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ABSTRACT: “Smart Antenna” generally refers to any antenna array, terminated in a sophisticated signal processor, 

which can adjust or adapt its own beam pattern in order to emphasize signals of interest and to minimize interfering signals.  

Smart antennas generally encompass both switched beam and beam formed adaptive systems. Switched b eam systems have 

several available fixed beam patterns. A decision is made as to which beam to access, at any given point in time, based upon 

the requirements of the system. Beam formed adaptive systems allow the antenna to steer the beam to any direction of 

interest while simultaneously nulling interfering signals. The rapid growth in demand for smart antennas is fueled by two 

major reasons. First, the technology for high speed analog-to-digital converters (ADC) and high speed digital signal 

processing is burgeoning at an alarming rate. Now the smart antennas its algorithms and its MATLAB onward flow is 

discussed and being implemented in my research paper.  
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I. INTRODUCTION 

 

Smart antenna systems are rapidly emerg ing as one of the key 

technologies that can enhance overall wireless 

communicat ions system performance. By making use of the 

spatial dimension, and dynamically generating adaptive 

receive and transmit. There are two basic types of smart 

antennas. As shown in Fig1, the first type is the phased array 

or multi beam antenna, which consists of either a number of 

fixed beams with one beam turned on towards the desired 

signal or a single beam (formed by phase adjustment only) 

that is steered toward the desired signal. The other type is the 

adaptive antenna array as shown in Fig 2, which is an array of 

multip le antenna elements, with the received signals weighted 

and combined to maximize the desired signal to interference 

plus noise power rat io.  

 
Fig 1 : PHASED ARRAY 

This essentially puts a main beam in the direction of the 

desired signal and nulls in the direction of the interference 

antenna patterns, a smart antenna can greatly reduce 

interference, increase the system capacity, increase power 

efficiency as well as reduce overall infrastructure costs. A 

smart antenna is therefore a phased or adaptive array that 

adjusts to the environment. That is, for the adaptive array, the 

beam pattern changes as the desired user and the interference 

move; and for the phased array the beam is steered or different 

beams are selected as the desired user moves. 
 

 

 
 

Fig 2: ADAPTIVE ARRAY 
 

II.   S MART ANTENNA ALGORTHIMS  

An adaptive antenna is a multi-beam adaptive array with its 

gain pattern being adjusted dynamically [1-3]. In recent 

decades, it has been widely used in different areas such as 

mobile communications, radar, sonar, medical imaging, radio  

astronomy etc. Especially with the increasing demand for 

improving the capacity of mobile communications, adaptive 

antenna is introduced into mobile systems to mitigate the 

effect of interference and improve the spectral efficiency. 

Adaptive antennas have the ability of separating automatically  
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the desired signal from the noise and the interference signals 

and continuously updating the element weights to ensure that 

the best possible signal is delivered in the face of interference 

[4-8].The first fully adaptive array was conceived in which 

was designed to maximize the signal-to-noise ratio (SNR) at 

the array’s output. An alternative approach to canceling 

unwanted interference is LMS error algorithm .Further work 

on the LMS algorithm, introduced constraints to ensure that 

the desired signals were not filtered out along with the 

unwanted signals.LMS algorithm uses continuous adaptation. 

The weights are adjusted as the data is sampled such that the 

resulting weight vector sequence converges   to the optimum 

solution. SMI algorithm for adaptively adjusting the array 

weights, uses block adaptation. The statistics are estimated 

from a temporal block of array data and used in an optimum 

weight equation. In the literature, there have been many 

studies about different versions of LMS and SMI algorithms 

used in adaptive antennas [14-21]. 

LMS and SMI algorithms were used for interference rejection 

problem of the adaptive antennas. The performance of these 

algorithms was investigated for different interference angles, 

step size of LMS, block size of SMI and INRs. In the 

simulation process, a uniformly spaced linear array with three 

elements was used.  Least Mean Square (LMS) algorithm, 

introduced by Widrow and Hoff in 1959 [12] is an adaptive 

algorithm, which uses a gradient-based method of steepest 

decent [10]. LMS algorithm uses the estimates of the gradient 

vector from the available data. LMS incorporates an iterative 

procedure that makes successive corrections to the weight 

vector in the direction of the negative of the gradient vector 

which eventually leads to the min imum mean square error. 

