary crawlers in traditional search

engines is the retrieval of Web pages on behalf of the search

engine. In the context of traditional search engines one or

more stationary crawlers attempt to recursively download all

documents managed the existing Web servers. Due to the

HTTP request/response paradigm, downloading the contents

from a Web server involves significant overhead due to

request messages which have to be sent for each Web page

separately. Using a mobile crawler we reduce the HTTP

overhead by transferring the crawler to the source of the data.

2.7 Remote Page Selection:

By using mobile crawlers we can distribute the crawling logic

(i.e. the crawling algorithm) within a system of distributed

data sources such as the Web. This allows us to elevate Web

crawlers from simple data retrieval tools to more intelligent

components which can exploit information about the data they

are supposed to retrieve. Crawler mobility allows us to move

the decision whether or not certain pages are relevant to the

data source itself. Once a mobile crawler has been transferred

to a Web server, it can analyze each Web page before sending
it back which would require network resources. By looking at

this so-called remote page selection from a more abstract

point of view, it compares favourably with classical

approaches in database systems.

2.8 Remote Page Filtering:

Remote page filtering extends the concept of remote page

selection to the contents of a Web page. The idea behind

remote page filtering is to allow the crawler to control the

granularity of the data it retrieves. With stationary crawlers,
the granularity of retrieved data is the Web page itself since

HTTP allows page-level access only. For this reason,

stationary crawlers always have to retrieve a whole page

before they can extract the relevant page portion. Depending

on the ratio of relevant to irrelevant information, significant

portions of network bandwidth are wasted by transmitting

useless data.

III.System Architecture

We now discuss the architecture of a generic parallel
migrating web crawler.

3.1 Crawler Manager

We have to initialize crawler objects with some initial facts to

begin crawler execution. As an example, consider a crawler

which tries to examine a certain portion of the Web. This

particular kind of crawler will need initial fact seeds

containing URL addresses as starting points for the crawling

process. The structure and the content of initial facts depends

on the particular crawler specification used.

Initialized crawler objects are transferred to a location which

provides a crawler runtime environment. Such a location is

either the local host (which always has a runtime environment

installed) or a remote system which explicitly allows crawler

execution through an installed crawler runtime environment.

The crawler manager is responsible for the transfer of the

crawler to the execution location. The migration of crawler

objects and their execution at remote locations implies that

crawlers have to return to their home systems once their

execution is finished. Thus, the crawler manager has to wait

for returning crawlers and has to indicate their arrival to other

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 150

components (e.g., query engine) interested in the results

carried home by the crawler.

To fulfil the tasks specified above, the crawler manager uses

an inbox/outbox structure similar to an email application.

Newly created crawlers are stored in the outbox prior to their

transmission to remote locations. The inbox buffers crawlers

which have returned from remote locations together with the

results they contain. Other system components such as the

query engine can access the crawlers stored in the inbox

through the crawler manager interface. Figure 3[3]
summarizes the architecture of the crawler manager and also

demonstrates its tight cooperation with the communication

subsystem.

3.2 Query Engine

The query engine basically establishes an interface between

the application framework and the application specific part of

the system. From a more abstract point of view, the query

engine establishes a SQL like query interface for the Web by

allowing users to issue queries to crawlers containing
portions of the Web. Since retrieved

Figure 3

Web pages are represented as facts within the crawler

memory, the combination of mobile crawlers and the query

engine provides a translation of Web pages into a format that

is queriable by SQL.

3.3 Database Drivers

3.3.1 Database Connection Manager : Since our framework

is based on Java we have decided to use the JDBC (Java

Database Connectivity) interface to implement the necessary

database mechanisms. JDBC provides a standard SQL

interface to a wide range of relational database management

systems by defining Java classes which represent database

connections, SQL statements, result sets, database metadata,

etc. The JDBC API allows us to issue SQL statements to a

database and process the results that the database returns. The

JDBC implementation is based on a driver manager that can
support multiple drivers to allow connections to different

databases. These JDBC drivers can either be written in Java

entirely or they can be implemented using native methods to

bridge existing database access libraries. The JDBC

configuration used for our framework as depicted in Figure

5[3] uses a client side JDBC driver to access relational

databases. The JDBC API uses a connection paradigm to

access the actual databases. Once a database is identified by

the user, JDBC creates a connection object which handles all

further communication with the database.

Figure 5

3.3.2 Database Command Manager : The connection

manager allows the archive manager to connect to multiple,

distributed databases within the local network. By establishing

a database connection through the connection manager, the

archive manager can interact with the database by issuing

SQL commands. Such an interaction requires the archive

manager to have knowledge of the structure and the semantics
of each database it works with as shown in Figure 4[3] . We

do not intend to impose any particular data model and storage

structures upon the user of our framework. Thus, the

organization of data with the database cannot be known to the

archive manager because it is defined in the context of the

user application which utilizes our framework.

Figure 4

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 151

3.4 Robots Exclusion protocol

The Web crawler tries to comply with the Robots Exclusion

protocol and not crawl Web sites if rules in the server’s

robots.txt file disallow crawling. A successful download is

when the crawler can retrieve the robots.txt file from a Web

server or confirm that a robots.txt file does not exist. The

download is considered a failure when the crawler cannot

obtain the rules or cannot confirm that a robots.txt file exists.

