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Abstract— Recent observations have revealed that a frequent item set mining algorithm be supposed to mine the 

congested ones as the end gives a condensed and a complete evolution set and better efficiency. Anyway, the latest 

closed item set mining algorithms mechanism with candidate protection combined by means of test paradigm which is 

expensive  in runtime as well as  space procedure when  sustain threshold is less or the item sets gets extended. Here, 

we show, PGPP, which is a capable algorithm used for mining closed sequences without candidate. It apparatus a 

novel succession closure checking format that based on Sequence Graph protruding by an approach labeled “Parallel 

Graph projection and pruning” in short can refer as PGPP. A complete surveillance having dense and dense real-life 

data sets prove that PGPP achieve greater evaluate to older algorithms as it obtain low memory and is more faster 

than any algorithms those cited in prose frequently. t. 
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I. INTRODUCTION 

Sequential item set mining, is an important task, having many applications with market, customer and web log 

examination, item set find in protein succession. Capable mining techniques are being observed extensively, including 

the general sequential item set mining [1, 2, 3, 4, 5, 6], constraint-based in order item set mining [7, 8, 9], frequent 

occurrence mining [10], cyclic association rule mining [11], sequential relation mining [12], partial episodic pattern 

mining [13], and long in order item set mining [14]. Recently it’s quite convincing that for mining frequent item sets, one 

should mine all the closed ones as the end leads to compact and complete result set having high efficiency [15, 16, 17, 

18], unlike mining frequent item sets, there are less methods for mining closed sequential item sets. This is because of 

intensity of the problem and CloSpan is the only variety of algorithm [17], similar to the frequent closed item set mining 

algorithms, it trail a candidate maintenance-and-test paradigm, as it maintains a set of readily supply blocked sequence 

candidates used to prune search space and verify whether a recently found frequent sequence is to be closed or not. 

Unluckily, a closed item set mining algorithm below this paradigm has bad scalability in the quantity of frequent blocked 

item sets as many frequent closed item sets (or just candidates) consume memory and leading to high search break for the 

closure checking of recent item sets, which happens when the holdup threshold is less or the item sets gets extended. 

Finding a technique to extract frequent closed sequences lacking the help of candidate preservation seems to be 

complex. Here, we show a solution leading to an algorithm, PGPP, which can mine efficiently all the sets of frequent 

closed sequences through a sequence graph protruding approach. In PGPP, we need not eye down on any historical 

frequent closed sequence for a new pattern’s closure checking, leading to the proposal of Sequence graph Graph pruning 

technique and other kinds of optimization techniques. 

The observations display the performance of the PGPP to find closed frequent itemsets using Sequence Graph: The 

comparative study claims some interesting performance improvements over BIDE and other frequently cited algorithms. 

In section II most frequently cited work and their limits explained. In section III the Dataset adoption and formulation 

explained. In section IV, introduction to PGPP and its utilization for Sequence Graph protruding explained. In section V, 

the algorithms used in PGPP described. In section V1, results gained from a comparative study briefed and fallowed by 

conclusion of the study. 

 

II. RELATED WORK 

The sequential item set mining difficulty was initiated by Agrawal and Srikant , and the same urbanized a filtered 

algorithm, GSP [2], basing on the Apriori assets [19]. Since then, lots of sequential item set mining algorithms are being 

developed for efficiency. Some are, SPADE [4], PrefixSpan [5], and SPAM [6]. SPADE is on principle of vertical id-list 

configure and it uses a lattice-theoretic method to fester the search space into many tiny places, on the other hand 

PrefixSpan implements a parallel format dataset representation and mines the sequential item sets with the pattern-

growth paradigm: grow a prefix item set to attain longer sequential item sets on building and scanning its database. The 

SPADE and the PrefixSPan highly perform GSP. SPAM is a recent algorithm used for mining lengthy sequential item 

sets and implements a vertical bitmap representation. Its observations reveal, SPAM is better efficient in mining long 
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item sets compared to SPADE and PrefixSpan but, it still takes more space than SPADE and PrefixSpan. Since the 

frequent closed item set mining [15], many capable frequent closed item set mining algorithms are introduced, like A-

Close [15], CLOSET [20], CHARM [16], and CLOSET+ [18]. Many such algorithms are to maintain the ready mined 

frequent closed item sets to attain item set closure checking. To decrease the memory usage and seek out space for item 

set closure examination, two algorithms, TFP [21] and CLOSET+2, implement a compact 2-level hash indexed result-

tree structure to keep the readily mined frequent closed item set candidates. Some pruning methods and item set closure 

verifying methods, initiated the can be extended for optimizing the mining of closed sequential item sets also. CloSpan is 

a new algorithm used for mining frequent closed sequences [17]. It goes by the candidate maintenance-and-test method: 

initially create a set of closed sequence candidates stored in a hash indexed result-tree structure and do post-pruning on it. 