Compared to other algorithms LMS algorithm is relatively  

simple; it does not require correlat ion function calculation nor 

does it require matrix inversions.  

 Consider a Uniform Linear Array (ULA) with N 

isotropic elements, which forms the integral part of the 

adaptive beam forming system as shown in the figure below.  

The output of the antenna array is given by, 

𝑥 𝑡 = 𝑠 𝑡 𝑎 𝜃0
 +  𝑢𝑖  

𝑁𝑢
𝑖=1

 𝑡 𝑎 𝜃𝑖  + 𝑛 𝑡                       [1] 

Weight, w (n+1) = w(n) + μ x(n)e* (n)                     [2] 

Error, e(n) = d*(n) – y(n)                                        [3]      

 
Fig 3: LMS Adaptive beam forming network 

 

 As shown above the outputs of the individual sensors are 

linearly combined after being scaled using corresponding 

weights such that the antenna array pattern is optimized to 

have maximum possible gain in the direct ion of the desired 

signal and nulls in the direction of the interferers. The weights 

here will be computed using LMS algorithm based on 

Minimum Squared Error (MSE) criterion. Therefore the 

spatial filtering problem involves estimation of signal from the 

received signal (i.e. the array output) by minimizing the error 

between the reference signal , which closely matches or has 

some extent of correlat ion with the desired signal estimate and 

the beam former output y(t) (equal to w x(t)). 

III.S IMULATION RES ULTS FOR THE LMS 

ALGORITHM 

For simulat ion purposes a 4-element linear array is used with 

its individual elements spaced at half-wavelength distance. 

The desired signal arriving s(t) is a simple complex 

sinusoidal-phase 𝜃𝑜  modulated signal of the following form,  

Two examples are provided to show the beam forming 

abilities of the LMS algorithm. Each example has a 

normalized array factor plot and corresponding LMS error 

plot. 

Case 1: In the first case the desired angle is arriving at 30 

degrees and there are three interfering signals  arriving at 

angles –20, 0 and 60 degrees respectively. The array factor 

plot in Figure 6.2a shows that the LMS algorithm is able to 

iteratively update the weights to force deep nulls at the 

direction of the interferers and achieve maximum in the 

direction of the desired signal. It can be seen that nulls are 

deep at around 40dB level below the maximum. The LMS 

error p lot in figure shows that the LMS algorithm converges. 

In this case the LMS error is almost 0.025 at around 3000 

samples. 

 

Fig 4: Normalized Array Factor plot for case1 

Case 2:  
Another example shown in figure.6.3a is provided for the case 

where the desired signal is arriving at an angle 
 

and there are 

four interferers (compared to three interferers in previous 

case) arriving at angles –40, -10, 30 and 60 degrees 

respectively. It is seen that nulls are deeper when the number 

of interferers are larger at around the 50dB level from the 

maximum value. However, from the LMS error plot in figure 

6, it is quite evident that it takes longer to converge, it takes 
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about 6000 samples to converge where the error is less than 

2%. 

 

                  Fig 5: LMS error plot for case 1 

 

Fig 6 : Normalized Array Factor plot for case2 

 

             Fig 7: LMS error plot for case 1 

III. SMI ALGORTHIM: 

One such algorithm is the Sample Matrix Inversion (SMI) 

which provides good performance in a discontinuous 

traffic. However, it requires that the number of interferers 

and their positions remain constant during the duration of 

the block acquisition. 

 

Fig 8:SMI ADAPTIVE BEAMFORMING NETWORK 

The SMI algorithm has a faster convergence rate since it 

employs direct inversion of the covariance matrix R. Let us 

recall the equations for the covariance matrix and the 

correlation matrix r. 𝑅 = 𝐸[𝑥 𝑡 𝑥𝐻   𝑡 ]                            [4] 

 𝑟 = 𝐸[(𝑑 𝑡 𝑥 𝑡 ]                                                             [5] 

If a priori information about the desired and the interfering 

signals is known, then the optimum weights can be calculated 

directly  

𝑤𝑜𝑝𝑡 = 𝑅𝑥𝑥
−1𝑟𝑥𝑑                                                                 [6] 