A successful download does not mean that the crawler has
permission to crawl because rules in the robots.txt file can

disallow crawling. A download failure temporarily prohibits

crawling because the crawler cannot determine what the rules

are.

These are the steps that the crawler takes when attempting to

download the robots.txt file:

When the crawler discovers a new site, it tries to obtain the

server’s IP address. If this attempt fails, crawling is not

possible. When at least one IP address is available, the crawler
tries to download the robots.txt file by using HTTP (or

HTTPS) GET. If the socket connection times out, is broken,

or another low-level error occurs (such as an SSL certificate

problem), the crawler logs the problem, and repeats the

attempt on every IP address known for the target server. If no

connection is made after the crawler tries all addresses, the

crawler waits two seconds, then tries all the addresses one

more time. If a connection is made, and HTTP headers are

exchanged, the return status is examined. If the status code is

500 or higher, the crawler interprets this as a bad connection

and continues trying other IP addresses. For any other status,
the crawler stops trying alternative IP addresses and proceeds

according to the status code. After the crawler receives an

HTTP status code below 500, or after the crawler tries all IP

addresses twice, the crawler proceeds as follows:

If no HTTP status below 500 was received, the site is

disqualified for the time being.

If an HTTP status of 400, 404 or 410 was received, the site is

qualified for crawling with no rules.

If an HTTP status of 200 through 299 was received, the

following conditions direct the next action:

If the content was truncated, the site is disqualified for the
time being.

If the content parsed without errors, the site is qualified for

crawling with the rules that were found.

If the content parsed with errors, the site is qualified for

crawling with no rules.

If any other HTTP status was returned, the site is disqualified

for the time being.

When the crawler attempts to download the robots.txt file for

a site, it updates a persistent timestamp for that site called the

robots date. If a site is disqualified because the robots.txt

information is not available, the persistent robots failure count

is incremented.

When the retry interval is reached, the crawler tries again to

retrieve robots.txt information for the failed site. If the number

of successive failures reaches the maximum number of

failures allowed, the crawler stops trying to retrieve the

robots.txt file for the site and disqualifies the site for crawling.

After a site is qualified for crawling (the check for robots.txt

file rules succeeds), the failure count is set to zero. The

crawler uses the results of the download until the interval for
checking rules elapses. At that time, the site must be qualified

again.

3.5 Parallel Implementation

The same crawler can be run in parallel mode on various

machines which can then store the retrieved information in a

central database. Access to the central database can be

synchronized using locks.

3.5.1 URL Handling: The hyperlinks parsed from the files,
after normalization of relative links, are then checked against

the “URL seen” structure that contains all URLs that have

been downloaded or encountered as hyperlinks thus far. A

parsing speed of 300 pages per second results in more than

2000 URLs per second that need to be checked and possibly

inserted. Each URL has an average length of more than 50

bytes, and thus a naive representation of the URLs would

quickly grow beyond memory size.

Several solutions have been proposed for this problem. The

crawler of the Internet Archive uses a Bloom filter stored in
memory; this results in a very compact representation, but also

gives false positives, i.e., some pages are never downloaded

since they collide with other pages in the Bloom filter.

Lossless compression can reduce URL size to below 10 bytes

though this is still too high for large crawls. In both cases

main memory will eventually become a bottleneck, although

partitioning the application will also partition the data

structures over several machines. A more scalable solution

uses a disk-resident structure, as for example done in Mercator

. Here, the challenge is to avoid a separate disk access for each

lookup and insertion. This is done in Mercator by caching

recently seen and frequently encountered URLs, resulting in a
cache hit rate of almost 85% . Nonetheless, their system used

several fast disks for an average crawl speed of 112 pages per

second.

3.5.2 Downloaders and DNS Resolvers The downloader

component, implemented in Python, fetches files from the

web by opening up to 1000 connections to different servers,

and polling these connections for arriving data. Data is then

marshaled into files located in a directory determined by the

application and accessible via NFS. Since a downloader often

receives more than a hundred pages per second, a large
number of pages have to be written out in one disk operation.

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 152

We note that the way pages are assigned to these data files is

unrelated to the structure of the request files sent by the

application to the manager. Thus, it is up to the application to

keep track of which of its URL requests have been completed.

The manager can adjust the speed of a downloader by

changing the number of concurrent connections that are used.

The DNS resolver, implemented in C++, is also fairly simple.

It uses the GNU adns asynchronous DNS client library to

access a DNS server usually collocated on the same machine.

While DNS resolution used to be a significant bottleneck in
crawler design due to the synchronous nature of many DNS

interfaces, we did not observe any significant performance

impacts on our system while using the above library.

However, DNS lookups generate a significant number of

additional frames of network traffic, which may restrict

crawling speeds due to limited router capacity.