It requires some pruning techniques such as Common Prefix and Backward Sub-Item set pruning to prune the search 

space as CloSpan requires maintaining the set of closed sequence candidates, it consumes much memory leading to 

heavy search space for item set closure checking when there are more frequent closed sequences. Because of which, it 

does not scale well the number of frequent closed sequences. BIDE [26] is another closed pattern mining algorithm and 

ranked high in performance when compared to other algorithms discussed. Bide projects the sequences after projection it 

prunes the patterns that are subsets of current patterns if and only if subset and superset contains same support required. 

But this model is opting to projection and pruning in sequential manner. This sequential approach sometimes turns to 

expensive when sequence length is considerably high. In our earlier literature[27] we discussed some other interesting 

works published in recent literature. 

Here, we bring Sequence Graph protruding that based on Graph projection and pruning, an asymmetric parallel algorithm 

for finding the set of frequent closed succession. The giving of this paper is: (A) an improved sequence graph based idea 

is generated for mining closed sequences without candidate maintenance, termed as Parallel Graph Projection and 

pruning (PGPP) based Sequence Graph Protruding for closed itemset mining. The Graph Projection is a forward 

approach grows till Graph with required support is possible during that time the Graphs will be pruned. During this 

pruning process vertices of the Graph that differs in support with next Graph projected will be considered as closed 

itemset, also the sequence of vertices that connected by Graphs with similar support and no projection possible also be 

considered as closed itemset (B) in the Graph Projection and pruning pedestal Sequence Graph Protruding for closed 

itemset mining, we create a algorithms for Forward Graph projection and back Graph pruning(C) the performance clearly 

signifies that proposed model has a very high capacity: it can be faster than an order of magnitude of CloSpan  but uses 

order(s) of magnitude less memory in several cases. It has a good scalability to the database size. When compared to 

BIDE the model is proven as equivalent and efficient in an incremental way that proportional to increment in pattern 

length and data density. 

 

III. DATASET ADOPTION AND FORMULATION 

All Item Sets I:  A position of diverse basics by which the sequences produce. 
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Sequence set ‘S’: A position of sequences, where both sequence contains basics each element ‘e’ belongs to ‘I’ and 

accurate for a function p(e). Sequence set can prepare as 
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Symbolize a sequence‘s’ of items those belong to set of dissimilar items ‘I’. 

‘m’: total controlled items. 

P(ei): a contract, where ei usage is true for that operation. 
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S: characterize set of sequences  

‘t’: signify total number of sequences and its assessment is volatile 

sj: is a sequence that belong to S 

Subsequence:  a sequence ps  of progression set ‘S’ is measured as subsequence of an additional sequence qs
of 

Sequence Set ‘S’ if all items in progression Sp is belongs to sq as an controlled list. This can be prepare as  
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where 

   p qs S and s S   

Total sustain ‘ts’ : happening count  of a sequence as an controlled list in all sequences in sequence set ‘S’ can assume as 

total support ‘ts’ of that progression. Total sustain ‘ts’ of a sequence can establish by subsequent formulation. 

( ) | :  (     1. | |) |ts t t p Sf s s s for each p DB    

SDB  Is position of sequences 
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( )ts tf s : Represents the total sustain ‘ts’ of progression st is the number of super sequences of st 

Practiced support ‘qs’: The consequential coefficient of total sustains divides by size of progression database assume as 

qualified hold up ‘qs’. Qualified hold up can be initiates by using fallowing formulation. 

( )
( )

| |

ts t
qs t

S

f s
f s

DB


 
Sub-sequence and Super-sequence: A progression is sub progression for its next predictable sequence if equally 

sequences enclose same total sustain.  