This algorithm is based on an estimate of the correlat ion 

matrix and cross correlation vector of the adaptive array 

output samples. The estimate of the correlation matrix is given 

by                𝑅𝑋𝑋 =
1

𝐾
 𝑥 𝑘 𝑥𝐻 𝑘  𝐾

𝑘=1                                   [7] 

The stability of the SMI algorithm depends on the 

ability to invert the large covariance matrix. In order to avoid 

a singularity of the covariance matrix, a  zero- mean white 

Gaussian noise is added to the array response vector. It creates 

a strong additive component to the diagonal of the matrix. In  

the absence of noise in the system, a singularity occurs when 

the number of signals to be resolved is less than the number of 

elements in the array. Since SMI employs direct matrix 

inversion the convergence of this algorithm is much faster 

compared to the LMS algorithm. However, huge matrix 

inversions lead to computational complexit ies that cannot be 

easily overcome. 

Weight adaptation in the SMI algorithm can be achieved in  

different ways  

1. Block adaptation  

The above-mentioned block adaptive approach, 

where the adaptation is carried over disjoint intervals of time, 

is the most common type. This is well suited for a highly time 

varying signal environment as in mobile communications  

2. Overlapping block adaptation  
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This approach is computational intensive as 

adaptation intervals are not disjoint but overlapping. It 

provides better performance but has an increased number of 

inversions when compared to the above method.  

3. Block adaptation with memory  

This method utilizes the matrix estimates computed 

in the previous blocks. This approach provides faster 

convergence for spatial channels that are highly time-

correlated. It works better when the signal environment is 

stationary. 

V. S IMULATION RES ULTS AND ANALYS IS FOR S MI 

For simulation purposes, a similar scenario is 

considered as with the LMS simulat ion discussed in the 

previous session. The SMI algorithm discussed here uses the 

Block Adaptation approach, the size of the block being equal 

to 10 t ime samples.  

A 4-element linear array is used with its individual elements 

spaced at half-wavelength distance. The desired signal s(t) 

arriving at 𝜃0  simple sinusoidal-phase modulated signal of the 

same form as in equation The interfering signals  arriv ing at 

angles are also of the same form. By doing so it can be shown 

in the simulat ions how interfering signals of the same 

frequency as the desired signal can be separated to achieve 

rejection of co-channel interference. However, Rayleigh 

fading is added to the incoming interfering signals. Simulat ion 

results with illustrations are provided to give a better 

understanding of different aspects of the SMI algorithm with 

respect to adaptive beam forming. For simplicity sake the 

reference signal d(t) is considered to be same as the desired 

signal. In the example provided here, the desired angle is 

arriving at 30 degrees and there are three interfering signals 

arriving at angles –20, 0 and 60 degrees respectively. The 

array factor plot in Figure shows that the SMI algorithm is 

able to update the weights block wise to force deep nulls in 

the direction of the interferers and achieve a maximum in the 

direction of the desired signal. The angular parameters for the 

desired and interfering signals used here are identical to that 

used in the LMS simulation in the previous chapter. It can be 

seen that nulls are deeper in the case of SMI when compared 

to LMS. The null levels are at around 50dB-60dB below the 

maximum.  

 
Fig 9: Normalized Array Factor plot 

The error plot for this situation is shown in 

figure When compared to the LMS error SMI error is small. 

However, this error is uniform and is present throughout the 

acquisitions. This is because SMI does not require the error 

informat ion to update the weights. These observations indicate 

that SMI algorithm converges almost immediately during the 

first block itself but there is a small amount of residual error 

throughout. This residual error comes from the fact that the 

covariance matrices are estimated values and not accurate 

values.  

If the block size is increased from 10 to 30 as shown in figure 

we see that error tends to increase. If the signal environment is 

changing then each block will have its own optimal solution 

for weights. If a highly mobile signal environment is under 

consideration it is better to have a small block size to enable to 

better adaptation. 

 
Fig 10: SMI error plot when block size = 10 

It quite evident from the simulation analysis that SMI has a 

fast convergence rate. It is suitable for burst traffic adaptation 

where it is unlikely that signal environment will change 

during block acquisition. SMI algorithm is based on matrix 

inversion, which tends to be computationally intensive. the 

high convergence rate property of the SMI algorithm is best 

made use of when it is used in conjunction with other 

algorithms. Again like LMS, SMI algorithm requires 

informat ion about the desired signal. 