3.6 Crawler Migration

To demonstrate the advantages of mobile crawling, we present

the following example. Consider a special purpose search
engine which tries to provide high quality searches in the area

of health care. The ultimate goal of this search engine is to

create an index of the part of the Web which is relevant to

health care issues. The establishment of such a specialized

index using the traditional crawling approach is highly

inefficient. This inefficiency is because traditional crawlers

would have to download the whole Web page by page in order

to be able to decide whether a page contains health care

specific information. Thus, the majority of downloaded pages

would not be indexed.

In contrast, a mobile crawler allows the search engine

programmer to send a representative of the search engine (the

mobile crawler) to the data source in order to filter it for

relevant material before transmitting it back to the search

engine. In our example, the programmer would instruct the

crawler to migrate to a Web server in order to execute the

crawling algorithm at the data source.

The important difference is that our crawler gets executed

right at the data source by the mobile crawler. The crawler

analyzes the retrieved pages by extracting keywords. The

decision, whether a certain page contains relevant health care
information can be made by comparing the keywords found

on the page with a set of predefined health care specific

keyword known to the crawler. Based on this decision, the

mobile crawler only keeps pages which are relevant with

respect to the subject area.

As soon as the crawler finishes crawling the whole server,

there will be a possibly empty set of pages in its memory.

Please note that the crawler is not restricted to only collecting

and storing Web pages. Any data which might be important in

the context of the search engine (e.g., page metadata, Web
server link structure) can be represented in the crawler

memory. In all cases, the mobile crawler is compression to

significantly reduce the data to be transmitted. After

compression, the mobile crawler returns to the search engine

and is decompressed. All pages retrieved by the crawler are

then stored in the Web index. Please note, that there are no

irrelevant pages since they have been discarded before

transmission by the mobile crawler. The crawler can also

report links which were external with respect to the Web

server crawled. The host part of these external addresses can

be used as migration destination for future crawls by other

mobile crawlers.

By looking at the example discussed above, the reader might

get an idea about the potential savings of this approach. In

case a mobile crawler does not find any useful information on

a particular server, nothing beside the crawler code would be

transmitted over the network. If every single page of a Web

server is relevant, a significant part of the network resources

can be saved by compressing the pages prior to transmission.

In both of these extreme cases, the traditional approach will

produce much higher network loads.

IV. Conclusions and Future Work

We have described the architecture and implementation

details of our crawling system, and presented some

preliminary experiments. There are obviously many

improvements to the system that can be made. A major open

issue for future work is a detailed study of the scalability of

the system and the behaviour of its components. This could

probably be best done by setting up a simulation testbed,

consisting of several workstations, that simulates the web

using either artificially generated pages or a stored partial
snapshot of the web. We are currently considering this, and

are also looking at testbeds for other high-performance

networked systems (e.g., large proxy caches).

Our main interest is in using the crawler in our research group

to look at other challenges in web search technology, and

several students are using the system and acquired data in

different ways.

References

[1] Halil Ali. Effective web crawlers, Mar 2008.
[2] R. Baeza-Yates and B. Rebeiro-Neto. Modern Information

Retrieval. Addision Wesley, 1999.

[3] Jan Fiedler and Joachim Hammer. Using Mobile

Crawlers to Search the Web Efficiently, 2000.

[4] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and S.

Venkatasubramanian. The connectivity server: Fast access to

linkage information on the web. In 7th Int. World Wide Web

Conference, May 1998.

[5] S. Brin and L. Page. The anatomy of a large-scale

hypertextual web search engine. In Proc. of the Seventh

World-Wide Web Conference, 1998.

Volume 2, Issue 4, April 2012 www.ijarcsse.com

© 2012, IJARCSSE All Rights Reserved Page | 153

[6] M. Burner. Crawling towards eternity: Building an archive

of the world wide web. Webtechniques, 1997.

[7] Joo Yong Lee, Sang Ho Lee, Yanggon Kim SCRAWLER:

A Seed -By-Seed Parallel Web Crawler

[8] S. Chakrabarti, M. van den Berg, and B. Dom. Distributed

hypertext resource discovery through examples. In Proc. Of

25th Int. Conf. on Very Large Data Bases, pages 375–386,

September 1999.

[9] Vladislav Shkapenyuk, Torsten Suel. Design and

Implementation of a High-Performance Distributed Web

Crawler
[10] J. Cho and H. Garcia-Molina. The evolution of the web

and implications for an incremental crawler. In Proc. of 26th

Int. Conf. on Very Large Data Bases, pages 117–128, Sept.

2000.

[11] J. Cho and H. Garcia-Molina. Synchronizing a database

to improve freshness. In Proc. of the ACM SIGMOD Int. Conf.

on Management of Data, pages 117–128, May 2000.

[12] J. Cho, H. Garcia-Molina, and L. Page. Efficient crawling

through url ordering. In 7th Int.World Wide Web Conference,

May 1998.

[13] M. Diligenti, F. Coetzee, S. Lawrence, C. Giles, and M.
Gori. Focused crawling using context graphs. In Proc. of 26th

Int.Conf. on Very Large Data Bases, September 2000.

[14] M. R. Henzinger, A. Heydon, M. Mitzenmacher, and M.

Najork. Measuring index quality using random walks on the

web. In Proc. of the 8th Int. World Wide Web Conference

(WWW8), pages 213–225, 1999.