Super-sequence: A progression is a fabulous sequence for a succession from which that predictable, if both enclose same 

total support. 

Sub-sequence and super-sequence can be create as 

If ( )ts tf s   rs   where ‘rs’ is necessary support threshold specified by user  

And        :t ps s for any pvalue  where ( ) ( )ts t ts pf s f s
 

 

IV. PARALLEL GRAPH PROJECTION AND PRUNING BASED SEQUENCE GRAPH PROTRUDE 

Preprocess 

As a first stage of the offer we achieve dataset preprocessing and itemsets Database initialization. We find itemsets with 

single element, in parallel prunes itemsets with single element those contains total support less than essential support. 

Forward Graph Projection: 

In this segment, we choose all itemsets from given itemset database as input in equivalent. Then we establish projecting 

Graphs starting each preferred itemset to all achievable elements. The foremost iteration includes the pruning progression 

in parallel, from second iteration onwards this pruning is not necessary, which we maintain as capable process compared 

to other parallel techniques like BIDE. In first iteration, we assignment an itemset ps that spawned from preferred 

itemset is  from SDB and an aspect ie considered from ‘I’. If the ( )ts pf s  is greater or identical to rs , then an Graph 

will be distinct between is  and ie . If ( ) ( )ts i ts pf s f s then we prune is from SDB . This pruning progression required 

and inadequate to first iteration only. 

Beginning second iteration past project the itemset pS that spawned since 'pS to each aspect ie of ‘I’. An Graph can be 

distinct among 
'pS and ie if ( )ts pf s  is greater or identical to rs . In this description 

'pS is a estimated itemset in 

preceding iteration and adequate as a sequence. Then concern the fallowing validation to locate closed sequence. 

If any of '( ) ( )ts p ts pf s f s  that Graph will be reduce and all replace graphs except   ps will be measured as closed 

sequence and moves it into SDB
 
and eliminate all disjoint graphs from recollection. 

If '( ) ( )ts p ts pf s f s  and there after no projection spawned then ps will be measured as closed sequence and moves it 

into SDB  and eliminate '    p ps and s  from recollection. 

The exceeding process continues dig the elements obtainable in memory those are linked during direct or transitive 

Graphs and prognostic itemsets i.e., till graph happen to empty 

 

V. ALGORITHMS USED IN PGPP: 

 This section describes algorithms for initializing sequence database with single elements sequences,   spawning itemset 

projections and pruning Graphs from Sequence Graph SG. 

 

Fig 1: Generate initial SDB  with single element itemsets 



Yadav et al., International Journal of Advanced Research in Computer Science and Software Engineering 4(10), 

October - 2014, pp. 251-257 

© 2014, IJARCSSE All Rights Reserved                                                                                                           Page | 254 

Algorithm 1: Generate initial SDB  with single element itemsets 

Input: Set of Elements ‘I’. 

Begin: 

L1: For each element  ie  of ‘I’  

Begin: 

Find ( )ts if e  

If ( )ts if e rs  then 

Move ie  as sequence with single element to SDB  

End: L1. 

End. 

 
Fig 2: spawning projected Itemsets and protruding sequence graph 

 

(a) First iteration 
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(b) Rest of all Iterations 

Algorithm 2: spawning projected Itemsets and protruding sequence graph  

Input: SDB
 and ‘I’; 

L1: For each sequence is
 in SDB

 

Begin: 

L2: For each element ie
 of ‘I’  

Begin: 

C1: If 
edgeWeight( , )i is e rs

 

Begin: 

Create projected itemset 
ps from 

( , )i is e
 

If ( ) ( )ts i ts pf s f s then prune is
 from SDB

 

End: C1. 

End: L2. 

End: L1. 

L3: For each projected Itemset 
ps in memory 

Begin: 

'p ps s  

L4: For each ie
of ‘I’ 

Begin: 

Project 
ps from 

'( , )p is e  

C2: If ( )ts pf s rs  

Begin 

Spawn SG by adding Graph between 
'    p is and e  

End: C2 

End: L4 

C3: If 'ps not spawned and no new projections added for 'ps   

Begin: 

Remove all duplicate Graphs for each Graph weight from 
'ps  and keep Graphs unique by not deleting most recent 

Graphs for each Graph weight. 