 
Fig 11 : SMI error plot when block size = 30 

VI.COMPARISON OF BOTH WEIGHTS FOR LMS AND SMI 
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Fig 12:SMI  Weighted signal vs. desired signal response 

 
Fig 13: LMS  Weighted signal vs. desired signal response 

VII. CONCULSION: 
        In this work, the LMS and SMI algorithms are used for 

the interference rejection of the adaptive antenna array with 

three-elements. The effects of some design specificat ions such 

as the interference angles, the step size of LMS, and the block 

size of SMI and INRs on the interference rejection are 

investigated. Simulation results show that both algorithms, 

LMS and SMI, are capable of nulling the interference sources 

even the interference sources close to each other. The null 

depth performance of the SMI algorithm is better than that of 

the LMS algorithm. The weighting factors of LMS and SMI 

algorithms give greater flexib ility and control over the actual 

pattern. The antenna designer should make a trade-off 

between the achievable and the desired pattern. By adjusting 

the factors it is possible to obtain very reasonable 

approximations and trade-offs. 

ACKNOW LEDGEMNT 

This work was supported by our research guides 

DR.A.M.Prasad and DR.A.Jhansi Rani   and  is contributed of 

my own work I thank them for my development in doctoral 

work.                         

REFERENCES 

[1].W. L. Stutzman and G. A. Thiele, Antenna Theory and 

Design, John Wiley & Sons, New York, 1981. 

[2] J. But ler and R. Lowe, “Beam-Forming Matrix Simplifies 

Design of Electron ically Scanned Antennas,” Electronic 

Design, pp. 170-173, April 12, 1961. 

[3] J. Blass, “Multidirectional Antenna: A New Approach to 

Stacked Beams,” IRE International Conference Record, Vol. 

8, Part 1, 1960. 

[4] S. Mano, et al., “Application of Planar Multi beam array 

Antennas to Diversity Reception,” Electronics and 

Communicat ions in Japan, Part 1, Vol. 79, No. 11, pp. 104-

112, 1996. 

[5]. J.Winters, "Smart Antennas for Wireless Systems", IEEE 

Personal Communications, vol 1,pp. 23-27., Feb. 1998 

[6].G.Tsoulos, M.Beach, “Wireless Personal Communicat ions 

for the 21stCentury: European Technological Advances in 

Adaptive Antennas ”IEEE Communications Magazine, Sep. 

1997. 

[7]. L. Acar, R.T. Compton, The Performance of an LMS 

Adaptive Array with Frequency Hopped Signals, IEEE 

Transactions on Aerospace and Electronic Systems, Vol. 21, 

No. 3, pp. 360-371, 1985. 

[8]. Y. Ogawa,, et al., An LMS Adaptive Array for Multipath 

Fading Reduction, IEEE Transactions on Aerospace and 

Electronic Systems, Vol. 23, No. 1, pp. 17-23, 1987. 

[9]. M. Tahernezhadi, L. Zhu, Performance Evaluation of 

LMS Based Adaptive Suppression Schemes in Asynchronous 

CDMA, Int. J. Electronics, Vol. 79,No. 5, pp. 541-550, 1995. 

[10]. Y.J. Su, Y.H. Lee, Adaptive Array Beam forming   

Based on an Efficient Technique, IEEE Transactions on 

Antennas and Propagation, Vol. 44, No. 8, pp. 1094-1101, 

1996. 

[11]. Y.C. Liang, P.S. Chin, Coherent LMS, IEEE 

Communicat ion Letters, Vol. 4, No. 3, pp. 92-94, 2000. 

[12]. H. Koga, M. Taromaru, A Simple and Fast Converging 

Algorithm for MMSE Adaptive Array Antenna, IEICE 

Transactions on Communicat ions, Vol. 83, No. 8, pp. 1671-

1677, 2000 

[13]. R. Yonezawa, I. Chiba, A Combination of Two Adaptive 

Algorithms SMI and CMA, IEICE Trans. on 

Communicat ions, Vol. 84, No. 7, 2001. 

 