Select elements from each disjoint graph as closed sequence and add it to SDB
 and remove disjoint graphs from SG. 

End C3 

End: L3 

If SG  go to L3 

 

VI. COMPARATIVE STUDY 

 In this segment, we will current our methodical experimental results in regulate to testify the following claims:  (1)The 

PGPP is accurately designed frequent closed progression mining algorithm like BIDE, can considerably outperform 

compared to other algorithms like CloSpan and spade.(2) PGPP consumes much less memory and can be faster than 

CloSpan and similar to BIDE. 3). the feature parallel projection and Graph pruning of the PGPP, improves the 

performance and minimize the memory utilization cost. In the context of dense data the comparative study observed that 

PGPP significantly performed better when compared with existing models, in particular with BIDE. 

The implementation of the BIDE and PGPP algorithms was done using JAVA 1.6 20
th

 build. Both the algorithms tested 

on a computer with core2duo processor and 2GB RAM and Windows XP installed. Java thread concept was used to 

achieve the parallel model. 

 

Dataset Characteristics: 

We discover a very opaque dataset, Pi, from which a huge number of common closed sequences can be mined yet with a 

very high sustain threshold like 90%. This dataset is furthermore a bio-dataset which contains 190 protein sequences and 

21 dissimilar items. This dataset has yet been used to evaluate the reliability of efficient inheritance [22]. Dataset 

sequence length status can be found in fig 5. 
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Since the Bide already proven as better closed pattern mining model when compared to other frequently cited models like 

spade, prefixSpan and cloSpan, our comparative study in particular for memory utilization and run time, consider the 

performance comparison between BIDE and PGPP. 

 
Fig 3: A evaluation report for Runtime 

 

 
Fig: 4: A evaluation report for memory usage 

 

 
Fig 5: Sequence length and number of sequences at dissimilar thresholds in Pi dataset 

 

We used extremely dense dataset, Pi, to compare PGPP with BIDE. Since In this dataset, we canister observe that still 

with a very elevated support like 90%, there can be a huge number of diminutive frequent congested sequences with a 

span less than 10. Fig. 3 shows that with a support higher than 90%, these two algorithms have very similar performance, 

but once the support is 88% or less, we can observe the outperform of PGPP over BIDE. For example, at support 88%, 

PGPP performance can be observable, which is faster than BIDE. From Fig. 4 we can observe the considerable 

difference in memory utilization between PGPP and BIDE, where PGPP always uses considerable less memory than 

BIDE. At support 88% and less, the less utilization of the memory by PGPP compared to BIDE is in high. 

 

VII. CONCLUSION 

 Plenty researchers have developed that closed pattern mining offers the similar significant power as which of all frequent 

pattern mining even leads to additional compact consequences set and substantially better performance. Our research 

demonstrated that this is normally true when the quantity of frequent patterns is excessively huge, in that case the amount 

of frequent closed patterns is additionally likely very significant. However, most of the formerly designed closed pattern 

mining algorithms depend on the traditional set of frequent closed patterns to assess if a recently found frequent pattern is 

restricted or if it can invalidate certain definitely mined closed candidates. Simply because the set of already excavated 

frequent closed patterns holds growing through the mining process, not really will it intake more memory, but also 

contribute to inefficiency because of the growing query space for pattern closure monitoring. In this paper, we suggested 

PGPP, a novel algorithm for mining frequent closed sequences making use of sequence Graph. It prevents the curse of 

the prospect maintenance-and-test paradigm, manages the memory space conveniently by pruning Graphs perfectly and 

checks the method closure in a additional efficient way although consuming much reduced memory in distinction to the 
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formerly developed closed pattern mining algorithms. It will not need to preserve the set of historic closed patterns, thus 

it machines very well in the amount of frequent closed patterns. PGPP chooses a Sequence Graph and can produce the 

frequent closed patterns in an on the web fashion. A comprehensive set of studies on several genuine datasets with 

assorted distribution functions have revealed the performance of the algorithm design: PGPP utilizes less memory while 

can be efficient than the CloSpan and BIDE algorithms. It also has additive scalability in terms of the number of 

sequences in the database. Numerous studies have demonstrated that constraints are recommended for many sequential 

pattern mining purposes. In the upcoming, we plan to utilize the inference strategy on projected itemsets to develop the 

rule coherency. 
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